Screening for Colorectal Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force | Cancer Screening, Prevention, Control | JAMA | JAMA Network
[Skip to Navigation]
Sign In
Figure 1.  Analytic Framework: Screening for Colorectal Cancer
Analytic Framework: Screening for Colorectal Cancer

Evidence reviews for the US Preventive Services Task Force (USPSTF) use an analytic framework to visually display the key questions that the review will address to allow the USPSTF to evaluate the effectiveness and safety of a preventive service. The questions are depicted by linkages that relate interventions and outcomes. Additional Information available in the USPSTF Procedure Manual.8 FIT indicates fecal immunochemical test; gFOBT, guaiac-based fecal occult blood test; mSEPT9, methylated septin 9 gene; sDNA test, stool DNA test; SSP, sessile serrated polyp.

aScreening technology with conditional approval from the US Food and Drug Administration for screening for colorectal cancer.

bScreening modality not discussed in this article.

Figure 2.  Literature Search Flow Diagram: Screening for Colorectal Cancer
Literature Search Flow Diagram: Screening for Colorectal Cancer

KQ indicates key question.

aArticles could be reviewed for more than 1 KQ.

bReasons for exclusion: Relevance: Study aim not relevant. Design: Study did not use an included design. Setting: Study not conducted in a country relevant to US practice or not conducted in, recruited from, or feasible for primary care or a health system. Population: Study not conducted in an included population. Outcomes: Study did not have relevant outcomes or had incomplete outcomes. Screening test: Screening test was out of scope. Quality: Study was poor quality. Abstract only: Full-text publication not available.

Table 1.  Key Question 1: Overall Summary of Impact of Screening vs No Screening on Colorectal Cancer Incidence and Mortality
Key Question 1: Overall Summary of Impact of Screening vs No Screening on Colorectal Cancer Incidence and Mortality
Table 2.  Key Question 2: Summary of Test Accuracy Results for Direct Visualization Screening Testsa
Key Question 2: Summary of Test Accuracy Results for Direct Visualization Screening Testsa
Table 3.  Key Question 2: Summary of Test Accuracy Results From Studies With Colonoscopy Follow-up for Stool and Serum Screening Testsa
Key Question 2: Summary of Test Accuracy Results From Studies With Colonoscopy Follow-up for Stool and Serum Screening Testsa
Table 4.  Key Question 3: Summary of Serious Harms and Extracolonic Findings From Screening
Key Question 3: Summary of Serious Harms and Extracolonic Findings From Screening
Table 5.  Summary of Evidence
Summary of Evidence
US Preventive Services Task Force
Evidence Report
May 18, 2021

Screening for Colorectal Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force

Author Affiliations
  • 1Kaiser Permanente Evidence-based Practice Center, Center for Health Research, Kaiser Permanente, Portland, Oregon
JAMA. 2021;325(19):1978-1997. doi:10.1001/jama.2021.4417
Abstract

Importance  Colorectal cancer (CRC) remains a significant cause of morbidity and mortality in the US.

Objective  To systematically review the effectiveness, test accuracy, and harms of screening for CRC to inform the US Preventive Services Task Force.

Data Sources  MEDLINE, PubMed, and the Cochrane Central Register of Controlled Trials for relevant studies published from January 1, 2015, to December 4, 2019; surveillance through March 26, 2021.

Study Selection  English-language studies conducted in asymptomatic populations at general risk of CRC.

Data Extraction and Synthesis  Two reviewers independently appraised the articles and extracted relevant study data from fair- or good-quality studies. Random-effects meta-analyses were conducted.

Main Outcomes and Measures  Colorectal cancer incidence and mortality, test accuracy in detecting cancers or adenomas, and serious adverse events.

Results  The review included 33 studies (n = 10 776 276) on the effectiveness of screening, 59 (n = 3 491 045) on the test performance of screening tests, and 131 (n = 26 987 366) on the harms of screening. In randomized clinical trials (4 trials, n = 458 002), intention to screen with 1- or 2-time flexible sigmoidoscopy vs no screening was associated with a decrease in CRC-specific mortality (incidence rate ratio, 0.74 [95% CI, 0.68-0.80]). Annual or biennial guaiac fecal occult blood test (gFOBT) vs no screening (5 trials, n = 419 966) was associated with a reduction of CRC-specific mortality after 2 to 9 rounds of screening (relative risk at 19.5 years, 0.91 [95% CI, 0.84-0.98]; relative risk at 30 years, 0.78 [95% CI, 0.65-0.93]). In observational studies, receipt of screening colonoscopy (2 studies, n = 436 927) or fecal immunochemical test (FIT) (1 study, n = 5.4 million) vs no screening was associated with lower risk of CRC incidence or mortality. Nine studies (n = 6497) evaluated the test accuracy of screening computed tomography (CT) colonography, 4 of which also reported the test accuracy of colonoscopy; pooled sensitivity to detect adenomas 6 mm or larger was similar between CT colonography with bowel prep (0.86) and colonoscopy (0.89). In pooled values, commonly evaluated FITs (14 studies, n = 45 403) (sensitivity, 0.74; specificity, 0.94) and stool DNA with FIT (4 studies, n = 12 424) (sensitivity, 0.93; specificity, 0.85) performed better than high-sensitivity gFOBT (2 studies, n = 3503) (sensitivity, 0.50-0.75; specificity, 0.96-0.98) to detect cancers. Serious harms of screening colonoscopy included perforations (3.1/10 000 procedures) and major bleeding (14.6/10 000 procedures). CT colonography may have harms resulting from low-dose ionizing radiation. It is unclear if detection of extracolonic findings on CT colonography is a net benefit or harm.

Conclusions and Relevance  There are several options to screen for colorectal cancer, each with a different level of evidence demonstrating its ability to reduce cancer mortality, its ability to detect cancer or precursor lesions, and its risk of harms.

Introduction

Although the incidence of colorectal cancer (CRC) has declined over time, it remains a significant cause of morbidity and mortality in the US. Among all cancers, it is third in incidence and cause of cancer death for both men and women.1 In addition, cohort trends indicate that CRC incidence is decreasing only for persons 55 years or older.2 From the mid-1990s until 2013 the incidence of CRC had increased annually by 0.5% to 1.3% in adults aged 40 to 54 years.2

In 2016, the US Preventive Services Task Force (USPSTF) recommended screening for CRC starting at age 50 years and continuing until age 75 years (A recommendation). The task force recommended that the decision to screen for CRC in adults aged 76 to 85 years should be based on the individual, accounting for the patient’s overall health and prior screening history (C recommendation).3 To complete screening, this recommendation offered a number of stool-based and direct visualization tests.

This systematic review was conducted to update the previous review4,5 on the effectiveness, test accuracy, and harms of CRC screening as well as to inform a separate modeling report,6,7 which together were used by the USPSTF in the process of updating its CRC screening recommendation.

Methods
Scope of Review

This review addressed 3 key questions (KQs), which are listed in Figure 1. No major changes were made to the scope of the previous review for the conduct of the current review except for the addition of 2 screening modalities (ie, capsule endoscopy, urine testing), which are not discussed in this article. The full report9 provides additional details on the methods, results, and contextual issues addressed.

Data Sources and Searches

Ovid MEDLINE, PubMed (publisher-supplied records only), and the Cochrane Central Register of Controlled Trials were searched to locate primary studies informing the key questions (eMethods in the Supplement). Searches included literature published between January 1, 2015, and December 4, 2019. The searches were supplemented with expert suggestions and by reviewing reference lists from other relevant systematic reviews, including the 2016 USPSTF evidence report.4 Ongoing surveillance was conducted through March 26, 2021, through article alerts and targeted searches of high-impact journals to identify major studies published in the interim that may affect the conclusions or understanding of the evidence. Two new studies were identified10,11; however, they did not substantively change the review’s interpretation of findings or conclusions and are not discussed further.

Study Selection

Two independent reviewers screened the titles, abstracts, and relevant full-text articles to ensure consistency with a priori inclusion and exclusion criteria (eTable 1 in the Supplement). Included studies were English-language studies of asymptomatic screening populations of individuals 40 years or older who were either at average risk for CRC or not selected for inclusion based on CRC risk factors. Studies that evaluated direct visualization (ie, colonoscopy, flexible sigmoidoscopy, computed tomography [CT] colonography) or currently available stool-based (ie, guaiac fecal occult blood test [gFOBT], fecal immunochemical test [FIT], stool DNA with a FIT [sDNA-FIT]), or serum-based (ie, methylated SEPT9 gene) tests were included.

For KQ1, randomized clinical trials (RCTs) or nonrandomized controlled intervention studies of CRC screening vs no screening or trials comparing screening tests were included. Included studies needed to report outcomes of CRC incidence, CRC-specific mortality, or all-cause mortality. For tests without trial-level evidence, well-conducted prospective cohort studies were included.

For KQ2, test accuracy studies that used colonoscopy as the reference standard were included. Well-conducted test accuracy studies that used robust registry follow-up for screen-negative participants were also included. Studies whose design was subject to a high risk of bias were excluded, including those studies subject to verification bias, spectrum bias, or both.12-16

For KQ3, all trials and observational studies that reported serious adverse events requiring unexpected or unwanted medical attention or resulting in death were included. These events included, but were not limited to, perforation, major bleeding, severe abdominal symptoms, and cardiovascular events. Studies designed to assess for extracolonic findings (ie, incidental findings on CT colonography) and the resultant diagnostic yield and harms of workup were also included.

Data Extraction and Quality Assessment

Two reviewers critically appraised all articles that met inclusion criteria using prespecified quality criteria (eTable 2 in the Supplement).8 Disagreements about critical appraisal were resolved by consensus. Poor-quality studies (ie, those with methodological shortcomings resulting in a high risk of bias) were excluded. One reviewer extracted descriptive information and outcome data into standardized evidence tables and a second reviewer checked the data for accuracy.

Data Synthesis and Analysis

The results were synthesized by KQ, type of screening test, and study design. For KQ1, the syntheses were organized into 3 main categories: (1) trials designed to assess the effectiveness (intention to screen) of screening tests compared with no screening; (2) observational studies designed to assess the association of receipt of a screening test compared with no screening; and (3) comparative trials of one screening test vs another screening test. Many of the trials comparing screening tests that met inclusion criteria, however, were designed to determine the differential uptake of tests, determine the comparative yield between tests, or both. As such, they were not powered to detect differences in CRC outcomes or mortality (ie, comparative effectiveness) and are not discussed in this article. When data were available, random-effects meta-analyses were conducted using the restricted maximum likelihood method to estimate the pooled incidence rate ratio (IRR).

For KQ2, the analyses primarily focused on per-person test accuracy of a single test application to detect CRC, advanced adenomas, advanced neoplasia, and adenomas by size (≥6 mm or ≥10 mm). When possible, data from contingency tables was analyzed using a bivariate model, which modeled sensitivity and specificity simultaneously. Although studies evaluating stool-based tests using a colonoscopy reference standard for all persons and studies using a registry follow-up for screen-negative persons were included, only results from the former study design are detailed in this article. For the FITs, random-effects meta-analyses were conducted by test “family” (ie, tests produced by the same manufacturer, using the same components and method and compatible automated analyzers) and by cutoff values (in μg Hb/g feces).

For KQ3, there were no hypothesized serious harms for stool-, blood-, or serum-based tests beyond test inaccuracy and harms accrued from subsequent colonoscopy. Harms for direct visualization tests were categorized by indication (ie, screening vs follow-up for an abnormal flexible sigmoidoscopy or stool test). For colonoscopy and flexible sigmoidoscopy, random-effects meta-analyses using the DerSimonian and Laird method were conducted to estimate rates of perforation and major bleeding.

All quantitative analyses were conducted in Stata version 16 (StataCorp). The presence of statistical heterogeneity was assessed among pooled studies using the I2 statistic. All tests were 2-sided, with P< .05 indicating statistical significance.

The aggregate strength of evidence (ie, high, moderate, or low) was subsequently assessed for each KQ using the approach described in the Methods Guide for the Effectiveness and Comparative Effectiveness Reviews,17 based on consistency, precision, reporting bias, and study quality.

Results

Investigators reviewed 11 306 unique citations and 502 full-text articles for all KQs (Figure 2). Overall, 196 studies reported in 255 publications were included, 70 of which were newly identified since the prior review. A full list of included studies by KQ is available in the Supplement.

Benefits of Screening

Key Question 1. What is the effectiveness or comparative effectiveness of screening in reducing colorectal cancer, mortality, or both?

Thirty-three unique fair- to good-quality studies (n = 10 776 276)18-50 (published in 66 articles18-83) were included to assess the effectiveness or comparative effectiveness of screening tests on CRC incidence and mortality. These included 2 prospective cohort studies37,47 (n = 436 927) that examined the effectiveness of screening colonoscopy, 4 RCTs19,24,29,35 (n = 458 002) that examined the effectiveness of flexible sigmoidoscopy with or without a FIT, 6 trials20,21,27,36,38,39 (n = 525 966) that examined the effectiveness of a gFOBT, and 1 prospective cohort study46 (n = 5 417 699) that examined the effectiveness of a FIT. In addition to 1 screening RCT19 (n = 98 678) that evaluated flexible sigmoidoscopy plus FIT vs flexible sigmoidoscopy alone, 20 studies18,22,23,25,26,28,30-34,40-45,48-50 (n = 471 860) that compared screening modalities were included. The magnitude of benefit in CRC mortality and cancer incidence among screening tests could not be directly compared because of major differences in the design of included studies for each test type (eg, trial vs observational study, intention to screen vs as screened, outcome metric reported). No studies were found evaluating the effectiveness of CT colonography, high-sensitivity gFOBT, sDNA with or without FIT, or serum tests on CRC incidence, CRC mortality, or both.

Colonoscopy

Two large, prospective observational studies37,47 (n = 436 927) evaluating the association of receipt of screening colonoscopy with CRC incidence or mortality were included (Table 1). After 24 years of follow-up, 1 study among health professionals (n = 88 902) found that the CRC-specific mortality rate was lower in people who self-reported at least 1 screening colonoscopy compared with those who had never had a screening colonoscopy (adjusted hazard ratio, 0.32 [95% CI, 0.24-0.45]).37 This study found that screening colonoscopies were associated with lower CRC mortality from both distal and proximal cancers. Another study conducted among Medicare beneficiaries (n = 348 025) with much shorter follow-up found that people aged 70 to 74 years who underwent a screening colonoscopy had a lower 8-year standardized risk for CRC (−0.42% [95% CI, −0.24% to −0.63%]) than those who did not undergo the test.47

Flexible Sigmoidoscopy

Four well-conducted trials19,24,29,35 (n = 458 002) of 1- or 2-time flexible sigmoidoscopy screening that demonstrated a reduction in CRC incidence and mortality were included (Table 1). All 4 trials were included in the previous review. While 3 of these trials have published longer follow-up since the previous review,19,24,29 the new data did not change the conclusions on screening effectiveness. Based on 4 RCTs that used intention-to-screen analyses, 1- or 2-time flexible sigmoidoscopy was consistently associated with a decrease in CRC incidence (IRR, 0.78 [95% CI, 0.74-0.83], with 28 to 47 fewer CRC cases per 100 000 person-years) and CRC-specific mortality (IRR, 0.74 [95% CI, 0.68-0.80], with 10 to 17 fewer CRC deaths per 100 000 person-years) when compared with no screening at 11 to 17 years of follow-up (eFigure 1 in the Supplement).

Guaiac Fecal Occult Blood Test

Six well-conducted trials20,21,27,36,38,39 (n = 780 458) of biennial or annual gFOBT screening that demonstrated a reduction in CRC incidence and mortality were included (Table 1). Based on 5 RCTs20,21,27,36,39 (n = 419 966) that used intention-to-screen analyses, biennial screening with Hemoccult II (Beckman Coulter) was associated with a reduction of CRC-specific mortality compared with no screening after 2 to 9 rounds of screening at 11 to 30 years of follow-up (relative risk [RR], 0.91 [95% CI, 0.84-0.98] at 19.5 years; RR, 0.78 [95% CI, 0.65-0.93] at 30 years) (eTable 3 in the Supplement). One additional trial38 of screening with Hemoccult II in Finland (n = 360 492) reported only interim findings, with a follow-up of 4.5 years.

