Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism | Medical Devices and Equipment | JAMA | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Dubey RB, Hanmandlu M, Gupta SK. Risk of brain tumors from wireless phone use.  J Comput Assist Tomogr. 2010;34(6):799-80721084892PubMedGoogle ScholarCrossref
Schönborn F, Burkhardt M, Kuster N. Differences in energy absorption between heads of adults and children in the near field of sources.  Health Phys. 1998;74(2):160-1689450585PubMedGoogle ScholarCrossref
Kleinlogel H, Dierks T, Koenig T, Lehmann H, Minder A, Berz R. Effects of weak mobile phone–electromagnetic fields (GSM, UMTS) on event related potentials and cognitive functions.  Bioelectromagnetics. 2008;29(6):488-49718421712PubMedGoogle ScholarCrossref
Hyland GJ. Physics and biology of mobile telephony.  Lancet. 2000;356(9244):1833-183611117927PubMedGoogle ScholarCrossref
Wainwright P. Thermal effects of radiation from cellular telephones.  Phys Med Biol. 2000;45(8):2363-237210958200PubMedGoogle ScholarCrossref
van Rongen E, Croft R, Juutilainen J,  et al.  Effects of radiofrequency electromagnetic fields on the human nervous system.  J Toxicol Environ Health B Crit Rev. 2009;12(8):572-59720183535PubMedGoogle ScholarCrossref
Huber R, Treyer V, Borbély AA,  et al.  Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG.  J Sleep Res. 2002;11(4):289-29512464096PubMedGoogle ScholarCrossref
Huber R, Treyer V, Schuderer J,  et al.  Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow.  Eur J Neurosci. 2005;21(4):1000-100615787706PubMedGoogle ScholarCrossref
Haarala C, Aalto S, Hautzel H,  et al.  Effects of a 902 MHz mobile phone on cerebral blood flow in humans.  Neuroreport. 2003;14(16):2019-202314600490PubMedGoogle ScholarCrossref
Aalto S, Haarala C, Bruck A,  et al.  Mobile phone affects cerebral blood flow in humans.  J Cereb Blood Flow Metab. 2006;26(7):885-89016495939PubMedGoogle ScholarCrossref
Mizuno Y, Moriguchi Y, Hikage T,  et al.  Effects of W-CDMA 1950 MHz EMF emitted by mobile phones on regional cerebral blood flow in humans.  Bioelectromagnetics. 2009;30(7):536-54419475648PubMedGoogle ScholarCrossref
Sirotin YB, Das A. Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity.  Nature. 2009;457(7228):475-47919158795PubMedGoogle ScholarCrossref
Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity.  Science. 1988;241(4864):462-4643260686PubMedGoogle ScholarCrossref
Devor A, Hillman EM, Tian P,  et al.  Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex.  J Neurosci. 2008;28(53):14347-1435719118167PubMedGoogle ScholarCrossref
Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature.  Nat Neurosci. 2007;10(11):1369-137617965657PubMedGoogle ScholarCrossref
Sokoloff L, Reivich M, Kennedy C,  et al.  The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization.  J Neurochem. 1977;28(5):897-916864466PubMedGoogle ScholarCrossref
Wang G-J, Volkow ND, Roque CT,  et al.  Functional importance of ventricular enlargement and cortical atrophy in healthy subjects and alcoholics as assessed with PET, MR imaging, and neuropsychologic testing.  Radiology. 1993;186(1):59-658416587PubMedGoogle Scholar
Friston KJ, Holmes AP, Worsley KJ,  et al.  Statistical parametric maps in functional imaging.  Hum Brain Mapp. 1995;2:189-210Google ScholarCrossref
Volkow ND, Tomasi D, Wang GJ,  et al.  Effects of low-field magnetic stimulation on brain glucose metabolism.  Neuroimage. 2010;51(2):623-62820156571PubMedGoogle ScholarCrossref
Ferreri F, Curcio G, Pasqualetti P,  et al.  Mobile phone emissions and human brain excitability.  Ann Neurol. 2006;60(2):188-19616802289PubMedGoogle ScholarCrossref
Cardis E, Deltour I, Mann S,  et al.  Distribution of RF energy emitted by mobile phones in anatomical structures of the brain.  Phys Med Biol. 2008;53(11):2771-278318451464PubMedGoogle ScholarCrossref
