Association of Plasma β-Amyloid Level and Cognitive Reserve With Subsequent Cognitive Decline | Dementia and Cognitive Impairment | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.175.212.130. Please contact the publisher to request reinstatement.
1.
Prince M, Jackson J. World Alzheimer Report. London, England: Alzheimer's Disease International; 2009
2.
Graff-Radford NR, Crook JE, Lucas J,  et al.  Association of low plasma Aβ 42/Aβ 40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease.  Arch Neurol. 2007;64(3):354-36217353377PubMedGoogle ScholarCrossref
3.
Lewczuk P, Kornhuber J, Vanmechelen E,  et al.  Amyloid β peptides in plasma in early diagnosis of Alzheimer's disease: a multicenter study with multiplexing.  Exp Neurol. 2010;223(2):366-37019664622PubMedGoogle ScholarCrossref
4.
Pesaresi M, Lovati C, Bertora P,  et al.  Plasma levels of β-amyloid (1-42) in Alzheimer's disease and mild cognitive impairment.  Neurobiol Aging. 2006;27(6):904-90516638622PubMedGoogle ScholarCrossref
5.
Fukumoto H, Tennis M, Locascio JJ, Hyman BT, Growdon JH, Irizarry MC. Age but not diagnosis is the main predictor of plasma amyloid β protein levels.  Arch Neurol. 2003;60(7):958-96412873852PubMedGoogle ScholarCrossref
6.
Hansson O, Zetterberg H, Vanmechelen E,  et al.  Evaluation of plasma Aβ(40) and Aβ(42) as predictors of conversion to Alzheimer's disease in patients with mild cognitive impairment.  Neurobiol Aging. 2010;31(3):357-36718486992PubMedGoogle ScholarCrossref
7.
Lopez OL, Kuller LH, Mehta PD,  et al.  Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study.  Neurology. 2008;70(19):1664-167118401021PubMedGoogle ScholarCrossref
8.
Buckner RL, Snyder AZ, Shannon BJ,  et al.  Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory.  J Neurosci. 2005;25(34):7709-771716120771PubMedGoogle ScholarCrossref
9.
Jack CR Jr, Lowe VJ, Senjem ML,  et al.  11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment.  Brain. 2008;131(pt 3):665-68018263627PubMedGoogle ScholarCrossref
10.
Rowe CC, Ng S, Ackermann U,  et al.  Imaging β-amyloid burden in aging and dementia.  Neurology. 2007;68(20):1718-172517502554PubMedGoogle ScholarCrossref
11.
Bennett DA, Schneider JA, Arvanitakis Z,  et al.  Neuropathology of older persons without cognitive impairment from two community-based studies.  Neurology. 2006;66(12):1837-184416801647PubMedGoogle ScholarCrossref
12.
Kemppainen NM, Aalto S, Karrasch M,  et al.  Cognitive reserve hypothesis: Pittsburgh compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer's disease.  Ann Neurol. 2008;63(1):112-11818023012PubMedGoogle ScholarCrossref
13.
Rentz DM, Locascio JJ, Becker JA,  et al.  Cognition, reserve, and amyloid deposition in normal aging.  Ann Neurol. 2010;67(3):353-36420373347PubMedGoogle ScholarCrossref
14.
Scarmeas N, Stern Y. Cognitive reserve: implications for diagnosis and prevention of Alzheimer's disease.  Curr Neurol Neurosci Rep. 2004;4(5):374-38015324603PubMedGoogle ScholarCrossref
15.
Stern Y. What is cognitive reserve? theory and research application of the reserve concept.  J Int Neuropsychol Soc. 2002;8(3):448-46011939702PubMedGoogle ScholarCrossref
16.
Yaffe K, Barnes D, Lindquist K,  et al; Health ABC Investigators.  Endogenous sex hormone levels and risk of cognitive decline in an older biracial cohort.  Neurobiol Aging. 2007;28(2):171-17817097195PubMedGoogle ScholarCrossref
17.
Teng EL, Chui HC. The Modified Mini-Mental State (3MS) examination.  J Clin Psychiatry. 1987;48(8):314-3183611032PubMedGoogle Scholar
18.
Bennett DA, Wilson RS, Schneider JA,  et al.  Education modifies the relation of AD pathology to level of cognitive function in older persons.  Neurology. 2003;60(12):1909-191512821732PubMedGoogle ScholarCrossref
19.
Davis TC, Long SW, Jackson RH,  et al.  Rapid estimate of adult literacy in medicine: a shortened screening instrument.  Fam Med. 1993;25(6):391-3958349060PubMedGoogle Scholar
20.
Mehta KM, Simonsick EM, Rooks R,  et al.  Black and white differences in cognitive function test scores: what explains the difference?  J Am Geriatr Soc. 2004;52(12):2120-212715571554PubMedGoogle ScholarCrossref
21.
Davis TC, Michielutte R, Askov EN, Williams MV, Weiss BD. Practical assessment of adult literacy in health care.  Health Educ Behav. 1998;25(5):613-6249768381PubMedGoogle ScholarCrossref
22.
Rothman R, Malone R, Bryant B, Horlen C, DeWalt D, Pignone M. The relationship between literacy and glycemic control in a diabetes disease-management program.  Diabetes Educ. 2004;30(2):263-27315095516PubMedGoogle ScholarCrossref
23.
Yaffe K, Barnes D, Nevitt M, Lui L-Y, Covinsky K. A prospective study of physical activity and cognitive decline in elderly women: women who walk.  Arch Intern Med. 2001;161(14):1703-170811485502PubMedGoogle ScholarCrossref
24.
Radloff L. The CES-D scale: a self-report depression scale for research in the general population.  Appl Psychol Meas. 1977;1:385-401Google ScholarCrossref
25.
Arvanitakis Z, Lucas JA, Younkin LH, Younkin SG, Graff-Radford NR. Serum creatinine levels correlate with plasma amyloid β protein.  Alzheimer Dis Assoc Disord. 2002;16(3):187-19012218650PubMedGoogle ScholarCrossref
26.
Lambert JC, Schraen-Maschke S, Richard F,  et al.  Association of plasma amyloid β with risk of dementia: the prospective Three-City Study.  Neurology. 2009;73(11):847-85319752451PubMedGoogle ScholarCrossref
27.
van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MMB. Plasma Aβ(1-40) and Aβ(1-42) and the risk of dementia: a prospective case-cohort study.  Lancet Neurol. 2006;5(8):655-66016857570PubMedGoogle ScholarCrossref
28.
Innogenetics.  New prospects for research into Alzheimer's disease with INNO-BIA plasma Aβ forms: a standardized research test for measuring the concentrations of β-amyloid isoforms in blood. http://www.innogenetics.be/documenten/BIA_plasma_litreview.pdf. Accessed May 26, 2010
29.
Mayeux R, Tang M-X, Jacobs DM,  et al.  Plasma amyloid β-peptide 1-42 and incipient Alzheimer's disease.  Ann Neurol. 1999;46(3):412-41610482274PubMedGoogle ScholarCrossref
30.
Gravina SA, Ho L, Eckman CB,  et al.  Amyloid β protein (Aβ) in Alzheimer's disease brain: biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ 40 or Aβ 42(43).  J Biol Chem. 1995;270(13):7013-70167706234PubMedGoogle ScholarCrossref
31.
Pike KE, Savage G, Villemagne VL,  et al.  β-Amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease.  Brain. 2007;130(Pt 11):2837-284417928318PubMedGoogle ScholarCrossref
32.
Cosentino SA, Stern Y, Sokolov E,  et al.  Plasma β-amyloid and cognitive decline.  Arch Neurol. 2010;67(12):1485-149020697031PubMedGoogle ScholarCrossref
33.
Kuller LH, Lopez OL, Newman A,  et al.  Risk factors for dementia in the cardiovascular health cognition study.  Neuroepidemiology. 2003;22(1):13-2212566949PubMedGoogle ScholarCrossref
Original Contribution
January 19, 2011