Fecal Immunochemical Test

Although many observational studies have evaluated national FIT screening programs, only 1 prospective observational study46 (n = 5 417 699) that evaluated receipt of FIT on CRC incidence, CRC mortality, or both met the inclusion criteria (Table 1). This study found that 1 to 3 rounds of screening with a biennial FIT (OC-Sensor [Eiken Chemical] or HM JACK [Kyowa Medex]) were associated with lower CRC mortality at 6 years’ follow-up, compared with no screening (adjusted RR, 0.90 [95% CI, 0.84-0.95]).46

Comparative Effectiveness

In 1 flexible sigmoidoscopy screening RCT (n = 98 678), compared with persons in the no screening group, persons in the flexible sigmoidoscopy plus FIT group had lower risk of CRC-specific mortality than those in the flexible sigmoidoscopy–only group (age-adjusted hazard ratio, 0.62 [95% CI, 0.42-0.90] vs 0.84 [95% CI, 0.61-1.17]), although this difference was not statistically significant.19 Additional included trials were primarily designed to evaluate the comparative uptake/adherence, test positivity, and initial cancer detection of one screening test vs another. Several adequately powered studies currently underway are evaluating the comparative effectiveness of direct visualization vs stool-based screening programs (eTable 4 in the Supplement).

Findings by Age, Sex, and Race/Ethnicity

Overall, age stratified analyses from flexible sigmoidoscopy and gFOBT trials did not demonstrate statistically significant differences in benefit in older vs younger adults, although age strata used were not consistent across trials. Only 3 gFOBT studies included adults younger than 50 years at recruitment, and none of these studies provided age-stratified analyses for this age group.27,36,39 One study evaluating receipt of screening colonoscopy among Medicare beneficiaries did not find a benefit in 8-year standardized risk for CRC in those aged 75 to 79 years, in contrast to the benefit seen in those aged 70 to 74 years.47 Reductions in CRC incidence (eFigure 2 in the Supplement) and mortality (eFigure 3 in the Supplement) from flexible sigmoidoscopy trials were greater for men than for women. This evidence, however, was less consistent in 3 trials that reported sex differences for gFOBT screening programs.

Accuracy of Screening

Key Question 2. What is the accuracy of direct visualization, stool-based, or serum-based screening tests for detecting colorectal cancer, advanced adenomas, or adenomatous polyps based on size?

Fifty-nine studies84-142 (n = 3 491 045) (published in 78 articles84-161) that evaluated the accuracy of various screening tests were included. There were no new studies published since the prior review that would add to the understanding of screening sensitivity or specificity for colonoscopy, CT colonography, or flexible sigmoidoscopy. New studies were identified that evaluated the sensitivity and specificity of stool-based (ie, high-sensitivity gFOBT, FIT, sDNA-FIT) and serum-based tests for screening.

Colonoscopy and CT Colonography

Nine fair- to good-quality studies102,105,110,111,114,117,121,128,138 (n = 6497) that evaluated screening CT colonography were included, 4 of which (n = 4821) also reported the test accuracy of colonoscopy (Table 2).110,111,128,138 Based on these studies, while both colonoscopy and CT colonography did not accurately identify all cancers, the number of CRCs in these studies was low and these studies were not powered to estimate the test accuracy for CRC.

Based on 3 studies111,128,138 (n = 2290) that compared colonoscopy to a reference standard of CT colonography–enhanced colonoscopy or repeat colonoscopy, the per-person sensitivity for adenomas 10 mm or larger ranged from 0.89 (95% CI, 0.78-0.96) to 0.95 (95% CI, 0.74-0.99). The per-person sensitivity for adenomas 6 mm or larger ranged from 0.75 (95% CI, 0.63-0.84) to 0.93 (95% CI, 0.88-0.96). Specificity could be calculated only from 1 of the included studies and was 0.89 (95% CI, 0.86-0.91) for adenomas 10 mm or larger and 0.94 (95% CI, 0.92-0.96) for adenomas 6 mm or larger.138

Based on 7 studies105,110,111,114,117,121,128 (n = 5328) evaluating CT colonography with bowel preparation, the sensitivity to detect adenomas 10 mm or larger ranged from 0.67 (95% CI, 0.45-0.84) to 0.94 (95% CI, 0.84-0.98) and specificity ranged from 0.86 (95% CI, 0.85-0.87) to 0.98 (95% CI, 0.96-0.99) (eFigure 4 in the Supplement). Likewise, the sensitivity to detect adenomas 6 mm or larger ranged from 0.73 (95% CI, 0.58-0.84) to 0.98 (95% CI, 0.91-0.99) and specificity ranged from 0.80 (95% CI, 0.77-0.82) to 0.93 (95% CI, 0.90-0.96) (eFigure 5 in the Supplement). Although there was some variation in estimates of sensitivity and specificity among included studies, it remains unclear whether the variation of test performance was due to differences in study design, populations, CT colonography imaging, reader experience, or reading of protocols.

High-Sensitivity gFOBT

Two84,133 (n = 3503) of the 5 studies that evaluated Hemoccult Sensa (Beckman Coulter) applied a colonoscopy reference standard to all persons (Table 3). In these 2 studies, the sensitivity to detect CRC ranged from 0.50 to 0.75 (95% CI range, 0.09-1.0) and specificity ranged from 0.96 to 0.98 (95% CI range, 0.95-0.99). Hemoccult Sensa was not sensitive to detect advanced adenocarcinoma (sensitivity range, 0.06-0.17; 95% CI range, 0.02-0.23).

Fecal Immunochemical Test

There are a wide variety of FITs available. Those most commonly evaluated in this review were part of the OC-Sensor family (Eiken Chemical; includes tests OC FIT-CHEK, OC-Auto, OC-Micro, OC-Sensor, and OC-Sensor Micro) or the OC-Light test (by the same manufacturer but using a different methodology) (Table 3). Based on 9 studies89,97,100,107,108,113,127,130,133 (n = 34 352) that used OC-Sensor tests to detect CRC with a colonoscopy reference standard and the manufacturer-recommended cutoff of 20 μg Hb/g feces, pooled sensitivity was 0.74 (95% CI, 0.64 to 0.83; I2 = 31.6%) and pooled specificity was 0.94 (95% CI, 0.93-0.96; I2 = 96.6%) (eFigure 6 in the Supplement). As expected at lower cutoffs (10 and 15 μg Hb/g feces), the sensitivity increased and the corresponding specificities decreased. Based on 10 studies89,91,97,100,107,108,113,127,130,133 (n = 40 411) that used OC-Sensor tests to detect advanced adenocarcinoma with a colonoscopy reference standard, sensitivity using a cutoff of 20 μg Hb/g feces was 0.23 (95% CI, 0.20-0.25; I2 = 47.4%) and specificity was 0.96 (95% CI, 0.95-0.97; I2 = 94.8) (eFigure 7 in the Supplement). Based on 3 studies95,96,98 (n = 31 803), OC-Light had similar sensitivity and specificity to detect CRC and advanced adenocarcinoma compared with OC-Sensor.

sDNA (With or Without FIT)

The only available sDNA screening test includes a FIT assay marketed as Cologuard (Exact Sciences), which is sometimes referred to as a multitarget stool DNA test. Based on 4 studies99,108,130,142 (n = 12 424) to detect CRC using a colonoscopy, pooled sensitivity was 0.93 (95% CI, 0.87-1.0) and pooled specificity was 0.85 (95% CI, 0.84-0.86); to detect advanced adenoma, pooled sensitivity was 0.43 (95% CI, 0.40-0.46) and pooled specificity was 0.89 (95% CI, 0.86-0.92) (Table 3; eFigure 8 in the Supplement).

Serum Test

Currently, one serum test—Epi proColon (Epigenomics)—is available to screen average-risk adults for CRC through detection of circulating methylated SEPT9 DNA. Based on 1 fair-quality nested case-control study129 (n = 6857), sensitivity to detect CRC was 0.68 (95% CI, 0.53-0.80) and specificity was 0.79 (95% CI, 0.77-0.81) (Table 3). The sensitivity to detect advanced adenoma was 0.22 (95% CI, 0.18-0.24) and specificity was 0.79 (95% CI, 0.76-0.82).

Findings by Age, Sex, and Race/Ethnicity

While FIT studies that examined differences in test accuracy by age, sex, or race/ethnicity were limited, no consistent differences by subgroup were found. Overall, in 10 studies there were no significant differences in test accuracy by age strata, including 2 studies reporting stratified analyses for persons younger than 50 years; however, 2 studies suggested possible lower specificity to detect CRC in older persons (70 years or older). Six studies reported test accuracy by sex and produced inconsistent findings. One OC-Sensor study reported no difference in test accuracy for advanced neoplasia in Black vs White participants.99

The largest study108,162 on sDNA-FIT reported test accuracy by age, sex, and race/ethnicity groups, although this study was not designed to examine these differences. This study found that the specificity to detect CRC and advanced adenoma decreases as age increases, but there was not a clear pattern for increasing sensitivity with increasing age. Findings were inconsistent in 2 studies that reported test accuracy for White participants compared with Black participants.

Harms of Screening

Key Question 3. What are the serious harms of the different screening tests?

One hundred thirty-one fair- or good-quality studies18-29,33-36,43,47,49,102,105,110,114,117,128,131,138,163-266 (published in 162 articles18-29,33-36,43,47,49,51-54,56-58,60,61,64,65,68,69,71-80,102,105,110,114,117,128,131,138,143,163-273) were included. Among these, 18 studies19,22,24,28,29,33-35,49,203,206,212,216,234,235,239,254,260 (n = 395 077) evaluated serious harms from screening flexible sigmoidoscopy; 67 studies26,43,47,163,164,166,168,171,172,174,179,180,182-189,191-195,197-199,201,203-205,210,213,215-218,226,229,231,233,237-252,255,256,258,261-266 (n = 25 784 107) evaluated screening colonoscopy; 21 studies19-21,24,26,27,29,34-36,49,169,172,173,175-177,181,225,227,236 (n = 903 872) evaluated colonoscopy following an abnormal result from a stool test, flexible sigmoidoscopy, or CT colonography; and 38 studies18,23,43,102,105,110,114,117,128,138,165,167,170,178,189,190,196,200,202,203,207-211,214,219-224,228,230,232,253,257,259 (n = 140 607) evaluated CT colonography. Of the studies evaluating CT colonography, 7 studies102,105,117,138,202,203,253 (n = 3365) provided estimates of radiation exposure and 27 studies18,23,43,110,128,138,165,167,170,178,200,207-211,214,219-224,230,232,257,259 (n = 48 235) reported extracolonic findings. While no studies examined the harms of stool or serum testing, there are not hypothesized serious harms for these noninvasive tests other than diagnostic inaccuracy (ie, false-positive or false-negative test results) or downstream harms of follow-up tests.

Serious adverse events from colonoscopy among screening populations were estimated at 3.1 perforations (95% CI, 2.3-4.0) per 10 000 procedures (26 studies, n = 5 272 600) and 14.6 major bleeding events (95% CI, 9.4-19.9) per 10 000 procedures (20 studies, n = 5 172 508) (Table 4). Serious adverse events from screening flexible sigmoidoscopy alone were less common, with a pooled estimate of 0.2 perforations (95% CI, 0.1-0.4) per 10 000 procedures (11 studies, n = 359 679) and 0.5 major bleeding events (95% CI, 0-1.3) per 10 000 procedures (10 studies, n = 179 854). However, for colonoscopies following flexible sigmoidoscopy with abnormal findings, the pooled estimates were 12.0 perforations (95% CI, 7.5-16.5) per 10 000 colonoscopy procedures (4 studies, n = 23 022) and 20.7 major bleeding events (95% CI, 8.2-33.2) per 10 000 colonoscopy procedures (4 studies, n = 5790). Serious adverse events from colonoscopy following stool testing with an abnormal result were estimated at 5.4 perforations (95% CI 3.4-7.4) per 10 000 colonoscopy procedures (12 studies, n = 341 922) and 17.5 serious bleeding events (95% CI, 7.6-27.5) per 10 000 colonoscopy procedures (11 studies, n = 78 793). Other harms which may result from screening, such as cardiopulmonary events or infections, are best assessed using comparative study designs. Only 4 studies47,187,191,262 (n = 4 173 949) reported harms in a cohort that received colonoscopy compared with a cohort that did not. These studies did not find a higher risk of serious harms associated with colonoscopy.

Data from 17 studies (n = 89 073) showed little to no risk of serious adverse events (eg, symptomatic perforation) for screening CT colonography. While CT colonography may also require a follow-up colonoscopy, sufficient evidence was not found to estimate serious adverse events from colonoscopy follow-up. CT colonography also entails exposure to low-dose ionizing radiation (range, 0.8 to 5.3 mSv), which may increase the risk of malignancy. Additionally, extracolonic findings on CT colonography were common (eTable 5 in the Supplement) (27 studies, n = 48 234). Approximately 1.3% to 11.4% of CT colonographies had potentially important extracolonic findings (CT Colonography Reporting and Data System [C-RADS] category E4) that necessitated diagnostic follow-up. Additionally, 3.4% to 26.9% of CT colonographies had C-RADS category E3 findings, some of which may require additional workup because of incompletely characterized findings. Although some included studies did report the final diagnosis of extracolonic findings, it is still unclear if the detection of extracolonic findings represents an overall benefit (detection and treatment of clinically significant disease) or harm (unnecessary diagnostic workup or identification of condition not needing intervention).

Findings by Age, Sex, and Race/Ethnicity

Twenty-three studies provided analyses of differential harms of colonoscopy by age. These studies generally found increasing rates of serious adverse events with increasing age, including perforation and bleeding. Sex differences in serious harms, when reported in 12 studies, suggested little differential risk between men and women. There were inconsistent findings in 4 studies that report harm stratified by race/ethnicity.

In 4 studies, extracolonic findings on CT colonography were more common with increasing age.110,208,209,211 Three studies reported extracolonic findings by sex, finding similar rates of extracolonic findings in both groups.207,219,221

Discussion

This systematic review assessed the effectiveness, test accuracy, and harms of CRC screening. A summary of the identified evidence is shown in Table 5. Since the 2016 USPSTF recommendation, more evidence has been published on the effectiveness and test accuracy of newer stool tests (FIT and sDNA-FIT) and the test accuracy of a US Food and Drug Administration–approved serum test (Epi proColon) for use in persons declining colonoscopy, flexible sigmoidoscopy, gFOBT, or FIT. More data on colonoscopy harms have also been published that reported higher estimates of major bleeding than previously appreciated. Overall, the different screening tests evaluated have different levels of evidence to demonstrate their ability to reduce cancer mortality and to detect cancer, precursor lesions, or both as well as their risk of serious adverse events.

Data from well-conducted population-based screening RCTs demonstrate that intention to screen with Hemoccult II or flexible sigmoidoscopy can reduce CRC mortality. Hemoccult II and flexible sigmoidoscopy, however, are no longer widely used for screening in the US. Newer screening tests with similar sensitivity may result in CRC mortality reductions similar to reductions shown in existing trials. If sensitivity is better, without a trade-off in specificity (eg, various FITs), mortality reductions could be greater.275 Decision analyses can help understand the trade-offs of false-positive results and optimal intervals of testing for tests that maximize sensitivity with a reduction in specificity (eg, sDNA-FIT). To date, while serum testing has more limited evidence around test accuracy, it has better patient acceptability and adherence than stool-based testing.276 While CT colonography has evidence to support the adequate detection for precursor lesions greater than or equal to 6 mm (similar to colonoscopy), it may have harms associated with the cumulative exposure of radiation with repeated examinations, the detection of incidental findings, or both.

