Use of Florbetapir-PET for Imaging β-Amyloid Pathology | Radiology | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Jobst KA, Barnetson LP, Shepstone BJ. Accurate prediction of histologically confirmed Alzheimer's disease and the differential diagnosis of dementia.  Int Psychogeriatr. 1998;10(3):271-3029785148PubMedGoogle ScholarCrossref
Mayeux R, Saunders AM, Shea S,  et al.  Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer's disease.  N Engl J Med. 1998;338(8):506-5119468467PubMedGoogle ScholarCrossref
Ranginwala NA, Hynan LS, Weiner MF, White CL III. Clinical criteria for the diagnosis of Alzheimer disease.  Am J Geriatr Psychiatry. 2008;16(5):384-38818448850PubMedGoogle ScholarCrossref
Löppönen M, Räihä I, Isoaho R. Diagnosing cognitive impairment and dementia in primary health care.  Age Ageing. 2003;32(6):606-61214600001PubMedGoogle ScholarCrossref
Thal LJ, Kantarci K, Reiman EM,  et al.  The role of biomarkers in clinical trials for Alzheimer disease.  Alzheimer Dis Assoc Disord. 2006;20(1):6-1516493230PubMedGoogle ScholarCrossref
Mathis CA, Lopresti BJ, Klunk WE. Impact of amyloid imaging on drug development in Alzheimer's disease.  Nucl Med Biol. 2007;34(7):809-82217921032PubMedGoogle ScholarCrossref
McKhann G, Drachman D, Folstein M,  et al.  Clinical diagnosis of Alzheimer's disease.  Neurology. 1984;34(7):939-9446610841PubMedGoogle ScholarCrossref
The National Institute on Aging; Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease.  Consensus recommendations for the postmortem diagnosis of Alzheimer's disease.  Neurobiol Aging. 1997;18(4 suppl):S1-S29330978PubMedGoogle Scholar
Klunk WE, Wang Y, Huang GF,  et al.  Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain.  Life Sci. 2001;69(13):1471-148411554609PubMedGoogle ScholarCrossref
Klunk WE, Engler H, Nordberg A,  et al.  Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B.  Ann Neurol. 2004;55(3):306-31914991808PubMedGoogle ScholarCrossref
Koole M, Lewis DM, Buckley C,  et al.  Whole-body biodistribution and radiation dosimetry of 18F-GE067.  J Nucl Med. 2009;50(5):818-82219372469PubMedGoogle ScholarCrossref
Kung HF, Choi SR, Qu W,  et al.  18F Stilbenes and styrylpyridines for PET imaging of a beta plaques in Alzheimer's disease.  J Med Chem. 2010;53(3):933-94119845387PubMedGoogle ScholarCrossref
Rowe CC, Ackerman U, Browne W,  et al.  Imaging of amyloid beta in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer.  Lancet Neurol. 2008;7(2):129-13518191617PubMedGoogle ScholarCrossref
Small GW, Kepe V, Ercoli LM,  et al.  PET of brain amyloid and tau in mild cognitive impairment.  N Engl J Med. 2006;355(25):2652-266317182990PubMedGoogle ScholarCrossref
Jagust WJ, Bandy D, Chen K,  et al.  The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core.  Alzheimers Dement. 2010;6(3):221-22920451870PubMedGoogle ScholarCrossref
Lin KJ, Hsu WC, Hsiao IT,  et al.  Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent.  Nucl Med Biol. 2010;37(4):497-50820447562PubMedGoogle ScholarCrossref
Wong DF, Rosenberg PB, Zhou Y,  et al.  In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18).  J Nucl Med. 2010;51(6):913-92020501908PubMedGoogle ScholarCrossref
Braak H, Braak E. Evolution of the neuropathology of Alzheimer's disease.  Acta Neurol Scand Suppl. 1996;165:3-128740983PubMedGoogle ScholarCrossref
Mirra SS, Heyman A, McKeel D,  et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD).  Neurology. 1991;41(4):479-4862011243PubMedGoogle ScholarCrossref
Hulette CM, Welsh-Bohmer KA, Murray MG,  et al.  Neuropathological and neuropsychological changes in “normal” aging.  J Neuropathol Exp Neurol. 1998;57(12):1168-11749862640PubMedGoogle ScholarCrossref
Jack CR Jr, Knopman DS, Jagust WJ,  et al.  Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade.  Lancet Neurol. 2010;9(1):119-12820083042PubMedGoogle ScholarCrossref
Morris JC, Price AL. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer's disease.  J Mol Neurosci. 2001;17(2):101-11811816784PubMedGoogle ScholarCrossref
Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease.  Ann Neurol. 1999;45(3):358-36810072051PubMedGoogle ScholarCrossref
Rowe CC, Ellis KA, Rimajova M,  et al.  Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging.  Neurobiol Aging. 2010;31(8):1275-128320472326PubMedGoogle ScholarCrossref
Bourgeat P, Chételat G, Villemagne VL,  et al.  Beta-amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia.  Neurology. 2010;74(2):121-12720065247PubMedGoogle ScholarCrossref
Morris JC, Roe CM, Grant EA,  et al.  Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease.  Arch Neurol. 2009;66(12):1469-147520008650PubMedGoogle ScholarCrossref
Villemagne VL, Pike KE, Darby D,  et al.  A beta deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer's disease.  Neuropsychologia. 2008;46(6):1688-169718343463PubMedGoogle ScholarCrossref
Resnick SM, Sojkova J, Zhou Y,  et al.  Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB.  Neurology. 2010;74(10):807-81520147655PubMedGoogle ScholarCrossref
Fagan AM, Roe CM, Xiong C,  et al.  Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults.  Arch Neurol. 2007;64(3):343-34917210801PubMedGoogle ScholarCrossref
Dubois B, Feldman HH, Jacova C,  et al.  Research criteria for the diagnosis of Alzheimer's disease.  Lancet Neurol. 2007;6(8):734-74617616482PubMedGoogle ScholarCrossref
Bennett DA, Schneider JA, Arvanitakis Z,  et al.  Neuropathology of older persons without cognitive impairment from two community-based studies.  Neurology. 2006;66(12):1837-184416801647PubMedGoogle ScholarCrossref
Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment.  Ann Neurol. 2009;66(2):200-20819743450PubMedGoogle ScholarCrossref
Storandt M, Mintun MA, Head D, Morris JC. Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B.  Arch Neurol. 2009;66(12):1476-148120008651PubMedGoogle ScholarCrossref
Fagan AM, Mintun MA, Mach RH,  et al.  Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid A beta 42 in humans.  Ann Neurol. 2006;59(3):512-51916372280PubMedGoogle ScholarCrossref
Preliminary Communication
January 19, 2011