Association of Plasma β-Amyloid Level and Cognitive Reserve With Subsequent Cognitive Decline

Author Affiliations

Author Affiliations: Departments of Psychiatry (Dr Yaffe and Ms Weston), Neurology (Dr Yaffe), and Epidemiology and Biostatistics (Drs Yaffe and Ayonayon), University of California, San Francisco, and San Francisco Veterans Affairs Medical Center (Dr Yaffe), San Francisco; Departments of Neurology (Dr Graff-Radford) and Neuroscience (Drs S. G. Younkin and L. H. Younkin), Mayo Clinic, Jacksonville, Florida; Department of Preventive Medicine, University of Tennessee at Memphis (Dr Satterfield); Clinical Research Branch (Dr Simonsick) and Laboratory of Epidemiology, Demography, and Biometry (Dr Harris), National Institute on Aging, Baltimore, Maryland; Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Kuller); and Department of Gerontology and Geriatric Medicine, Wake Forest University Medical Center, Winston-Salem, North Carolina (Dr Ding).

JAMA. 2011;305(3):261-266. doi:10.1001/jama.2010.1995
Abstract

Context Lower plasma β-amyloid 42 and 42/40 levels have been associated with incident dementia, but results are conflicting and few have investigated cognitive decline among elders without dementia.

Objective To determine if plasma β-amyloid is associated with cognitive decline and if this association is modified by measures of cognitive reserve.

Design, Setting, and Participants We studied 997 black and white community-dwelling older adults from Memphis, Tennessee, and Pittsburgh, Pennsylvania, who were enrolled in the Health ABC Study, a prospective observational study begun in 1997-1998 with 10-year follow-up in 2006-2007. Participant mean age was 74.0 (SD, 3.0) years; 55.2% (n = 550) were female; and 54.0% (n = 538) were black.

Main Outcome Measures Association of near-baseline plasma β-amyloid levels (42 and 42/40 measured in 2010) and repeatedly measured Modified Mini-Mental State Examination (3MS) results.

Results Low β-amyloid 42/40 level was associated with greater 9-year 3MS cognitive decline (lowest β-amyloid tertile: mean change in 3MS score, −6.59 [95% confidence interval [CI], −5.21 to −7.67] points; middle tertile: −6.16 [95% CI, −4.92 to −7.32] points; and highest tertile: −3.60 [95% CI, −2.27 to −4.73] points; P < .001). Results were similar after multivariate adjustment for age, race, education, diabetes, smoking, and apolipoprotein E [APOE ] e4 status and after excluding the 72 participants with incident dementia. Measures of cognitive reserve modified this association whereby among those with high reserve (at least a high school diploma, higher than sixth-grade literacy, or no APOE e4 allele), β-amyloid 42/40 was less associated with multivariate adjusted 9-year decline. For example, among participants with less than a high school diploma, the 3MS score decline was −8.94 (95% CI, −6.94 to −10.94) for the lowest tertile compared with −4.45 (95% CI, −2.31 to −6.59) for the highest tertile, but for those with at least a high school diploma, 3MS score decline was −4.60 (95% CI,−3.07 to −6.13) for the lowest tertile and −2.88 (95% CI,−1.41 to −4.35) for the highest tertile (P = .004 for interaction). Interactions were also observed for literacy (P = .005) and for APOE e4 allele (P = .02).

Conclusion Lower plasma β-amyloid 42/40 is associated with greater cognitive decline among elderly persons without dementia over 9 years, and this association is stronger among those with low measures of cognitive reserve.

×