Adherence to screening remains the biggest challenge to implementation of screening and has consistently lagged behind recommended screenings for other cancers.277 Adherence to a single round of screening, repeated screening, and follow-up colonoscopy vary across studies, setting, and populations.278 Differential adherence to screening tests influences the benefits and harms of screening program and may influence the selection of a preferred strategy.

Although the incidence of CRC has been increasing among adults younger than 50 years, there is little empirical evidence evaluating potential differences in the effectiveness of screening, test performance of screening tests, and the harms of screening in adults younger than 50 years. Any differences in the effectiveness of screening at younger ages would be attributable to varying the underlying risk or incidence of CRC, the natural history of disease, or both, as well as differences in test accuracy by age. Limited studies demonstrate no difference in test accuracy of stool testing or harms of colonoscopy in people younger than 50 years. Although it is not hypothesized that colonoscopy or CT colonography are more harmful in younger adults than older adults, initiating screening at an earlier age will accrue more procedural harms and extracolonic findings, which should be weighed against any incremental benefit of earlier start to screening.

Systematic reviews have identified multivariable risk prediction models with adequate discrimination,279,280 many of which have been externally validated281,282; however, they are not commonly used in clinical practice.279,283 In theory, multivariable risk assessment can identify persons at higher risk for CRC and tailor when to initiate screening.

While several CRC screening trials evaluating colonoscopy, CT colonography, and FIT are underway, future research should also include trials or well-designed cohort studies in average-risk populations to evaluate the effects of new serum- and urine-based tests on cancer mortality and incidence. In addition, future research should include adequate sampling of different populations (by age, family risk, and race/ethnicity) to allow for robust subgroup analyses, use multivariable risk assessment to guide screening, or both. Studies to confirm the screening test performance of FITs with thus-far limited reproducibility would be helpful to offer other FIT alternatives to OC-Sensor and OC-Light. Likewise, test accuracy studies adequately powered for cancer detection to establish or confirm the screening test performance of promising serum- and urine-based tests are needed to bolster a menu of options for screening that may have greater acceptability and feasibility. In general test accuracy studies to clarify any differential in detection of proximal vs distal test accuracy, and the detection of precursor lesions with more potential for malignant transformation (eg, serrated sessile lesions), would also be informative. In addition, understanding the overall net effect of detection of extracolonic findings may be helped by reporting of the downstream benefits and harms of extracolonic findings in randomized or nonrandomized studies with longer-term follow-up.

Limitations

This review has several limitations. First, it excluded studies in symptomatic people and people with the highest hereditary risk. Second, it included only trials or prospective cohort studies designed to evaluate the association of screening with CRC incidence or mortality. It is possible that excluded well-designed nested case-control studies of colonoscopy or FIT may have lower risk of bias than included prospective cohort studies. Third, although this review addressed some important contextual issues related to screening (eg, adherence to testing, risk assessment to tailor screening, test acceptability and availability), it did not include an assessment of the mechanism of benefit of the different screening tests (primary prevention vs early detection), methods to increase screening adherence, prevalence of interval cancers between screenings, potential harms of overdetection of adenomas or unnecessary polypectomy, technological enhancements to improve the test accuracy of direct visualization, and surveillance after screening.

Conclusions

There are several options to screen for colorectal cancer, each with a different level of evidence demonstrating its ability to reduce cancer mortality, its ability to detect cancer or precursor lesions, and its risk of harms.

Back to top
Article Information

Corresponding Author: Jennifer S. Lin, MD, MCR, Kaiser Permanente Evidence-based Practice Center, The Center for Health Research, Kaiser Permanente Northwest, 3800 N Interstate Ave, Portland, OR 97227 (jennifer.s.lin@kpchr.org).

Accepted for Publication: March 9, 2021.

Author Contributions: Dr Lin had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: Perdue, Henrikson, Blasi.

Statistical analysis: Perdue.

Obtained funding: Lin.

Administrative, technical, or material support: Perdue, Bean, Blasi.

Supervision: Lin.

Conflict of Interest Disclosures: None reported.

Funding/Support: This research was funded under contract HHSA-290-2015-00007-I, Task Order 6, from the Agency for Healthcare Research and Quality (AHRQ), US Department of Health and Human Services, under a contract to support the US Preventive Services Task Force (USPSTF).

Role of the Funder/Sponsor: Investigators worked with USPSTF members and AHRQ staff to develop the scope, analytic framework, and key questions for this review. AHRQ had no role in study selection, quality assessment, or synthesis. AHRQ staff provided project oversight. reviewed the report to ensure that the analysis met methodological standards, and distributed the draft for peer review. Otherwise, AHRQ had no role in the conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript findings. The opinions expressed in this document are those of the authors and do not reflect the official position of AHRQ or the US Department of Health and Human Services.

Additional Contributions: We gratefully acknowledge the following individuals for their contributions to this project: Tina Fan, MD, MPH (AHRQ); current and former members of the USPSTF who contributed to topic deliberations; Samir Gupta, MD, MSCS (University of California, San Diego), and Carolyn Rutter, PhD (RAND Corporation), for their content expertise and review of the draft report; Rebecca Siegal, MPH (American Cancer Society), for providing incidence data; and Todd Hannon, MLS, Katherine Essick, BS, and Kevin Lutz, MFA (Kaiser Permanente Center for Health Research), for library and editorial assistance. USPSTF members, peer reviewers and those commenting on behalf of partner organizations did not receive financial compensation for their contributions.

Additional Information: A draft version of this evidence report underwent external peer review from 6 content experts (Douglas A. Corley, MD, PhD, MPH [Kaiser Permanente Northern California]; Desmond Leddin, MB, MSc [Dalhousie University]; David Lieberman, MD [Oregon Health and Science University]; Dawn Provenzale, MD, MS [Duke University]; and Paul Pinksy, PhD, and Carrie Klabunde, PhD [National Institutes of Health]) and 2 federal partners (Centers for Disease Control and Prevention and the National Cancer Institute). Comments were presented to the USPSTF during its deliberation of the evidence and were considered in preparing the final evidence review.

Editorial Disclaimer: This evidence report is presented as a document in support of the accompanying USPSTF Recommendation Statement. It did not undergo additional peer review after submission to JAMA.