Use of Florbetapir-PET for Imaging β-Amyloid Pathology

Author Affiliations

Author Affiliations: Avid Radiopharmaceuticals, Philadelphia, Pennsylvania (Drs Clark, Mintun, Pontecorvo, Hefti, Carpenter, and Skovronsky and Messrs Flitter and Krautkramer); School of Medicine, University of Pennsylvania, Philadelphia (Drs Clark, Bilker, Kung, and Skovronsky); Rush University Medical Center, Chicago, Illinois (Dr Schneider); Biospective Inc, Montreal, Quebec, Canada (Drs Bedell and Zehntner); Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada (Dr Bedell); Banner Sun Health Research Institute, Phoenix, Arizona (Drs Beach and Sabbagh); School of Medicine, Washington University, St Louis, Missouri (Dr Mintun); Duke University Medical Center, Durham, North Carolina (Drs Coleman and Doraiswamy); Banner Alzheimer's Institute, Phoenix, Arizona (Drs Fleisher and Reiman); Department of Neurosciences, University of California, San Diego (Dr Fleisher); Department of Medicine, Division of Neurology, Nova SE University, Ft Lauderdale, Florida (Dr Sadowsky); Arizona Alzheimer's Consortium, Phoenix (Dr Reiman); and Department of Psychiatry, College of Medicine, University of Arizona, Phoenix (Dr Reiman).

JAMA. 2011;305(3):275-283. doi:10.1001/jama.2010.2008

Context The ability to identify and quantify brain β-amyloid could increase the accuracy of a clinical diagnosis of Alzheimer disease.

Objective To determine if florbetapir F 18 positron emission tomographic (PET) imaging performed during life accurately predicts the presence of β-amyloid in the brain at autopsy.

Design, Setting, and Participants Prospective clinical evaluation conducted February 2009 through March 2010 of florbetapir-PET imaging performed on 35 patients from hospice, long-term care, and community health care facilities near the end of their lives (6 patients to establish the protocol and 29 to validate) compared with immunohistochemistry and silver stain measures of brain β-amyloid after their death used as the reference standard. PET images were also obtained in 74 young individuals (18-50 years) presumed free of brain amyloid to better understand the frequency of a false-positive interpretation of a florbetapir-PET image.

Main Outcome Measures Correlation of florbetapir-PET image interpretation (based on the median of 3 nuclear medicine physicians' ratings) and semiautomated quantification of cortical retention with postmortem β-amyloid burden, neuritic amyloid plaque density, and neuropathological diagnosis of Alzheimer disease in the first 35 participants autopsied (out of 152 individuals enrolled in the PET pathological correlation study).

Results Florbetapir-PET imaging was performed a mean of 99 days (range, 1-377 days) before death for the 29 individuals in the primary analysis cohort. Fifteen of the 29 individuals (51.7%) met pathological criteria for Alzheimer disease. Both visual interpretation of the florbetapir-PET images and mean quantitative estimates of cortical uptake were correlated with presence and quantity of β-amyloid pathology at autopsy as measured by immunohistochemistry (Bonferroni ρ, 0.78 [95% confidence interval, 0.58-0.89]; P <.001]) and silver stain neuritic plaque score (Bonferroni ρ, 0.71 [95% confidence interval, 0.47-0.86]; P <.001). Florbetapir-PET images and postmortem results rated as positive or negative for β-amyloid agreed in 96% of the 29 individuals in the primary analysis cohort. The florbetapir-PET image was rated as amyloid negative in the 74 younger individuals in the nonautopsy cohort.

Conclusions Florbetapir-PET imaging was correlated with the presence and density of β-amyloid. These data provide evidence that a molecular imaging procedure can identify β-amyloid pathology in the brains of individuals during life. Additional studies are required to understand the appropriate use of florbetapir-PET imaging in the clinical diagnosis of Alzheimer disease and for the prediction of progression to dementia.