Cotgreave IA. Biological stress responses to radio frequency electromagnetic radiation.  Arch Biochem Biophys. 2005;435(1):227-24015680925PubMedGoogle ScholarCrossref
Nittby H, Grafström G, Eberhardt JL,  et al.  Radiofrequency and extremely low-frequency electromagnetic field effects on the blood-brain barrier.  Electromagn Biol Med. 2008;27(2):103-12618568929PubMedGoogle ScholarCrossref
Söderqvist F, Carlberg M, Hansson Mild K, Hardell L. Exposure to an 890-MHz mobile phone-like signal and serum levels of S100B and transthyretin in volunteers.  Toxicol Lett. 2009;189(1):63-6619427372PubMedGoogle ScholarCrossref
Siebner HR, Peller M, Bartenstein P,  et al.  Activation of frontal premotor areas during suprathreshold transcranial magnetic stimulation of the left primary sensorimotor cortex: a glucose metabolic PET study.  Hum Brain Mapp. 2001;12(3):157-16711170307PubMedGoogle ScholarCrossref
Vlassenko AG, Rundle MM, Mintun MA. Human brain glucose metabolism may evolve during activation.  Neuroimage. 2006;33(4):1036-104117035047PubMedGoogle ScholarCrossref
Vaishnavi SN, Vlassenko AG, Rundle MM,  et al.  Regional aerobic glycolysis in the human brain.  Proc Natl Acad Sci U S A. 2010;107(41):17757-1776220837536PubMedGoogle ScholarCrossref
Sanganahalli BG, Herman P, Hyder F. Frequency-dependent tactile responses in rat brain measured by functional MRI.  NMR Biomed. 2008;21(4):410-41618435491PubMedGoogle ScholarCrossref
Blomqvist G, Seitz RJ, Sjögren I,  et al.  Regional cerebral oxidative and total glucose consumption during rest and activation studied with positron emission tomography.  Acta Physiol Scand. 1994;151(1):29-438048334PubMedGoogle ScholarCrossref
Yakymenko I, Sidorik E. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices.  Exp Oncol. 2010;32(2):54-6020693976PubMedGoogle Scholar
Lehrer S, Green S, Stock RG. Association between number of cell phone contracts and brain tumor incidence in nineteen U.S. States.  J Neurooncol. 2011;101(3):505-50720589524PubMedGoogle ScholarCrossref
Hardell L, Carlberg M. Mobile phones, cordless phones and the risk for brain tumours.  Int J Oncol. 2009;35(1):5-1719513546PubMedGoogle ScholarCrossref
Myung SK, Ju W, McDonnell DD,  et al.  Mobile phone use and risk of tumors: a meta-analysis.  J Clin Oncol. 2009;27(33):5565-557219826127PubMedGoogle ScholarCrossref
Inskip PD, Tarone RE, Hatch EE,  et al.  Cellular-telephone use and brain tumors.  N Engl J Med. 2001;344(2):79-8611150357PubMedGoogle ScholarCrossref
INTERPHONE Study Group.  Brain tumour risk in relation to mobile telephone use.  Int J Epidemiol. 2010;39(3):675-69420483835PubMedGoogle ScholarCrossref
Inskip PD, Hoover RN, Devesa SS. Brain cancer incidence trends in relation to cellular telephone use in the United States.  Neuro Oncol. 2010;12(11):1147-115120639214PubMedGoogle ScholarCrossref
Preliminary Communication
February 23, 2011

Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism

Author Affiliations

Author Affiliations: National Institute on Drug Abuse, Bethesda, Maryland (Dr Volkow); National Institute on Alcohol Abuse and Alcoholism, Bethesda (Drs Volkow, Tomasi, and Telang and Mr Wong); and Medical Department, Brookhaven National Laboratory, Upton, New York (Drs Wang, Vaska, Fowler, and Logan and Mr Alexoff).

JAMA. 2011;305(8):808-813. doi:10.1001/jama.2011.186

Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear.

Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity.

Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P < .05 (corrected for multiple comparisons) were considered significant.

Main Outcome Measure Brain glucose metabolism computed as absolute metabolism (μmol/100 g per minute) and as normalized metabolism (region/whole brain).

Results Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 μmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001).

Conclusions In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.