References
1.
Siegel  RL, Miller  KD, Goding Sauer  A,  et al.  Colorectal cancer statistics, 2020.   CA Cancer J Clin. 2020;70(3):145-164. doi:10.3322/caac.21601PubMedGoogle ScholarCrossref
2.
Siegel  RL, Fedewa  SA, Anderson  WF,  et al.  Colorectal cancer incidence patterns in the United States, 1974-2013.   J Natl Cancer Inst. 2017;109(8):djw322. doi:10.1093/jnci/djw322PubMedGoogle Scholar
3.
US Preventive Services Task Force.  Screening for colorectal cancer: U.S. Preventive Services Task Force recommendation statement.   Ann Intern Med. 2008;149(9):627-637. doi:10.7326/0003-4819-149-9-200811040-00243PubMedGoogle ScholarCrossref
4.
Lin  JS, Piper  MA, Perdue  LA,  et al.  Screening for Colorectal Cancer: A Systematic Review for the US Preventive Services Task Force. Evidence Synthesis No. 135. Agency for Healthcare Research and Quality; 2016. AHRQ publication 14-05203-EF-1.
5.
Lin  JS, Piper  MA, Perdue  LA,  et al.  Screening for colorectal cancer: updated evidence report and systematic review for the US Preventive Services Task Force.   JAMA. 2016;315(23):2576-2594. doi:10.1001/jama.2016.3332PubMedGoogle ScholarCrossref
6.
Knudsen  AB, Rutter  CM, Peterse  EFP,  et al.  Colorectal cancer screening: an updated modeling study for the US Preventive Services Task Force.   JAMA. Published May 18, 2021. doi:10.1001/jama.2021.5746Google Scholar
7.
Knudsen  AB, Rutter  CM, Peterse  EF,  et al.  Colorectal Cancer Screening: A Decision Analysis for the US Preventive Services Task Force. Agency for Healthcare Research and Quality; 2021. AHRQ publication 20-05271-EF-2.
8.
Procedure Manual. US Preventive Services Task Force. Published 2018. Accessed March 10, 2021. https://uspreventiveservicestaskforce.org/uspstf/about-uspstf/methods-and-processes/procedure-manual
9.
Lin  JS, Perdue  LA, Henrikson  NB, Bean  SI, Blasi  PR.  Screening for Colorectal Cancer: An Evidence Update for the US Preventive Services Task Force. Evidence Synthesis No. 202. Agency for Healthcare Research and Quality; 2021. AHRQ publication 20-05271-EF-1.
10.
Randel  KR, Schult  AL, Botteri  E,  et al.  Colorectal cancer screening with repeated fecal immunochemical test versus sigmoidoscopy: baseline results from a randomized trial.   Gastroenterology. 2021;160(4):1085-1096. doi:10.1053/j.gastro.2020.11.037PubMedGoogle ScholarCrossref
11.
Imperiale  TF, Kisiel  JB, Itzkowitz  SH,  et al.  Specificity of the multi-target stool DNA test for colorectal cancer screening in average-risk 45-49 year-olds: a cross-sectional study.   Cancer Prev Res (Phila). 2021;14(4):489-496. doi:10.1158/1940-6207.CAPR-20-0294PubMedGoogle ScholarCrossref
12.
Leeflang  MM, Bossuyt  PM, Irwig  L.  Diagnostic test accuracy may vary with prevalence: implications for evidence-based diagnosis.   J Clin Epidemiol. 2009;62(1):5-12. doi:10.1016/j.jclinepi.2008.04.007PubMedGoogle ScholarCrossref
13.
Lijmer  JG, Mol  BW, Heisterkamp  S,  et al.  Empirical evidence of design-related bias in studies of diagnostic tests.   JAMA. 1999;282(11):1061-1066. doi:10.1001/jama.282.11.1061PubMedGoogle ScholarCrossref
14.
Ransohoff  DF, Feinstein  AR.  Problems of spectrum and bias in evaluating the efficacy of diagnostic tests.   N Engl J Med. 1978;299(17):926-930. doi:10.1056/NEJM197810262991705PubMedGoogle ScholarCrossref
15.
Rutjes  AW, Reitsma  JB, Di Nisio  M, Smidt  N, van Rijn  JC, Bossuyt  PM.  Evidence of bias and variation in diagnostic accuracy studies.   CMAJ. 2006;174(4):469-476. doi:10.1503/cmaj.050090PubMedGoogle ScholarCrossref
16.
Whiting  P, Rutjes  AW, Reitsma  JB, Glas  AS, Bossuyt  PM, Kleijnen  J.  Sources of variation and bias in studies of diagnostic accuracy: a systematic review.   Ann Intern Med. 2004;140(3):189-202. doi:10.7326/0003-4819-140-3-200402030-00010PubMedGoogle ScholarCrossref
17.
Berkman  ND, Lohr  KN, Ansari  M,  et al. Grading the strength of a body of evidence when assessing health care interventions for the Effective Health Care Program of the Agency for Healthcare Research and Quality: an update. In: Agency for Healthcare Research and Quality, eds.  Methods Guide for Effectiveness and Comparative Effectiveness Reviews. Agency for Healthcare Research and Quality; 2014:314-349. AHRQ publication 10(14)-EHC063-EF.
18.
Regge  D, Iussich  G, Segnan  N,  et al.  Comparing CT colonography and flexible sigmoidoscopy: a randomised trial within a population-based screening programme.   Gut. 2017;66(8):1434-1440. doi:10.1136/gutjnl-2015-311278PubMedGoogle ScholarCrossref
19.
Holme  Ø, Løberg  M, Kalager  M,  et al; NORCCAP Study Group.  Long-term effectiveness of sigmoidoscopy screening on colorectal cancer incidence and mortality in women and men: a randomized trial.   Ann Intern Med. 2018;168(11):775-782. doi:10.7326/M17-1441PubMedGoogle ScholarCrossref
20.
Shaukat  A, Mongin  SJ, Geisser  MS,  et al.  Long-term mortality after screening for colorectal cancer.   N Engl J Med. 2013;369(12):1106-1114. doi:10.1056/NEJMoa1300720PubMedGoogle ScholarCrossref
21.
Lindholm  E, Brevinge  H, Haglind  E.  Survival benefit in a randomized clinical trial of faecal occult blood screening for colorectal cancer.   Br J Surg. 2008;95(8):1029-1036. doi:10.1002/bjs.6136PubMedGoogle ScholarCrossref
22.
Verne  JE, Aubrey  R, Love  SB, Talbot  IC, Northover  JM.  Population based randomised study of uptake and yield of screening by flexible sigmoidoscopy compared with screening by faecal occult blood testing.   BMJ. 1998;317(7152):182-185. doi:10.1136/bmj.317.7152.182PubMedGoogle ScholarCrossref
23.
Stoop  EM, de Haan  MC, de Wijkerslooth  TR,  et al.  Participation and yield of colonoscopy versus non-cathartic CT colonography in population-based screening for colorectal cancer: a randomised controlled trial.   Lancet Oncol. 2012;13(1):55-64. doi:10.1016/S1470-2045(11)70283-2PubMedGoogle ScholarCrossref
24.
Miller  EA, Pinsky  PF, Schoen  RE, Prorok  PC, Church  TR.  Effect of flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: long-term follow-up of the randomised US PLCO cancer screening trial.   Lancet Gastroenterol Hepatol. 2019;4(2):101-110. doi:10.1016/S2468-1253(18)30358-3PubMedGoogle ScholarCrossref
25.
Rasmussen  M, Kronborg  O, Fenger  C, Jørgensen  OD.  Possible advantages and drawbacks of adding flexible sigmoidoscopy to Hemoccult-II in screening for colorectal cancer: a randomized study.   Scand J Gastroenterol. 1999;34(1):73-78. doi:10.1080/00365529950172862PubMedGoogle ScholarCrossref
26.
Quintero  E, Castells  A, Bujanda  L,  et al; COLONPREV Study Investigators.  Colonoscopy versus fecal immunochemical testing in colorectal-cancer screening.   N Engl J Med. 2012;366(8):697-706. doi:10.1056/NEJMoa1108895PubMedGoogle ScholarCrossref
27.
Faivre  J, Dancourt  V, Lejeune  C,  et al.  Reduction in colorectal cancer mortality by fecal occult blood screening in a French controlled study.   Gastroenterology. 2004;126(7):1674-1680. doi:10.1053/j.gastro.2004.02.018PubMedGoogle ScholarCrossref
28.
Brevinge  H, Lindholm  E, Buntzen  S, Kewenter  J.  Screening for colorectal neoplasia with faecal occult blood testing compared with flexible sigmoidoscopy directly in a 55-56 years’ old population.   Int J Colorectal Dis. 1997;12(5):291-295. doi:10.1007/s003840050108PubMedGoogle ScholarCrossref
29.
Atkin  W, Wooldrage  K, Parkin  DM,  et al.  Long-term effects of once-only flexible sigmoidoscopy screening after 17 years of follow-up: the UK Flexible Sigmoidoscopy Screening randomised controlled trial.   Lancet. 2017;389(10076):1299-1311. doi:10.1016/S0140-6736(17)30396-3PubMedGoogle ScholarCrossref
30.
Zubero  MB, Arana-Arri  E, Pijoan  JI,  et al.  Population-based colorectal cancer screening: comparison of two fecal occult blood test.   Front Pharmacol. 2014;4:175. doi:10.3389/fphar.2013.00175PubMedGoogle ScholarCrossref
31.
van Rossum  LG, van Rijn  AF, Laheij  RJ,  et al.  Random comparison of guaiac and immunochemical fecal occult blood tests for colorectal cancer in a screening population.   Gastroenterology. 2008;135(1):82-90. doi:10.1053/j.gastro.2008.03.040PubMedGoogle ScholarCrossref
32.
van Roon  AH, Goede  SL, van Ballegooijen  M,  et al.  Random comparison of repeated faecal immunochemical testing at different intervals for population-based colorectal cancer screening.   Gut. 2013;62(3):409-415. doi:10.1136/gutjnl-2011-301583PubMedGoogle ScholarCrossref
33.
Segnan  N, Senore  C, Andreoni  B,  et al; SCORE3 Working Group–Italy.  Comparing attendance and detection rate of colonoscopy with sigmoidoscopy and FIT for colorectal cancer screening.   Gastroenterology. 2007;132(7):2304-2312. doi:10.1053/j.gastro.2007.03.030PubMedGoogle ScholarCrossref
34.
Segnan  N, Senore  C, Andreoni  B,  et al; SCORE2 Working Group–Italy.  Randomized trial of different screening strategies for colorectal cancer: patient response and detection rates.   J Natl Cancer Inst. 2005;97(5):347-357. doi:10.1093/jnci/dji050PubMedGoogle ScholarCrossref
35.
Segnan  N, Armaroli  P, Bonelli  L,  et al; SCORE Working Group.  Once-only sigmoidoscopy in colorectal cancer screening: follow-up findings of the Italian Randomized Controlled Trial—SCORE.   J Natl Cancer Inst. 2011;103(17):1310-1322. Published correction appears in J Natl Cancer Inst. 2011;103(24):1903. doi:10.1093/jnci/djr284PubMedGoogle ScholarCrossref
36.
Scholefield  JH, Moss  SM, Mangham  CM, Whynes  DK, Hardcastle  JD.  Nottingham trial of faecal occult blood testing for colorectal cancer: a 20-year follow-up.   Gut. 2012;61(7):1036-1040. doi:10.1136/gutjnl-2011-300774PubMedGoogle ScholarCrossref
37.
Nishihara  R, Wu  K, Lochhead  P,  et al.  Long-term colorectal-cancer incidence and mortality after lower endoscopy.   N Engl J Med. 2013;369(12):1095-1105. doi:10.1056/NEJMoa1301969PubMedGoogle ScholarCrossref
38.
Pitkäniemi  J, Seppä  K, Hakama  M,  et al.  Effectiveness of screening for colorectal cancer with a faecal occult-blood test, in Finland.   BMJ Open Gastroenterol. 2015;2(1):e000034. doi:10.1136/bmjgast-2015-000034PubMedGoogle Scholar
39.
Kronborg  O, Jørgensen  OD, Fenger  C, Rasmussen  M.  Randomized study of biennial screening with a faecal occult blood test: results after nine screening rounds.   Scand J Gastroenterol. 2004;39(9):846-851. doi:10.1080/00365520410003182PubMedGoogle ScholarCrossref
40.
Hol  L, van Leerdam  ME, van Ballegooijen  M,  et al.  Screening for colorectal cancer: randomised trial comparing guaiac-based and immunochemical faecal occult blood testing and flexible sigmoidoscopy.   Gut. 2010;59(1):62-68. doi:10.1136/gut.2009.177089PubMedGoogle ScholarCrossref
41.
Faivre  J, Dancourt  V, Denis  B,  et al.  Comparison between a guaiac and three immunochemical faecal occult blood tests in screening for colorectal cancer.   Eur J Cancer. 2012;48(16):2969-2976. doi:10.1016/j.ejca.2012.04.007PubMedGoogle ScholarCrossref
42.
Berry  DP, Clarke  P, Hardcastle  JD, Vellacott  KD.  Randomized trial of the addition of flexible sigmoidoscopy to faecal occult blood testing for colorectal neoplasia population screening.   Br J Surg. 1997;84(9):1274-1276.PubMedGoogle Scholar
43.
Sali  L, Mascalchi  M, Falchini  M,  et al.  Reduced and full-preparation CT colonography, fecal immunochemical test, and colonoscopy for population screening of colorectal cancer: a randomized trial.   J Natl Cancer Inst. Published December 30, 2015. doi:10.1093/jnci/djv319PubMedGoogle Scholar
44.
Passamonti  B, Malaspina  M, Fraser  CG,  et al.  A comparative effectiveness trial of two faecal immunochemical tests for haemoglobin (FIT): assessment of test performance and adherence in a single round of a population-based screening programme for colorectal cancer.   Gut. 2018;67(3):485-496. doi:10.1136/gutjnl-2016-312716PubMedGoogle ScholarCrossref
45.
Santare  D, Kojalo  I, Liepniece-Karele  I,  et al.  Comparison of the yield from two faecal immunochemical tests at identical cutoff concentrations—a randomized trial in Latvia.   Eur J Gastroenterol Hepatol. 2016;28(8):904-910. doi:10.1097/MEG.0000000000000650PubMedGoogle ScholarCrossref
46.
Chiu  HM, Chen  SL, Yen  AM,  et al.  Effectiveness of fecal immunochemical testing in reducing colorectal cancer mortality from the One Million Taiwanese Screening Program.   Cancer. 2015;121(18):3221-3229. doi:10.1002/cncr.29462PubMedGoogle ScholarCrossref
47.
García-Albéniz  X, Hsu  J, Bretthauer  M, Hernán  MA.  Effectiveness of screening colonoscopy to prevent colorectal cancer among Medicare beneficiaries aged 70 to 79 years: a prospective observational study.   Ann Intern Med. 2017;166(1):18-26. doi:10.7326/M16-0758PubMedGoogle ScholarCrossref
48.
Schreuders  EH, Grobbee  EJ, Nieuwenburg  SAV,  et al.  Multiple rounds of one sample versus two sample faecal immunochemical test–based colorectal cancer screening: a population-based study.   Lancet Gastroenterol Hepatol. 2019;4(8):622-631. doi:10.1016/S2468-1253(19)30176-1PubMedGoogle ScholarCrossref
49.
Steele  RJ, Carey  FA, Stanners  G,  et al.  Randomized controlled trial: flexible sigmoidoscopy as an adjunct to faecal occult blood testing in population screening.   J Med Screen. 2020;27(2):59-67. doi:10.1177/0969141319879955PubMedGoogle ScholarCrossref
50.
Grobbee  EJ, van der Vlugt  M, van Vuuren  AJ,  et al.  Diagnostic yield of one-time colonoscopy vs one-time flexible sigmoidoscopy vs multiple rounds of mailed fecal immunohistochemical tests in colorectal cancer screening.   Clin Gastroenterol Hepatol. 2020;18(3):667-675.PubMedGoogle ScholarCrossref
51.
Segnan  N, Senore  C, Andreoni  B,  et al; SCORE Working Group—Italy.  Baseline findings of the Italian multicenter randomized controlled trial of “once-only sigmoidoscopy”—SCORE.   J Natl Cancer Inst. 2002;94(23):1763-1772. doi:10.1093/jnci/94.23.1763PubMedGoogle ScholarCrossref
52.
Atkin  WS, Cook  CF, Cuzick  J, Edwards  R, Northover  JM, Wardle  J; UK Flexible Sigmoidoscopy Screening Trial Investigators.  Single flexible sigmoidoscopy screening to prevent colorectal cancer: baseline findings of a UK multicentre randomised trial.   Lancet. 2002;359(9314):1291-1300. Published correction appears in Lancet. 2010;375(9732):2142. doi:10.1016/S0140-6736(02)08268-5PubMedGoogle ScholarCrossref
53.
Mandel  JS, Bond  JH, Church  TR,  et al; Minnesota Colon Cancer Control Study.  Reducing mortality from colorectal cancer by screening for fecal occult blood.   N Engl J Med. 1993;328(19):1365-1371. doi:10.1056/NEJM199305133281901PubMedGoogle ScholarCrossref
54.
Weissfeld  JL, Schoen  RE, Pinsky  PF,  et al; PLCO Project Team.  Flexible sigmoidoscopy in the PLCO cancer screening trial: results from the baseline screening examination of a randomized trial.   J Natl Cancer Inst. 2005;97(13):989-997. doi:10.1093/jnci/dji175PubMedGoogle ScholarCrossref
55.
van Roon  AH, Wilschut  JA, Hol  L,  et al.  Diagnostic yield improves with collection of 2 samples in fecal immunochemical test screening without affecting attendance.   Clin Gastroenterol Hepatol. 2011;9(4):333-339. doi:10.1016/j.cgh.2010.12.012PubMedGoogle ScholarCrossref
56.
Thomas  W, White  CM, Mah  J, Geisser  MS, Church  TR, Mandel  JS; Minnesota Colon Cancer Control Study.  Longitudinal compliance with annual screening for fecal occult blood.   Am J Epidemiol. 1995;142(2):176-182. doi:10.1093/oxfordjournals.aje.a117616PubMedGoogle ScholarCrossref
57.
Parra-Blanco  A, Nicolas-Perez  D, Gimeno-Garcia  A,  et al.  The timing of bowel preparation before colonoscopy determines the quality of cleansing, and is a significant factor contributing to the detection of flat lesions: a randomized study.   World J Gastroenterol. 2006;12(38):6161-6166. doi:10.3748/wjg.v12.i38.6161PubMedGoogle ScholarCrossref
58.
Mandel  JS, Church  TR, Bond  JH,  et al.  The effect of fecal occult-blood screening on the incidence of colorectal cancer.   N Engl J Med. 2000;343(22):1603-1607. doi:10.1056/NEJM200011303432203PubMedGoogle ScholarCrossref
59.
Malila  N, Oivanen  T, Malminiemi  O, Hakama  M.  Test, episode, and programme sensitivities of screening for colorectal cancer as a public health policy in Finland: experimental design.   BMJ. 2008;337:a2261. doi:10.1136/bmj.a2261PubMedGoogle ScholarCrossref
60.
Kewenter  J, Brevinge  H, Engarås  B, Haglind  E, Ahrén  C.  Results of screening, rescreening, and follow-up in a prospective randomized study for detection of colorectal cancer by fecal occult blood testing: results for 68,308 subjects.   Scand J Gastroenterol. 1994;29(5):468-473. doi:10.3109/00365529409096840PubMedGoogle ScholarCrossref
61.
Hardcastle  JD, Chamberlain  JO, Robinson  MH,  et al.  Randomised controlled trial of faecal-occult-blood screening for colorectal cancer.   Lancet. 1996;348(9040):1472-1477. doi:10.1016/S0140-6736(96)03386-7PubMedGoogle ScholarCrossref
62.
Faivre  J, Dancourt  V, Manfredi  S,  et al.  Positivity rates and performances of immunochemical faecal occult blood tests at different cut-off levels within a colorectal cancer screening programme.   Dig Liver Dis. 2012;44(8):700-704. doi:10.1016/j.dld.2012.03.015PubMedGoogle ScholarCrossref
63.
Denters  MJ, Deutekom  M, Fockens  P, Bossuyt  PM, Dekker  E.  Implementation of population screening for colorectal cancer by repeated fecal occult blood test in the Netherlands.   BMC Gastroenterol. 2009;9:28. doi:10.1186/1471-230X-9-28PubMedGoogle ScholarCrossref
64.
Miles  A, Wardle  J, McCaffery  K, Williamson  S, Atkin  W.  The effects of colorectal cancer screening on health attitudes and practices.   Cancer Epidemiol Biomarkers Prev. 2003;12(7):651-655.PubMedGoogle Scholar
65.
Atkin  WS, Edwards  R, Kralj-Hans  I,  et al; UK Flexible Sigmoidoscopy Trial Investigators.  Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial.   Lancet. 2010;375(9726):1624-1633. doi:10.1016/S0140-6736(10)60551-XPubMedGoogle ScholarCrossref
66.
Koskenvuo  L, Malila  N, Pitkäniemi  J, Miettinen  J, Heikkinen  S, Sallinen  V.  Sex differences in faecal occult blood test screening for colorectal cancer.   Br J Surg. 2019;106(4):436-447. doi:10.1002/bjs.11011PubMedGoogle ScholarCrossref
67.
Kapidzic  A, van Roon  AH, van Leerdam  ME,  et al.  Attendance and diagnostic yield of repeated two-sample faecal immunochemical test screening for colorectal cancer.   Gut. 2017;66(1):118-123. doi:10.1136/gutjnl-2014-308957PubMedGoogle ScholarCrossref
68.
Doroudi  M, Schoen  RE, Pinsky  PF.  Early detection versus primary prevention in the PLCO flexible sigmoidoscopy screening trial: which has the greatest impact on mortality?   Cancer. 2017;123(24):4815-4822. doi:10.1002/cncr.31034PubMedGoogle ScholarCrossref
69.
Schoen  RE, Pinsky  PF, Weissfeld  JL,  et al; PLCO Project Team.  Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy.   N Engl J Med. 2012;366(25):2345-2357. doi:10.1056/NEJMoa1114635PubMedGoogle ScholarCrossref
70.
Malila  N, Palva  T, Malminiemi  O,  et al.  Coverage and performance of colorectal cancer screening with the faecal occult blood test in Finland.   J Med Screen. 2011;18(1):18-23. doi:10.1258/jms.2010.010036PubMedGoogle ScholarCrossref
71.
Senore  C, Correale  L, Regge  D,  et al.  Flexible sigmoidoscopy and CT colonography screening: patients’ experience with and factors for undergoing screening—insight from the Proteus Colon Trial.   Radiology. 2018;286(3):873-883. doi:10.1148/radiol.2017170228PubMedGoogle ScholarCrossref
72.
Castells  A, Quintero  E.  Programmatic screening for colorectal cancer: the COLONPREV study.   Dig Dis Sci. 2015;60(3):672-680. doi:10.1007/s10620-014-3446-2PubMedGoogle ScholarCrossref
73.
Schoen  RE, Razzak  A, Yu  KJ,  et al.  Incidence and mortality of colorectal cancer in individuals with a family history of colorectal cancer.   Gastroenterology. 2015;149(6):1438-1445. doi:10.1053/j.gastro.2015.07.055PubMedGoogle ScholarCrossref
74.
Holme  Ø, Løberg  M, Kalager  M,  et al.  Effect of flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: a randomized clinical trial.   JAMA. 2014;312(6):606-615. doi:10.1001/jama.2014.8266PubMedGoogle ScholarCrossref
75.
Holme  Ø, Bretthauer  M, Eide  TJ,  et al.  Long-term risk of colorectal cancer in individuals with serrated polyps.   Gut. 2015;64(6):929-936. doi:10.1136/gutjnl-2014-307793PubMedGoogle ScholarCrossref
76.
Jodal  HC, Loberg  M, Holme  O,  et al.  Mortality from postscreening (interval) colorectal cancers is comparable to that from cancer in unscreened patients—a randomized sigmoidoscopy trial.   Gastroenterology. 2018;155(6):1787-1794. doi:10.1053/j.gastro.2018.08.035PubMedGoogle ScholarCrossref
77.
Laiyemo  AO, Doubeni  C, Pinsky  PF,  et al.  Occurrence of distal colorectal neoplasia among whites and blacks following negative flexible sigmoidoscopy: an analysis of PLCO trial.   J Gen Intern Med. 2015;30(10):1447-1453. doi:10.1007/s11606-015-3297-3PubMedGoogle ScholarCrossref
78.
Gondal  G, Grotmol  T, Hofstad  B, Bretthauer  M, Eide  TJ, Hoff  G.  The Norwegian Colorectal Cancer Prevention (NORCCAP) screening study: baseline findings and implementations for clinical work-up in age groups 50-64 years.   Scand J Gastroenterol. 2003;38(6):635-642. doi:10.1080/00365520310003002PubMedGoogle ScholarCrossref
79.
Hoff  G, Grotmol  T, Skovlund  E, Bretthauer  M; Norwegian Colorectal Cancer Prevention Study Group.  Risk of colorectal cancer seven years after flexible sigmoidoscopy screening: randomised controlled trial.   BMJ. 2009;338:b1846. doi:10.1136/bmj.b1846PubMedGoogle ScholarCrossref
80.
Kewenter  J, Brevinge  H.  Endoscopic and surgical complications of work-up in screening for colorectal cancer.   Dis Colon Rectum. 1996;39(6):676-680. doi:10.1007/BF02056949PubMedGoogle ScholarCrossref
81.
Dube  C, Tinmouth  J.  Number of samples in faecal immunochemical test screening: more might be less.   Lancet Gastroenterol Hepatol. 2019;4(8):577-578. doi:10.1016/S2468-1253(19)30191-8PubMedGoogle ScholarCrossref
82.
Pinsky  P, Miller  E, Zhu  C, Prorok  P.  Overall mortality in men and women in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.   J Med Screen. 2019;26(3):127-134. doi:10.1177/0969141319839097PubMedGoogle ScholarCrossref
83.
Grobbee  EJ, van der Vlugt  M, van Vuuren  AJ,  et al.  A randomised comparison of two faecal immunochemical tests in population-based colorectal cancer screening.   Gut. 2017;66(11):1975-1982. doi:10.1136/gutjnl-2016-311819PubMedGoogle ScholarCrossref
84.
Ahlquist  DA, Sargent  DJ, Loprinzi  CL,  et al.  Stool DNA and occult blood testing for screen detection of colorectal neoplasia.   Ann Intern Med. 2008;149(7):441-450. doi:10.7326/0003-4819-149-7-200810070-00004PubMedGoogle ScholarCrossref
85.
Allison  JE, Tekawa  IS, Ransom  LJ, Adrain  AL.  A comparison of fecal occult-blood tests for colorectal-cancer screening.   N Engl J Med. 1996;334(3):155-159. doi:10.1056/NEJM199601183340304PubMedGoogle ScholarCrossref
86.
Allison  JE, Sakoda  LC, Levin  TR,  et al.  Screening for colorectal neoplasms with new fecal occult blood tests: update on performance characteristics.   J Natl Cancer Inst. 2007;99(19):1462-1470. doi:10.1093/jnci/djm150PubMedGoogle ScholarCrossref
87.
Arana-Arri  E, Idigoras  I, Uranga  B,  et al; EUSKOLON Group.  Population-based colorectal cancer screening programmes using a faecal immunochemical test: should faecal haemoglobin cut-offs differ by age and sex?   BMC Cancer. 2017;17(1):577. doi:10.1186/s12885-017-3555-3PubMedGoogle ScholarCrossref
88.
Brenner  H, Chen  H.  Fecal occult blood versus DNA testing: indirect comparison in a colorectal cancer screening population.   Clin Epidemiol. 2017;9:377-384. doi:10.2147/CLEP.S136565PubMedGoogle ScholarCrossref
89.
Brenner  H, Tao  S.  Superior diagnostic performance of faecal immunochemical tests for haemoglobin in a head-to-head comparison with guaiac based faecal occult blood test among 2235 participants of screening colonoscopy.   Eur J Cancer. 2013;49(14):3049-3054. doi:10.1016/j.ejca.2013.04.023PubMedGoogle ScholarCrossref
90.
Castiglione  G, Visioli  CB, Ciatto  S,  et al.  Sensitivity of latex agglutination faecal occult blood test in the Florence District population-based colorectal cancer screening programme.   Br J Cancer. 2007;96(11):1750-1754. doi:10.1038/sj.bjc.6603759PubMedGoogle ScholarCrossref
91.
Chang  LC, Shun  CT, Hsu  WF,  et al.  Fecal immunochemical test detects sessile serrated adenomas and polyps with a low level of sensitivity.   Clin Gastroenterol Hepatol. 2017;15(6):872-879.e1. doi:10.1016/j.cgh.2016.07.029PubMedGoogle ScholarCrossref
92.
Chen  CH, Wen  CP, Tsai  MK.  Fecal immunochemical test for colorectal cancer from a prospective cohort with 513,283 individuals: providing detailed number needed to scope (NNS) before colonoscopy.   Medicine (Baltimore). 2016;95(36):e4414. doi:10.1097/MD.0000000000004414PubMedGoogle Scholar
93.
Chen  LS, Yen  AM, Chiu  SY, Liao  CS, Chen  HH.  Baseline faecal occult blood concentration as a predictor of incident colorectal neoplasia: longitudinal follow-up of a Taiwanese population-based colorectal cancer screening cohort.   Lancet Oncol. 2011;12(6):551-558. doi:10.1016/S1470-2045(11)70101-2PubMedGoogle ScholarCrossref
94.
Chen  SL, Hsu  CY, Yen  AM,  et al.  Demand for colonoscopy in colorectal cancer screening using a quantitative fecal immunochemical test and age/sex-specific thresholds for test positivity.   Cancer Epidemiol Biomarkers Prev. 2018;27(6):704-709. doi:10.1158/1055-9965.EPI-17-0387PubMedGoogle ScholarCrossref
95.
Chen  Y-Y, Chen  T-H, Su  M-Y,  et al.  Accuracy of immunochemical fecal occult blood test for detecting colorectal neoplasms in individuals undergoing health check-ups.   Adv Digest Med. 2014;1(3):74-79. doi:10.1016/j.aidm.2013.09.003Google ScholarCrossref
96.
Cheng  TI, Wong  JM, Hong  CF,  et al.  Colorectal cancer screening in asymptomaic adults: comparison of colonoscopy, sigmoidoscopy and fecal occult blood tests.   J Formos Med Assoc. 2002;101(10):685-690.PubMedGoogle Scholar
97.
Chiu  HM, Ching  JY, Wu  KC,  et al; Asia-Pacific Working Group on Colorectal Cancer.  A risk-scoring system combined with a fecal immunochemical test is effective in screening high-risk subjects for early colonoscopy to detect advanced colorectal neoplasms.   Gastroenterology. 2016;150(3):617-625. doi:10.1053/j.gastro.2015.11.042PubMedGoogle ScholarCrossref
98.
Chiu  HM, Lee  YC, Tu  CH,  et al.  Association between early stage colon neoplasms and false-negative results from the fecal immunochemical test.   Clin Gastroenterol Hepatol. 2013;11(7):832-8.e1, 2. doi:10.1016/j.cgh.2013.01.013PubMedGoogle ScholarCrossref
99.
Cooper  GS, Markowitz  SD, Chen  Z,  et al.  Performance of multitarget stool DNA testing in African American patients.   Cancer. 2018;124(19):3876-3880. doi:10.1002/cncr.31660PubMedGoogle ScholarCrossref
100.
de Wijkerslooth  TR, Stoop  EM, Bossuyt  PM,  et al.  Immunochemical fecal occult blood testing is equally sensitive for proximal and distal advanced neoplasia.   Am J Gastroenterol. 2012;107(10):1570-1578. doi:10.1038/ajg.2012.249PubMedGoogle ScholarCrossref
101.
Deng  L, Chang  D, Foshaug  RR,  et al.  Development and validation of a high-throughput mass spectrometry based urine metabolomic test for the detection of colonic adenomatous polyps.   Metabolites. 2017;7(3):22. doi:10.3390/metabo7030032PubMedGoogle ScholarCrossref
102.
Fletcher  JG, Silva  AC, Fidler  JL,  et al.  Noncathartic CT colonography: image quality assessment and performance and in a screening cohort.   AJR Am J Roentgenol. 2013;201(4):787-794. doi:10.2214/AJR.12.9225PubMedGoogle ScholarCrossref
103.
Garcia  M, Domènech  X, Vidal  C,  et al.  Interval cancers in a population-based screening program for colorectal cancer in Catalonia, Spain.   Gastroenterol Res Pract. 2015;2015:672410. doi:10.1155/2015/672410PubMedGoogle Scholar
104.
Gies  A, Cuk  K, Schrotz-King  P, Brenner  H.  Direct comparison of diagnostic performance of 9 quantitative fecal immunochemical tests for colorectal cancer screening.   Gastroenterology. 2018;154(1):93-104. doi:10.1053/j.gastro.2017.09.018PubMedGoogle ScholarCrossref
105.
Graser  A, Stieber  P, Nagel  D,  et al.  Comparison of CT colonography, colonoscopy, sigmoidoscopy and faecal occult blood tests for the detection of advanced adenoma in an average risk population.   Gut. 2009;58(2):241-248. doi:10.1136/gut.2008.156448PubMedGoogle ScholarCrossref
106.
Haug  U, Grobbee  EJ, Lansdorp-Vogelaar  I, Spaander  MCW, Kuipers  EJ.  Immunochemical faecal occult blood testing to screen for colorectal cancer: can the screening interval be extended?   Gut. 2017;66(7):1262-1267. doi:10.1136/gutjnl-2015-310102PubMedGoogle ScholarCrossref
107.
Hernandez  V, Cubiella  J, Gonzalez-Mao  MC,  et al; COLONPREV Study Investigators.  Fecal immunochemical test accuracy in average-risk colorectal cancer screening.   World J Gastroenterol. 2014;20(4):1038-1047. doi:10.3748/wjg.v20.i4.1038PubMedGoogle ScholarCrossref
108.
Imperiale  TF, Ransohoff  DF, Itzkowitz  SH,  et al.  Multitarget stool DNA testing for colorectal-cancer screening.   N Engl J Med. 2014;370(14):1287-1297. doi:10.1056/NEJMoa1311194PubMedGoogle ScholarCrossref
109.
Itoh  M, Takahashi  K, Nishida  H, Sakagami  K, Okubo  T.  Estimation of the optimal cut off point in a new immunological faecal occult blood test in a corporate colorectal cancer screening programme.   J Med Screen. 1996;3(2):66-71. doi:10.1177/096914139600300204PubMedGoogle ScholarCrossref
110.
Johnson  CD, Chen  MH, Toledano  AY,  et al.  Accuracy of CT colonography for detection of large adenomas and cancers.   N Engl J Med. 2008;359(12):1207-1217. doi:10.1056/NEJMoa0800996PubMedGoogle ScholarCrossref
111.
Johnson  CD, Fletcher  JG, MacCarty  RL,  et al.  Effect of slice thickness and primary 2D versus 3D virtual dissection on colorectal lesion detection at CT colonography in 452 asymptomatic adults.   AJR Am J Roentgenol. 2007;189(3):672-680. doi:10.2214/AJR.07.2354PubMedGoogle ScholarCrossref
112.
Juul  JS, Andersen  B, Laurberg  S, Carlsen  AH, Olesen  F, Vedsted  P.  Differences in diagnostic activity in general practice and findings for individuals invited to the danish screening programme for colorectal cancer: a population-based cohort study.   Scand J Prim Health Care. 2018;36(3):281-290. doi:10.1080/02813432.2018.1487378PubMedGoogle ScholarCrossref
113.
Kim  NH, Park  JH, Park  DI, Sohn  CI, Choi  K, Jung  YS.  The fecal immunochemical test has high accuracy for detecting advanced colorectal neoplasia before age 50.   Dig Liver Dis. 2017;49(5):557-561. doi:10.1016/j.dld.2016.12.020PubMedGoogle ScholarCrossref
114.
Kim  YS, Kim  N, Kim  SH,  et al.  The efficacy of intravenous contrast-enhanced 16-raw multidetector CT colonography for detecting patients with colorectal polyps in an asymptomatic population in Korea.   J Clin Gastroenterol. 2008;42(7):791-798. doi:10.1097/MCG.0b013e31811edcb7PubMedGoogle ScholarCrossref
115.
Launoy  GD, Bertrand  HJ, Berchi  C,  et al.  Evaluation of an immunochemical fecal occult blood test with automated reading in screening for colorectal cancer in a general average-risk population.   Int J Cancer. 2005;115(3):493-496. doi:10.1002/ijc.20921PubMedGoogle ScholarCrossref
116.
Lee  YH, Hur  M, Kim  H,  et al.  Optimal cut-off concentration for a faecal immunochemical test for haemoglobin by Hemo Techt NS-Plus C15 system for the colorectal cancer screening.   Clin Chem Lab Med. 2015;53(3):e69-e71. doi:10.1515/cclm-2014-0442PubMedGoogle ScholarCrossref
117.
Lefere  P, Silva  C, Gryspeerdt  S,  et al.  Teleradiology based CT colonography to screen a population group of a remote island at average risk for colorectal cancer.   Eur J Radiol. 2013;82(6):e262-e267. doi:10.1016/j.ejrad.2013.02.010PubMedGoogle ScholarCrossref
118.
Levi  Z, Birkenfeld  S, Vilkin  A,  et al.  A higher detection rate for colorectal cancer and advanced adenomatous polyp for screening with immunochemical fecal occult blood test than guaiac fecal occult blood test, despite lower compliance rate: prospective, controlled, feasibility study.   Int J Cancer. 2011;128(10):2415-2424. doi:10.1002/ijc.25574PubMedGoogle ScholarCrossref
119.
Levy  BT, Bay  C, Xu  Y,  et al.  Test characteristics of faecal immunochemical tests (FIT) compared with optical colonoscopy.   J Med Screen. 2014;21(3):133-143. doi:10.1177/0969141314541109PubMedGoogle ScholarCrossref
120.
Liles  EG, Perrin  N, Rosales  AG,  et al.  Performance of a quantitative fecal immunochemical test for detecting advanced colorectal neoplasia: a prospective cohort study.   BMC Cancer. 2018;18(1):509. doi:10.1186/s12885-018-4402-xPubMedGoogle ScholarCrossref
121.
Macari  M, Bini  EJ, Jacobs  SL,  et al.  Colorectal polyps and cancers in asymptomatic average-risk patients: evaluation with CT colonography.   Radiology. 2004;230(3):629-636. doi:10.1148/radiol.2303021624PubMedGoogle ScholarCrossref
122.
Mlakar  DN, Bric  TK, Škrjanec  AL, Krajc  M.  Interval cancers after negative immunochemical test compared to screen and non-responders’ detected cancers in Slovenian colorectal cancer screening programme.   Radiol Oncol. 2018;52(4):413-421. doi:10.2478/raon-2018-0025PubMedGoogle ScholarCrossref
123.
Morikawa  T, Kato  J, Yamaji  Y, Wada  R, Mitsushima  T, Shiratori  Y.  A comparison of the immunochemical fecal occult blood test and total colonoscopy in the asymptomatic population.   Gastroenterology. 2005;129(2):422-428. doi:10.1016/j.gastro.2005.05.056PubMedGoogle ScholarCrossref
124.
Nakama  H, Kamijo  N, Abdul Fattah  AS, Zhang  B.  Validity of immunological faecal occult blood screening for colorectal cancer: a follow up study.   J Med Screen. 1996;3(2):63-65. doi:10.1177/096914139600300203PubMedGoogle ScholarCrossref
125.
Nakama  H, Yamamoto  M, Kamijo  N,  et al.  Colonoscopic evaluation of immunochemical fecal occult blood test for detection of colorectal neoplasia.   Hepatogastroenterology. 1999;46(25):228-231.PubMedGoogle Scholar
126.
Ng  SC, Ching  JY, Chan  V,  et al.  Diagnostic accuracy of faecal immunochemical test for screening individuals with a family history of colorectal cancer.   Aliment Pharmacol Ther. 2013;38(7):835-841. doi:10.1111/apt.12446PubMedGoogle ScholarCrossref
127.
Park  DI, Ryu  S, Kim  YH,  et al.  Comparison of guaiac-based and quantitative immunochemical fecal occult blood testing in a population at average risk undergoing colorectal cancer screening.   Am J Gastroenterol. 2010;105(9):2017-2025. doi:10.1038/ajg.2010.179PubMedGoogle ScholarCrossref
128.
Pickhardt  PJ, Choi  JR, Hwang  I,  et al.  Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults.   N Engl J Med. 2003;349(23):2191-2200. doi:10.1056/NEJMoa031618PubMedGoogle ScholarCrossref
129.
Potter  NT, Hurban  P, White  MN,  et al.  Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma.   Clin Chem. 2014;60(9):1183-1191. doi:10.1373/clinchem.2013.221044PubMedGoogle ScholarCrossref
130.
Redwood  DG, Asay  ED, Blake  ID,  et al.  Stool DNA testing for screening detection of colorectal neoplasia in Alaska Native people.   Mayo Clin Proc. 2016;91(1):61-70. doi:10.1016/j.mayocp.2015.10.008PubMedGoogle ScholarCrossref
131.
Rex  DK, Adler  SN, Aisenberg  J,  et al.  Accuracy of capsule colonoscopy in detecting colorectal polyps in a screening population.   Gastroenterology. 2015;148(5):948-957. doi:10.1053/j.gastro.2015.01.025PubMedGoogle ScholarCrossref
132.
Selby  K, Jensen  CD, Lee  JK,  et al.  Influence of varying quantitative fecal immunochemical test positivity thresholds on colorectal cancer detection: a community-based cohort study.   Ann Intern Med. 2018;169(7):439-447. doi:10.7326/M18-0244PubMedGoogle ScholarCrossref
133.
Shapiro  JA, Bobo  JK, Church  TR,  et al.  A comparison of fecal immunochemical and high-sensitivity guaiac tests for colorectal cancer screening.   Am J Gastroenterol. 2017;112(11):1728-1735. doi:10.1038/ajg.2017.285PubMedGoogle ScholarCrossref
134.
Sohn  DK, Jeong  SY, Choi  HS,  et al.  Single immunochemical fecal occult blood test for detection of colorectal neoplasia.   Cancer Res Treat. 2005;37(1):20-23. doi:10.4143/crt.2005.37.1.20PubMedGoogle ScholarCrossref
135.
Stegeman  I, van Doorn  SC, Mundt  MW,  et al.  Participation, yield, and interval carcinomas in three rounds of biennial FIT-based colorectal cancer screening.   Cancer Epidemiol. 2015;39(3):388-393. doi:10.1016/j.canep.2015.03.012PubMedGoogle ScholarCrossref
136.
van der Vlugt  M, Grobbee  EJ, Bossuyt  PMM,  et al.  Interval colorectal cancer incidence among subjects undergoing multiple rounds of fecal immunochemical testing.   Gastroenterology. 2017;153(2):439-447. doi:10.1053/j.gastro.2017.05.004PubMedGoogle ScholarCrossref
137.
Wong  MC, Ching  JY, Chan  VC,  et al.  Diagnostic accuracy of a qualitative fecal immunochemical test varies with location of neoplasia but not number of specimens.   Clin Gastroenterol Hepatol. 2015;13(8):1472-1479. doi:10.1016/j.cgh.2015.02.021PubMedGoogle ScholarCrossref
138.
Zalis  ME, Blake  MA, Cai  W,  et al.  Diagnostic accuracy of laxative-free computed tomographic colonography for detection of adenomatous polyps in asymptomatic adults: a prospective evaluation.   Ann Intern Med. 2012;156(10):692-702. doi:10.7326/0003-4819-156-10-201205150-00005PubMedGoogle ScholarCrossref
139.
Ribbing Wilén  H, Blom  J, Höijer  J, Andersson  G, Löwbeer  C, Hultcrantz  R.  Fecal immunochemical test in cancer screening—colonoscopy outcome in FIT positives and negatives.   Scand J Gastroenterol. 2019;54(3):303-310. doi:10.1080/00365521.2019.1585569PubMedGoogle ScholarCrossref
140.
Voska  M, Zavoral  M, Grega  T,  et al.  Accuracy of colon capsule endoscopy for colorectal neoplasia detection in individuals referred for a screening colonoscopy.   Gastroenterol Res Pract. 2019;2019:5975438. doi:10.1155/2019/5975438PubMedGoogle Scholar
141.
Toes-Zoutendijk  E, Kooyker  AI, Dekker  E,  et al.  Incidence of interval colorectal cancer after negative results from first-round fecal immunochemical screening tests, by cutoff value and participant sex and age.   Clin Gastroenterol Hepatol. 2020;18(7):1493-1500. doi:10.1016/j.cgh.2019.08.021PubMedGoogle ScholarCrossref
142.
Bosch  LJW, Melotte  V, Mongera  S,  et al.  Multitarget stool DNA test performance in an average-risk colorectal cancer screening population.   Am J Gastroenterol. 2019;114(12):1909-1918. doi:10.14309/ajg.0000000000000445PubMedGoogle ScholarCrossref
143.
Johnson  CD, Herman  BA, Chen  MH,  et al.  The National CT Colonography Trial: assessment of accuracy in participants 65 years of age and older.   Radiology. 2012;263(2):401-408. doi:10.1148/radiol.12102177PubMedGoogle ScholarCrossref
144.
Morikawa  T, Kato  J, Yamaji  Y,  et al.  Sensitivity of immunochemical fecal occult blood test to small colorectal adenomas.   Am J Gastroenterol. 2007;102(10):2259-2264. doi:10.1111/j.1572-0241.2007.01404.xPubMedGoogle ScholarCrossref
145.
Hundt  S, Haug  U, Brenner  H.  Comparative evaluation of immunochemical fecal occult blood tests for colorectal adenoma detection.   Ann Intern Med. 2009;150(3):162-169. doi:10.7326/0003-4819-150-3-200902030-00005PubMedGoogle ScholarCrossref
146.
Haug  U, Kuntz  KM, Knudsen  AB, Hundt  S, Brenner  H.  Sensitivity of immunochemical faecal occult blood testing for detecting left- vs right-sided colorectal neoplasia.   Br J Cancer. 2011;104(11):1779-1785. doi:10.1038/bjc.2011.160PubMedGoogle ScholarCrossref
147.
Grazzini  G, Castiglione  G, Ciabattoni  C,  et al.  Colorectal cancer screening programme by faecal occult blood test in Tuscany: first round results.   Eur J Cancer Prev. 2004;13(1):19-26. doi:10.1097/00008469-200402000-00004PubMedGoogle ScholarCrossref
148.
Brenner  H, Haug  U, Hundt  S.  Inter-test agreement and quantitative cross-validation of immunochromatographical fecal occult blood tests.   Int J Cancer. 2010;127(7):1643-1649. doi:10.1002/ijc.25154PubMedGoogle ScholarCrossref
149.
Brenner  H, Haug  U, Hundt  S.  Sex differences in performance of fecal occult blood testing.   Am J Gastroenterol. 2010;105(11):2457-2464. doi:10.1038/ajg.2010.301PubMedGoogle ScholarCrossref
150.
Chiang  TH, Chuang  SL, Chen  SL,  et al.  Difference in performance of fecal immunochemical tests with the same hemoglobin cutoff concentration in a nationwide colorectal cancer screening program.   Gastroenterology. 2014;147(6):1317-1326. doi:10.1053/j.gastro.2014.08.043PubMedGoogle ScholarCrossref
151.
Wang  H, Tso  V, Wong  C, Sadowski  D, Fedorak  RN.  Development and validation of a highly sensitive urine-based test to identify patients with colonic adenomatous polyps.   Clin Transl Gastroenterol. 2014;5:e54. doi:10.1038/ctg.2014.2PubMedGoogle Scholar
152.
Gies  A, Cuk  K, Schrotz-King  P, Brenner  H.  Combination of different fecal immunochemical tests in colorectal cancer screening: any gain in diagnostic performance?   Cancers (Basel). 2019;11(1):20. doi:10.3390/cancers11010120PubMedGoogle ScholarCrossref
153.
Gies  A, Cuk  K, Schrotz-King  P, Brenner  H.  Fecal immunochemical test for hemoglobin in combination with fecal transferrin in colorectal cancer screening.   United European Gastroenterol J. 2018;6(8):1223-1231. doi:10.1177/2050640618784053PubMedGoogle ScholarCrossref
154.
Chen  H, Werner  S, Brenner  H.  Fresh vs frozen samples and ambient temperature have little effect on detection of colorectal cancer or adenomas by a fecal immunochemical test in a colorectal cancer screening cohort in Germany.   Clin Gastroenterol Hepatol. 2017;15(10):1547-1556. doi:10.1016/j.cgh.2016.10.018PubMedGoogle ScholarCrossref
155.
Brenner  H, Qian  J, Werner  S.  Variation of diagnostic performance of fecal immunochemical testing for hemoglobin by sex and age: results from a large screening cohort.   Clin Epidemiol. 2018;10:381-389. doi:10.2147/CLEP.S155548PubMedGoogle ScholarCrossref
156.
Niedermaier  T, Weigl  K, Hoffmeister  M, Brenner  H.  Diagnostic performance of one-off flexible sigmoidoscopy with fecal immunochemical testing in a large screening population.   Epidemiology. 2018;29(3):397-406. doi:10.1097/EDE.0000000000000795PubMedGoogle ScholarCrossref
157.
Grobbee  EJ, Wieten  E, Hansen  BE,  et al.  Fecal immunochemical test-based colorectal cancer screening: the gender dilemma.   United European Gastroenterol J. 2017;5(3):448-454. doi:10.1177/2050640616659998PubMedGoogle ScholarCrossref
158.
Jung  YS, Park  CH, Kim  NH, Park  JH, Park  DI, Sohn  CI.  Identifying the optimal strategy for screening of advanced colorectal neoplasia.   J Gastroenterol Hepatol. 2017;32(5):1003-1010. doi:10.1111/jgh.13634PubMedGoogle ScholarCrossref
159.
Brenner  H, Werner  S.  Selecting a cut-off for colorectal cancer screening with a fecal immunochemical test.   Clin Transl Gastroenterol. 2017;8(8):e111. doi:10.1038/ctg.2017.37PubMedGoogle Scholar
160.
Brenner  H, Niedermaier  T, Chen  H.  Strong subsite-specific variation in detecting advanced adenomas by fecal immunochemical testing for hemoglobin.   Int J Cancer. 2017;140(9):2015-2022. doi:10.1002/ijc.30629PubMedGoogle ScholarCrossref
161.
Church  TR, Wandell  M, Lofton-Day  C,  et al; PRESEPT Clinical Study Steering Committee, Investigators and Study Team.  Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer.   Gut. 2014;63(2):317-325. doi:10.1136/gutjnl-2012-304149PubMedGoogle ScholarCrossref
162.
Summary of Safety and Effectiveness Data for Cologuard. US Food and Drug Administration. Published 2014. Accessed August 1, 2019. https://www.accessdata.fda.gov/cdrh_docs/pdf13/P130017b.pdf
163.
Ferlitsch  M, Reinhart  K, Pramhas  S,  et al.  Sex-specific prevalence of adenomas, advanced adenomas, and colorectal cancer in individuals undergoing screening colonoscopy.   JAMA. 2011;306(12):1352-1358. doi:10.1001/jama.2011.1362PubMedGoogle ScholarCrossref
164.
Bretthauer  M, Kaminski  MF, Løberg  M,  et al; Nordic-European Initiative on Colorectal Cancer (NordICC) Study Group.  Population-based colonoscopy screening for colorectal cancer: a randomized clinical trial.   JAMA Intern Med. 2016;176(7):894-902. doi:10.1001/jamainternmed.2016.0960PubMedGoogle ScholarCrossref
165.
Taya  M, McHargue  C, Ricci  ZJ, Flusberg  M, Weinstein  S, Yee  J.  Comparison of extracolonic findings and clinical outcomes in a screening and diagnostic CT colonography population.   Abdom Radiol (NY). 2019;44(2):429-437. doi:10.1007/s00261-018-1753-3PubMedGoogle ScholarCrossref
166.
Laanani  M, Coste  J, Blotière  PO, Carbonnel  F, Weill  A.  Patient, procedure, and endoscopist risk factors for perforation, bleeding, and splenic injury after colonoscopies.   Clin Gastroenterol Hepatol. 2019;17(4):719-727. doi:10.1016/j.cgh.2018.08.005PubMedGoogle ScholarCrossref
167.
Moreno  CC, Fibus  TF, Krupinski  EA, Kim  DH, Pickhardt  PJ.  Addressing racial disparity in colorectal cancer screening with CT colonography: experience in an African-American cohort.   Clin Colorectal Cancer. 2018;17(2):e363-e367. doi:10.1016/j.clcc.2018.02.007PubMedGoogle ScholarCrossref
168.
Zwink  N, Holleczek  B, Stegmaier  C, Hoffmeister  M, Brenner  H.  Complication rates in colonoscopy screening for cancer.   Dtsch Arztebl Int. 2017;114(18):321-327. doi:10.3238/arztebl.2017.0321PubMedGoogle Scholar
169.
Saraste  D, Martling  A, Nilsson  PJ,  et al.  Complications after colonoscopy and surgery in a population-based colorectal cancer screening programme.   J Med Screen. 2016;23(3):135-140. doi:10.1177/0969141315625701PubMedGoogle ScholarCrossref
170.
Larson  ME, Pickhardt  PJ.  CT colonography screening in extracolonic cancer survivors: impact on rates of colorectal and extracolonic findings by cancer type.   Abdom Radiol (NY). 2019;44(1):31-40. doi:10.1007/s00261-018-1708-8PubMedGoogle ScholarCrossref
171.
Grossberg  LB, Vodonos  A, Papamichael  K, Novack  V, Sawhney  M, Leffler  DA.  Predictors of post-colonoscopy emergency department use.   Gastrointest Endosc. 2018;87(2):517-525. doi:10.1016/j.gie.2017.08.019PubMedGoogle ScholarCrossref
172.
Kubisch  CH, Crispin  A, Mansmann  U, Goke  B, Kolligs  FT.  Screening for colorectal cancer is associated with lower disease stage: a population-based study.   Clin Gastroenterol Hepatol. 2016;14(11):1612-1618. doi:10.1016/j.cgh.2016.04.008PubMedGoogle ScholarCrossref
173.
Ibáñez  J, Vanaclocha-Espí  M, Pérez-Sanz  E,  et al; Grupo de Trabajo del Programa de Prevención de Cáncer Colorrectal de la Comunitat Valenciana; Grupo de Trabajo del Programa de Prevención de Cáncer Colorrectal de la Comunitat Valenciana (España).  Severe complications in colorectal cancer screening colonoscopies in the Valencian Community.  Article in Spanish.  Gastroenterol Hepatol. 2018;41(9):553-561.PubMedGoogle ScholarCrossref
174.
Wang  L, Mannalithara  A, Singh  G, Ladabaum  U.  Low rates of gastrointestinal and non-gastrointestinal complications for screening or surveillance colonoscopies in a population-based study.   Gastroenterology. 2018;154(3):540-555. doi:10.1053/j.gastro.2017.10.006PubMedGoogle ScholarCrossref
175.
Mikkelsen  EM, Thomsen  MK, Tybjerg  J,  et al.  Colonoscopy-related complications in a nationwide immunochemical fecal occult blood test-based colorectal cancer screening program.   Clin Epidemiol. 2018;10:1649-1655. doi:10.2147/CLEP.S181204PubMedGoogle ScholarCrossref
176.
Binefa  G, Garcia  M, Milà  N,  et al.  Colorectal Cancer Screening Programme in Spain: results of key performance indicators after five rounds (2000-2012).   Sci Rep. 2016;6:19532. doi:10.1038/srep19532PubMedGoogle ScholarCrossref
177.
Rim  JH, Youk  T, Kang  JG,  et al.  Fecal occult blood test results of the national colorectal cancer screening program in South Korea (2006-2013).   Sci Rep. 2017;7(1):2804. doi:10.1038/s41598-017-03134-9PubMedGoogle ScholarCrossref
178.
Pooler  BD, Kim  DH, Pickhardt  PJ.  Potentially important extracolonic findings at screening CT colonography: incidence and outcomes data from a clinical screening program.   AJR Am J Roentgenol. 2016;206(2):313-318. doi:10.2214/AJR.15.15193PubMedGoogle ScholarCrossref
179.
Forsberg  A, Hammar  U, Ekbom  A, Hultcrantz  R.  A register-based study: adverse events in colonoscopies performed in Sweden 2001-2013.   Scand J Gastroenterol. 2017;52(9):1042-1047. doi:10.1080/00365521.2017.1334812PubMedGoogle Scholar
180.
Bielawska  B, Hookey  LC, Sutradhar  R,  et al.  Anesthesia assistance in outpatient colonoscopy and risk of aspiration pneumonia, bowel perforation, and splenic injury.   Gastroenterology. 2018;154(1):77-85. doi:10.1053/j.gastro.2017.08.043PubMedGoogle ScholarCrossref
181.
Derbyshire  E, Hungin  P, Nickerson  C, Rutter  MD.  Colonoscopic perforations in the English National Health Service Bowel Cancer Screening Programme.   Endoscopy. 2018;50(9):861-870. doi:10.1055/a-0584-7138PubMedGoogle ScholarCrossref
182.
Johnson  DA, Lieberman  D, Inadomi  JM,  et al.  Increased post-procedural non-gastrointestinal adverse events after outpatient colonoscopy in high-risk patients.   Clin Gastroenterol Hepatol. 2017;15(6):883-891. doi:10.1016/j.cgh.2016.12.015PubMedGoogle ScholarCrossref
183.
Chukmaitov  A, Siangphoe  U, Dahman  B, Bradley  CJ, BouHaidar  D.  Patient comorbidity and serious adverse events after outpatient colonoscopy: population-based study from three states, 2006 to 2009.   Dis Colon Rectum. 2016;59(7):677-687. doi:10.1097/DCR.0000000000000603PubMedGoogle ScholarCrossref
184.
Hoff  G, de Lange  T, Bretthauer  M,  et al.  Patient-reported adverse events after colonoscopy in Norway.   Endoscopy. 2017;49(8):745-753. doi:10.1055/s-0043-105265PubMedGoogle ScholarCrossref
185.
Wang  P, Xu  T, Ngamruengphong  S, Makary  MA, Kalloo  A, Hutfless  S.  Rates of infection after colonoscopy and osophagogastroduodenoscopy in ambulatory surgery centres in the USA.   Gut. 2018;67(9):1626-1636. doi:10.1136/gutjnl-2017-315308PubMedGoogle ScholarCrossref
186.
Polter  DE.  Risk of colon perforation during colonoscopy at Baylor University Medical Center.   Proc (Bayl Univ Med Cent). 2015;28(1):3-6. doi:10.1080/08998280.2015.11929170PubMedGoogle ScholarCrossref
187.
Warren  JL, Klabunde  CN, Mariotto  AB,  et al.  Adverse events after outpatient colonoscopy in the Medicare population.   Ann Intern Med. 2009;150(12):849-857. doi:10.7326/0003-4819-150-12-200906160-00008PubMedGoogle ScholarCrossref
188.
Rutter  CM, Johnson  E, Miglioretti  DL, Mandelson  MT, Inadomi  J, Buist  DS.  Adverse events after screening and follow-up colonoscopy.   Cancer Causes Control. 2012;23(2):289-296. doi:10.1007/s10552-011-9878-5PubMedGoogle ScholarCrossref
189.
Zafar  HM, Harhay  MO, Yang  J, Armstron  K.  Adverse events following computed tomographic colonography compared to optical colonoscopy in the elderly.   Prev Med Rep. 2014;1:3-8. doi:10.1016/j.pmedr.2014.08.001PubMedGoogle ScholarCrossref
190.
Iafrate  F, Iussich  G, Correale  L,  et al.  Adverse events of computed tomography colonography: an Italian National Survey.   Dig Liver Dis. 2013;45(8):645-650. doi:10.1016/j.dld.2013.02.020PubMedGoogle ScholarCrossref
191.
Stock  C, Ihle  P, Sieg  A, Schubert  I, Hoffmeister  M, Brenner  H.  Adverse events requiring hospitalization within 30 days after outpatient screening and nonscreening colonoscopies.   Gastrointest Endosc. 2013;77(3):419-429. doi:10.1016/j.gie.2012.10.028PubMedGoogle ScholarCrossref
192.
Sagawa  T, Kakizaki  S, Iizuka  H,  et al.  Analysis of colonoscopic perforations at a local clinic and a tertiary hospital.   World J Gastroenterol. 2012;18(35):4898-4904. doi:10.3748/wjg.v18.i35.4898PubMedGoogle ScholarCrossref
193.
Hsieh  TK, Hung  L, Kang  FC, Lan  KM, Poon  PW, So  EC.  Anesthesia does not increase the rate of bowel perforation during colonoscopy: a retrospective study.   Acta Anaesthesiol Taiwan. 2009;47(4):162-166. doi:10.1016/S1875-4597(09)60049-7PubMedGoogle ScholarCrossref
194.
Chukmaitov  A, Bradley  CJ, Dahman  B, Siangphoe  U, Warren  JL, Klabunde  CN.  Association of polypectomy techniques, endoscopist volume, and facility type with colonoscopy complications.   Gastrointest Endosc. 2013;77(3):436-446. doi:10.1016/j.gie.2012.11.012PubMedGoogle ScholarCrossref
195.
Rabeneck  L, Paszat  LF, Hilsden  RJ,  et al.  Bleeding and perforation after outpatient colonoscopy and their risk factors in usual clinical practice.   Gastroenterology. 2008;135(6):1899-1906, 1906.e1. doi:10.1053/j.gastro.2008.08.058PubMedGoogle ScholarCrossref
196.
Sosna  J, Blachar  A, Amitai  M,  et al.  Colonic perforation at CT colonography: assessment of risk in a multicenter large cohort.   Radiology. 2006;239(2):457-463. doi:10.1148/radiol.2392050287PubMedGoogle ScholarCrossref
197.
Kamath  AS, Iqbal  CW, Sarr  MG,  et al.  Colonoscopic splenic injuries: incidence and management.   J Gastrointest Surg. 2009;13(12):2136-2140. doi:10.1007/s11605-009-1064-7PubMedGoogle ScholarCrossref
198.
Singh  H, Penfold  RB, DeCoster  C,  et al.  Colonoscopy and its complications across a Canadian regional health authority.   Gastrointest Endosc. 2009;69(3, pt 2):665-671. doi:10.1016/j.gie.2008.09.046PubMedGoogle ScholarCrossref
199.
Rathgaber  SW, Wick  TM.  Colonoscopy completion and complication rates in a community gastroenterology practice.   Gastrointest Endosc. 2006;64(4):556-562. doi:10.1016/j.gie.2006.03.014PubMedGoogle ScholarCrossref
200.
Pickhardt  PJ, Kim  DH, Meiners  RJ,  et al.  Colorectal and extracolonic cancers detected at screening CT colonography in 10,286 asymptomatic adults.   Radiology. 2010;255(1):83-88. doi:10.1148/radiol.09090939PubMedGoogle ScholarCrossref
201.
Cotterill  M, Gasparelli  R, Kirby  E.  Colorectal cancer detection in a rural community: development of a colonoscopy screening program.   Can Fam Physician. 2005;51:1224-1228.PubMedGoogle Scholar
202.
Edwards  JT, Mendelson  RM, Fritschi  L,  et al.  Colorectal neoplasia screening with CT colonography in average-risk asymptomatic subjects: community-based study.   Radiology. 2004;230(2):459-464. doi:10.1148/radiol.2302021422PubMedGoogle ScholarCrossref
203.
Multicentre Australian Colorectal-Neoplasia Screening (MACS) Group.  A comparison of colorectal neoplasia screening tests: a multicentre community-based study of the impact of consumer choice.   Med J Aust. 2006;184(11):546-550. doi:10.5694/j.1326-5377.2006.tb00377.xPubMedGoogle ScholarCrossref
204.
Cooper  GS, Kou  TD, Rex  DK.  Complications following colonoscopy with anesthesia assistance: a population-based analysis.   JAMA Intern Med. 2013;173(7):551-556. doi:10.1001/jamainternmed.2013.2908PubMedGoogle ScholarCrossref
205.
Levin  TR, Zhao  W, Conell  C,  et al.  Complications of colonoscopy in an integrated health care delivery system.   Ann Intern Med. 2006;145(12):880-886. doi:10.7326/0003-4819-145-12-200612190-00004PubMedGoogle ScholarCrossref
206.
Levin  TR, Conell  C, Shapiro  JA, Chazan  SG, Nadel  MR, Selby  JV.  Complications of screening flexible sigmoidoscopy.   Gastroenterology. 2002;123(6):1786-1792. doi:10.1053/gast.2002.37064PubMedGoogle ScholarCrossref
207.
Chin  M, Mendelson  R, Edwards  J, Foster  N, Forbes  G.  Computed tomographic colonography: prevalence, nature, and clinical significance of extracolonic findings in a community screening program.   Am J Gastroenterol. 2005;100(12):2771-2776. doi:10.1111/j.1572-0241.2005.00337.xPubMedGoogle ScholarCrossref
208.
Macari  M, Nevsky  G, Bonavita  J, Kim  DC, Megibow  AJ, Babb  JS.  CT colonography in senior versus nonsenior patients: extracolonic findings, recommendations for additional imaging, and polyp prevalence.   Radiology. 2011;259(3):767-774. doi:10.1148/radiol.11102144PubMedGoogle ScholarCrossref
209.
Cash  BD, Riddle  MS, Bhattacharya  I,  et al.  CT colonography of a Medicare-aged population: outcomes observed in an analysis of more than 1400 patients.   AJR Am J Roentgenol. 2012;199(1):W27-W34. doi:10.2214/AJR.11.7729PubMedGoogle ScholarCrossref
210.
Kim  DH, Pickhardt  PJ, Taylor  AJ,  et al.  CT colonography versus colonoscopy for the detection of advanced neoplasia.   N Engl J Med. 2007;357(14):1403-1412. doi:10.1056/NEJMoa070543PubMedGoogle ScholarCrossref
211.
Kim  DH, Pickhardt  PJ, Hanson  ME, Hinshaw  JL.  CT colonography: performance and program outcome measures in an older screening population.   Radiology. 2010;254(2):493-500. doi:10.1148/radiol.09091478PubMedGoogle ScholarCrossref
212.
Hoff  G, Thiis-Evensen  E, Grotmol  T, Sauar  J, Vatn  MH, Moen  IE.  Do undesirable effects of screening affect all-cause mortality in flexible sigmoidoscopy programmes? experience from the Telemark Polyp Study 1983-1996.   Eur J Cancer Prev. 2001;10(2):131-137. doi:10.1097/00008469-200104000-00003PubMedGoogle ScholarCrossref
213.
Adeyemo  A, Bannazadeh  M, Riggs  T, Shellnut  J, Barkel  D, Wasvary  H.  Does sedation type affect colonoscopy perforation rates?   Dis Colon Rectum. 2014;57(1):110-114. doi:10.1097/DCR.0000000000000002PubMedGoogle ScholarCrossref
214.
Flicker  MS, Tsoukas  AT, Hazra  A, Dachman  AH.  Economic impact of extracolonic findings at computed tomographic colonography.   J Comput Assist Tomogr. 2008;32(4):497-503. doi:10.1097/RCT.0b013e3181692091PubMedGoogle ScholarCrossref
215.
Pox  CP, Altenhofen  L, Brenner  H, Theilmeier  A, Von Stillfried  D, Schmiegel  W.  Efficacy of a nationwide screening colonoscopy program for colorectal cancer.   Gastroenterology. 2012;142(7):1460-1467. doi:10.1053/j.gastro.2012.03.022PubMedGoogle ScholarCrossref
216.
Kim  JS, Kim  BW, Kim  JI,  et al.  Endoscopic clip closure versus surgery for the treatment of iatrogenic colon perforations developed during diagnostic colonoscopy: a review of 115,285 patients.   Surg Endosc. 2013;27(2):501-504. doi:10.1007/s00464-012-2465-3PubMedGoogle ScholarCrossref
217.
Lorenzo-Zúñiga  V, Moreno de Vega  V, Doménech  E, Mañosa  M, Planas  R, Boix  J.  Endoscopist experience as a risk factor for colonoscopic complications.   Colorectal Dis. 2010;12(10 online):e273-e277. doi:10.1111/j.1463-1318.2009.02146.xPubMedGoogle ScholarCrossref
218.
Mansmann  U, Crispin  A, Henschel  V,  et al.  Epidemiology and quality control of 245 000 outpatient colonoscopies.   Dtsch Arztebl Int. 2008;105(24):434-440. doi:10.3238/arztebl.2008.0434PubMedGoogle Scholar
219.
Ginnerup Pedersen  B, Rosenkilde  M, Christiansen  TE, Laurberg  S.  Extracolonic findings at computed tomography colonography are a challenge.   Gut. 2003;52(12):1744-1747. doi:10.1136/gut.52.12.1744PubMedGoogle ScholarCrossref
220.
Gluecker  TM, Johnson  CD, Wilson  LA,  et al.  Extracolonic findings at CT colonography: evaluation of prevalence and cost in a screening population.   Gastroenterology. 2003;124(4):911-916. doi:10.1053/gast.2003.50158PubMedGoogle ScholarCrossref
221.
Kim  YS, Kim  N, Kim  SY,  et al.  Extracolonic findings in an asymptomatic screening population undergoing intravenous contrast-enhanced computed tomography colonography.   J Gastroenterol Hepatol. 2008;23(7, pt 2):e49-e57. doi:10.1111/j.1440-1746.2007.05060.xPubMedGoogle ScholarCrossref
222.
Veerappan  GR, Ally  MR, Choi  JH, Pak  JS, Maydonovitch  C, Wong  RK.  Extracolonic findings on CT colonography increases yield of colorectal cancer screening.   AJR Am J Roentgenol. 2010;195(3):677-686. doi:10.2214/AJR.09.3779PubMedGoogle ScholarCrossref
223.
Pickhardt  PJ, Kim  DH, Taylor  AJ, Gopal  DV, Weber  SM, Heise  CP.  Extracolonic tumors of the gastrointestinal tract detected incidentally at screening CT colonography.   Dis Colon Rectum. 2007;50(1):56-63. doi:10.1007/s10350-006-0806-9PubMedGoogle ScholarCrossref
224.
Durbin  JM, Stroup  SP, Altamar  HO, L’esperance  JO, Lacey  DR, Auge  BK.  Genitourinary abnormalities in an asymptomatic screening population: findings on virtual colonoscopy.   Clin Nephrol. 2012;77(3):204-210. doi:10.5414/CN107242PubMedGoogle ScholarCrossref
225.
Dancourt  V, Lejeune  C, Lepage  C, Gailliard  MC, Meny  B, Faivre  J.  Immunochemical faecal occult blood tests are superior to guaiac-based tests for the detection of colorectal neoplasms.   Eur J Cancer. 2008;44(15):2254-2258. doi:10.1016/j.ejca.2008.06.041PubMedGoogle ScholarCrossref
226.
Loffeld  RJ, Engel  A, Dekkers  PE.  Incidence and causes of colonoscopic perforations: a single-center case series.   Endoscopy. 2011;43(3):240-242. doi:10.1055/s-0030-1255939PubMedGoogle ScholarCrossref
227.
Kang  HY, Kang  HW, Kim  SG,  et al.  Incidence and management of colonoscopic perforations in Korea.   Digestion. 2008;78(4):218-223. doi:10.1159/000190811PubMedGoogle ScholarCrossref
228.
Pickhardt  PJ.  Incidence of colonic perforation at CT colonography: review of existing data and implications for screening of asymptomatic adults.   Radiology. 2006;239(2):313-316. doi:10.1148/radiol.2392052002PubMedGoogle ScholarCrossref
229.
Ko  CW, Riffle  S, Shapiro  JA,  et al.  Incidence of minor complications and time lost from normal activities after screening or surveillance colonoscopy.   Gastrointest Endosc. 2007;65(4):648-656. doi:10.1016/j.gie.2006.06.020PubMedGoogle ScholarCrossref
230.
Hara  AK, Johnson  CD, MacCarty  RL, Welch  TJ.  Incidental extracolonic findings at CT colonography.   Radiology. 2000;215(2):353-357. doi:10.1148/radiology.215.2.r00ap33353PubMedGoogle ScholarCrossref
231.
Berhane  C, Denning  D.  Incidental finding of colorectal cancer in screening colonoscopy and its cost effectiveness.   Am Surg. 2009;75(8):699-703. doi:10.1177/000313480907500811PubMedGoogle ScholarCrossref
232.
O'Connor  SD, Pickhardt  PJ, Kim  DH, Oliva  MR, Silverman  SG.  Incidental finding of renal masses at unenhanced CT: prevalence and analysis of features for guiding management.   AJR Am J Roentgenol. 2011;197(1):139-145. doi:10.2214/AJR.10.5920PubMedGoogle ScholarCrossref
233.
Suissa  A, Bentur  OS, Lachter  J,  et al.  Outcome and complications of colonoscopy: a prospective multicenter study in northern Israel.   Diagn Ther Endosc. 2012;2012:612542. doi:10.1155/2012/612542PubMedGoogle Scholar
234.
Jain  A, Falzarano  J, Jain  A, Decker  R, Okubo  G, Fujiwara  D.  Outcome of 5,000 flexible sigmoidoscopies done by nurse endoscopists for colorectal screening in asymptomatic patients.   Hawaii Med J. 2002;61(6):118-120.PubMedGoogle Scholar
235.
Viiala  CH, Olynyk  JK.  Outcomes after 10 years of a community-based flexible sigmoidoscopy screening program for colorectal carcinoma.   Med J Aust. 2007;187(5):274-277. doi:10.5694/j.1326-5377.2007.tb01241.xPubMedGoogle ScholarCrossref
236.
Parente  F, Boemo  C, Ardizzoia  A,  et al.  Outcomes and cost evaluation of the first two rounds of a colorectal cancer screening program based on immunochemical fecal occult blood test in northern Italy.   Endoscopy. 2013;45(1):27-34.PubMedGoogle Scholar
237.
Castro  G, Azrak  MF, Seeff  LC, Royalty  J.  Outpatient colonoscopy complications in the CDC’s Colorectal Cancer Screening Demonstration Program: a prospective analysis.   Cancer. 2013;119(suppl 15):2849-2854. doi:10.1002/cncr.28159PubMedGoogle ScholarCrossref
238.
Korman  LY, Overholt  BF, Box  T, Winker  CK.  Perforation during colonoscopy in endoscopic ambulatory surgical centers.   Gastrointest Endosc. 2003;58(4):554-557. doi:10.1067/S0016-5107(03)01890-XPubMedGoogle ScholarCrossref
239.
Tam  MS, Abbas  MA.  Perforation following colorectal endoscopy: what happens beyond the endoscopy suite?   Perm J. 2013;17(2):17-21. doi:10.7812/TPP/12-095PubMedGoogle ScholarCrossref
240.
Blotière  PO, Weill  A, Ricordeau  P, Alla  F, Allemand  H.  Perforations and haemorrhages after colonoscopy in 2010: a study based on comprehensive French health insurance data (SNIIRAM).   Clin Res Hepatol Gastroenterol. 2014;38(1):112-117. doi:10.1016/j.clinre.2013.10.005PubMedGoogle ScholarCrossref
241.
Strul  H, Kariv  R, Leshno  M,  et al.  The prevalence rate and anatomic location of colorectal adenoma and cancer detected by colonoscopy in average-risk individuals aged 40-80 years.   Am J Gastroenterol. 2006;101(2):255-262. doi:10.1111/j.1572-0241.2006.00430.xPubMedGoogle ScholarCrossref
242.
Nelson  DB, McQuaid  KR, Bond  JH, Lieberman  DA, Weiss  DG, Johnston  TK.  Procedural success and complications of large-scale screening colonoscopy.   Gastrointest Endosc. 2002;55(3):307-314. doi:10.1067/mge.2002.121883PubMedGoogle ScholarCrossref
243.
Crispin  A, Birkner  B, Munte  A, Nusko  G, Mansmann  U.  Process quality and incidence of acute complications in a series of more than 230,000 outpatient colonoscopies.   Endoscopy. 2009;41(12):1018-1025. doi:10.1055/s-0029-1215214PubMedGoogle ScholarCrossref
244.
Sieg  A, Hachmoeller-Eisenbach  U, Eisenbach  T.  Prospective evaluation of complications in outpatient GI endoscopy: a survey among German gastroenterologists.   Gastrointest Endosc. 2001;53(6):620-627. doi:10.1067/mge.2001.114422PubMedGoogle ScholarCrossref
245.
Xirasagar  S, Hurley  TG, Sros  L, Hebert  JR.  Quality and safety of screening colonoscopies performed by primary care physicians with standby specialist support.   Med Care. 2010;48(8):703-709. doi:10.1097/MLR.0b013e3181e358a3PubMedGoogle ScholarCrossref
246.
Bair  D, Pham  J, Seaton  MB, Arya  N, Pryce  M, Seaton  TL.  The quality of screening colonoscopies in an office-based endoscopy clinic.   Can J Gastroenterol. 2009;23(1):41-47. doi:10.1155/2009/831029PubMedGoogle ScholarCrossref
247.
Quallick  MR, Brown  WR.  Rectal perforation during colonoscopic retroflexion: a large, prospective experience in an academic center.   Gastrointest Endosc. 2009;69(4):960-963. doi:10.1016/j.gie.2008.11.011PubMedGoogle ScholarCrossref
248.
Dominitz  JA, Baldwin  LM, Green  P, Kreuter  WI, Ko  CW.  Regional variation in anesthesia assistance during outpatient colonoscopy is not associated with differences in polyp detection or complication rates.   Gastroenterology. 2013;144(2):298-306. doi:10.1053/j.gastro.2012.10.038PubMedGoogle ScholarCrossref
249.
Hamdani  U, Naeem  R, Haider  F,  et al.  Risk factors for colonoscopic perforation: a population-based study of 80118 cases.   World J Gastroenterol. 2013;19(23):3596-3601. doi:10.3748/wjg.v19.i23.3596PubMedGoogle ScholarCrossref
250.
Bielawska  B, Day  AG, Lieberman  DA, Hookey  LC.  Risk factors for early colonoscopic perforation include non-gastroenterologist endoscopists: a multivariable analysis.   Clin Gastroenterol Hepatol. 2014;12(1):85-92. doi:10.1016/j.cgh.2013.06.030PubMedGoogle ScholarCrossref
251.
Arora  G, Mannalithara  A, Singh  G, Gerson  LB, Triadafilopoulos  G.  Risk of perforation from a colonoscopy in adults: a large population-based study.   Gastrointest Endosc. 2009;69(3, pt 2):654-664. doi:10.1016/j.gie.2008.09.008PubMedGoogle ScholarCrossref
252.
Bokemeyer  B, Bock  H, Hüppe  D,  et al.  Screening colonoscopy for colorectal cancer prevention: results from a German online registry on 269000 cases.   Eur J Gastroenterol Hepatol. 2009;21(6):650-655. doi:10.1097/MEG.0b013e32830b8acfPubMedGoogle ScholarCrossref
253.
An  S, Lee  KH, Kim  YH,  et al.  Screening CT colonography in an asymptomatic average-risk Asian population: a 2-year experience in a single institution.   AJR Am J Roentgenol. 2008;191(3):W100-W106. doi:10.2214/AJR.07.3367PubMedGoogle ScholarCrossref
254.
Wallace  MB, Kemp  JA, Meyer  F,  et al.  Screening for colorectal cancer with flexible sigmoidoscopy by nonphysician endoscopists.   Am J Med. 1999;107(3):214-218. doi:10.1016/S0002-9343(99)00225-9PubMedGoogle ScholarCrossref
255.
Ko  CW, Riffle  S, Michaels  L,  et al.  Serious complications within 30 days of screening and surveillance colonoscopy are uncommon.   Clin Gastroenterol Hepatol. 2010;8(2):166-173. doi:10.1016/j.cgh.2009.10.007PubMedGoogle ScholarCrossref
256.
Ho  JM, Gruneir  A, Fischer  HD,  et al.  Serious events in older Ontario residents receiving bowel preparations for outpatient colonoscopy with various comorbidity profiles: a descriptive, population-based study.   Can J Gastroenterol. 2012;26(7):436-440. doi:10.1155/2012/238387PubMedGoogle ScholarCrossref
257.
Pickhardt  PJ, Boyce  CJ, Kim  DH, Hinshaw  LJ, Taylor  AJ, Winter  TC.  Should small sliding hiatal hernias be reported at CT colonography?   AJR Am J Roentgenol. 2011;196(4):W400-W404. doi:10.2214/AJR.10.5392PubMedGoogle ScholarCrossref
258.
Layton  JB, Klemmer  PJ, Christiansen  CF,  et al.  Sodium phosphate does not increase risk for acute kidney injury after routine colonoscopy, compared with polyethylene glycol.   Clin Gastroenterol Hepatol. 2014;12(9):1514-21. doi:10.1016/j.cgh.2014.01.034PubMedGoogle ScholarCrossref
259.
Pickhardt  PJ, Hanson  ME, Vanness  DJ,  et al.  Unsuspected extracolonic findings at screening CT colonography: clinical and economic impact.   Radiology. 2008;249(1):151-159. doi:10.1148/radiol.2491072148PubMedGoogle ScholarCrossref
260.
Atkin  WS, Hart  A, Edwards  R,  et al.  Uptake, yield of neoplasia, and adverse effects of flexible sigmoidoscopy screening.   Gut. 1998;42(4):560-565. doi:10.1136/gut.42.4.560PubMedGoogle ScholarCrossref
261.
Basson  MD, Persinger  D, Newman  WP.  Association of colonoscopy with risk of appendicitis.   JAMA Surg. 2018;153(1):90-91. doi:10.1001/jamasurg.2017.3790PubMedGoogle ScholarCrossref
262.
Kobiela  J, Spychalski  P, Wieszczy  P,  et al.  Mortality and rate of hospitalization in a colonoscopy screening program from a randomized health services study.   Clin Gastroenterol Hepatol. 2020;18(7):1501-1508.PubMedGoogle ScholarCrossref
263.
Grossberg  LB, Papamichael  K, Leffler  DA, Sawhney  MS, Feuerstein  JD.  Patients over age 75 are at increased risk of emergency department visit and hospitalization following colonoscopy.   Dig Dis Sci. 2020;65(7):1964-1970.PubMedGoogle ScholarCrossref
264.
Penz  D, Ferlitsch  A, Waldmann  E,  et al.  Impact of adenoma detection rate on detection of advanced adenomas and endoscopic adverse events in a study of over 200,000 screening colonoscopies.   Gastrointest Endosc. 2020;91(1):135-141. doi:10.1016/j.gie.2019.08.038PubMedGoogle ScholarCrossref
265.
Chukmaitov  A, Dahman  B, Bradley  CJ.  Outpatient facility volume, facility type, and the risk of serious colonoscopy-related adverse events in patients with comorbid conditions: a population-based study.   Int J Colorectal Dis. 2019;34(7):1203-1210. doi:10.1007/s00384-019-03304-3PubMedGoogle ScholarCrossref
266.
Thulin  T, Hammar  U, Ekbom  A, Hultcrantz  R, Forsberg  AM.  Perforations and bleeding in a population-based cohort of all registered colonoscopies in Sweden from 2001 to 2013.   United European Gastroenterol J. 2019;7(1):130-137. doi:10.1177/2050640618809782PubMedGoogle ScholarCrossref
267.
Pooler  BD, Kim  DH, Pickhardt  PJ.  Indeterminate but likely unimportant extracolonic findings at screening CT colonography (C-RADS Category E3): incidence and outcomes data from a clinical screening program.   AJR Am J Roentgenol. 2016;207(5):996-1001. doi:10.2214/AJR.16.16275PubMedGoogle ScholarCrossref
268.
Derbyshire  E, Hungin  P, Nickerson  C, Rutter  MD.  Post-polypectomy bleeding in the English National Health Service Bowel Cancer Screening Programme.   Endoscopy. 2017;49(9):899-908. doi:10.1055/s-0043-113442PubMedGoogle ScholarCrossref
269.
Senore  C, Ederle  A, Fantin  A,  et al.  Acceptability and side-effects of colonoscopy and sigmoidoscopy in a screening setting.   J Med Screen. 2011;18(3):128-134. doi:10.1258/jms.2011.010135PubMedGoogle ScholarCrossref
270.
Regula  J, Polkowski  M.  CT colonography versus colonoscopy for the detection of advanced neoplasia.   N Engl J Med. 2008;358(1):88-89. doi:10.1056/NEJMc073084PubMedGoogle ScholarCrossref
271.
Pickhardt  PJ, Kim  DH, Robbins  JB.  Flat (nonpolypoid) colorectal lesions identified at CT colonography in a U.S. screening population.   Acad Radiol. 2010;17(6):784-790. doi:10.1016/j.acra.2010.01.010PubMedGoogle ScholarCrossref
272.
Hoff  G, Sauar  J, Vatn  MH,  et al.  Polypectomy of adenomas in the prevention of colorectal cancer: 10 years’ follow-up of the Telemark Polyp Study I: a prospective, controlled population study.   Scand J Gastroenterol. 1996;31(10):1006-1010. doi:10.3109/00365529609003121PubMedGoogle ScholarCrossref
273.
Thiis-Evensen  E, Hoff  GS, Sauar  J, Langmark  F, Majak  BM, Vatn  MH.  Population-based surveillance by colonoscopy: effect on the incidence of colorectal cancer: Telemark Polyp Study I.   Scand J Gastroenterol. 1999;34(4):414-420. doi:10.1080/003655299750026443PubMedGoogle ScholarCrossref
274.
Zalis  ME, Barish  MA, Choi  JR,  et al; Working Group on Virtual Colonoscopy.  CT colonography reporting and data system: a consensus proposal.   Radiology. 2005;236(1):3-9. doi:10.1148/radiol.2361041926PubMedGoogle ScholarCrossref
275.
Lord  SJ, Irwig  L, Simes  RJ.  When is measuring sensitivity and specificity sufficient to evaluate a diagnostic test, and when do we need randomized trials?   Ann Intern Med. 2006;144(11):850-855. doi:10.7326/0003-4819-144-11-200606060-00011PubMedGoogle ScholarCrossref
276.
Liles  E, Coronado  G, Perrin  N,  et al.  Uptake of a colorectal cancer screening blood test is higher than of a fecal test offered in clinic: a randomized trial.   Cancer Treat Res Comm. 2017;10:27-31. doi:10.1016/j.ctarc.2016.12.004.Google ScholarCrossref
277.
White  A, Thompson  TD, White  MC,  et al.  Cancer screening test use—United States, 2015.   MMWR Morb Mortal Wkly Rep. 2017;66(8):201-206. doi:10.15585/mmwr.mm6608a1PubMedGoogle ScholarCrossref
278.
Lin  JS, Perdue  LA, Henrikson  NB, Bean  SI, Blasi  PR.  Screening for Colorectal Cancer: A Systematic Review for the US Preventive Services Task Force. Agency for Healthcare Research and Quality; 2021.
279.
Usher-Smith  JA, Walter  FM, Emery  JD, Win  AK, Griffin  SJ.  Risk prediction models for colorectal cancer: a systematic review.   Cancer Prev Res (Phila). 2016;9(1):13-26. doi:10.1158/1940-6207.CAPR-15-0274PubMedGoogle ScholarCrossref
280.
Peng  Z, Zhu  W, Dai  J, Ju  F.  MicroRNA-200 as potential diagnostic markers for colorectal cancer: meta-analysis and experimental validation.   Cell Mol Biol (Noisy-le-grand). 2018;64(6):77-85. doi:10.14715/cmb/2018.64.6.14PubMedGoogle ScholarCrossref
281.
Usher-Smith  JA, Harshfield  A, Saunders  CL,  et al.  External validation of risk prediction models for incident colorectal cancer using UK Biobank.   Br J Cancer. 2018;118(5):750-759. doi:10.1038/bjc.2017.463PubMedGoogle ScholarCrossref
282.
Smith  T, Muller  DC, Moons  KGM,  et al.  Comparison of prognostic models to predict the occurrence of colorectal cancer in asymptomatic individuals: a systematic literature review and external validation in the EPIC and UK Biobank prospective cohort studies.   Gut. 2019;68(4):672-683. doi:10.1136/gutjnl-2017-315730PubMedGoogle ScholarCrossref
283.
Win  AK, Macinnis  RJ, Hopper  JL, Jenkins  MA.  Risk prediction models for colorectal cancer: a review.   Cancer Epidemiol Biomarkers Prev. 2012;21(3):398-410. doi:10.1158/1055-9965.EPI-11-0771PubMedGoogle ScholarCrossref
×