Direct Oral Anticoagulants in Addition to Antiplatelet Therapy for Secondary Prevention After Acute Coronary Syndromes: A Systematic Review and Meta-analysis | Acute Coronary Syndromes | JAMA Cardiology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Yeh  RW, Sidney  S, Chandra  M, Sorel  M, Selby  JV, Go  AS.  Population trends in the incidence and outcomes of acute myocardial infarction.  N Engl J Med. 2010;362(23):2155-2165.PubMedGoogle ScholarCrossref
2.
Mensah  GA, Wei  GS, Sorlie  PD,  et al.  Decline in cardiovascular mortality: possible causes and implications.  Circ Res. 2017;120(2):366-380.PubMedGoogle ScholarCrossref
3.
Ibanez  B, James  S, Agewall  S,  et al; ESC Scientific Document Group.  2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC).  Eur Heart J. 2017;2:2017.PubMedGoogle Scholar
4.
Roffi  M, Patrono  C, Collet  J-P,  et al; Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology.  2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC).  Eur Heart J. 2016;37(3):267-315.PubMedGoogle ScholarCrossref
5.
Steg  PG, James  SK, Atar  D,  et al; Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC).  ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation.  Eur Heart J. 2012;33(20):2569-2619. doi:10.1093/eurheartj/ehs215PubMedGoogle ScholarCrossref
6.
Amsterdam  EA, Wenger  NK, Brindis  RG,  et al; ACC/AHA Task Force Members.  2014 AHA/ACC guideline for the management of patients with non–ST-segment elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.  Circulation. 2014;130(25):e344-e426.PubMedGoogle ScholarCrossref
7.
Fihn  SD, Gardin  JM, Abrams  J,  et al; American College of Cardiology Foundation/American Heart Association Task Force.  2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons.  Circulation. 2012;126(25):e354-e471.PubMedGoogle ScholarCrossref
8.
Rothberg  MB, Celestin  C, Fiore  LD, Lawler  E, Cook  JR.  Warfarin plus aspirin after myocardial infarction or the acute coronary syndrome: meta-analysis with estimates of risk and benefit.  Ann Intern Med. 2005;143(4):241-250.PubMedGoogle ScholarCrossref
9.
Testa  L, Zoccai  GB, Porto  I,  et al.  Adjusted indirect meta-analysis of aspirin plus warfarin at international normalized ratios 2 to 3 versus aspirin plus clopidogrel after acute coronary syndromes.  Am J Cardiol. 2007;99(12):1637-1642.PubMedGoogle ScholarCrossref
10.
Oldgren  J, Wallentin  L, Alexander  JH,  et al.  New oral anticoagulants in addition to single or dual antiplatelet therapy after an acute coronary syndrome: a systematic review and meta-analysis.  Eur Heart J. 2013;34(22):1670-1680.PubMedGoogle ScholarCrossref
11.
Komócsi  A, Vorobcsuk  A, Kehl  D, Aradi  D.  Use of new-generation oral anticoagulant agents in patients receiving antiplatelet therapy after an acute coronary syndrome: systematic review and meta-analysis of randomized controlled trials.  Arch Intern Med. 2012;172(20):1537-1545.PubMedGoogle ScholarCrossref
12.
Ogawa  H, Goto  S, Matsuzaki  M, Hiro  S, Shima  D; APPRAISE-J Investigators.  Randomized, double-blind trial to evaluate the safety of apixaban with antiplatelet therapy after acute coronary syndrome in Japanese patients (APPRAISE-J).  Circ J. 2013;77(9):2341-2348.PubMedGoogle ScholarCrossref
13.
Alexander  JH, Becker  RC, Bhatt  DL,  et al; APPRAISE Steering Committee and Investigators.  Apixaban, an oral, direct, selective factor Xa inhibitor, in combination with antiplatelet therapy after acute coronary syndrome: results of the Apixaban for Prevention of Acute Ischemic and Safety Events (APPRAISE) trial.  Circulation. 2009;119(22):2877-2885.PubMedGoogle ScholarCrossref
14.
Alexander  JH, Lopes  RD, James  S,  et al; APPRAISE-2 Investigators.  Apixaban with antiplatelet therapy after acute coronary syndrome.  N Engl J Med. 2011;365(8):699-708.PubMedGoogle ScholarCrossref
15.
Mega  JL, Braunwald  E, Mohanavelu  S,  et al; ATLAS ACS-TIMI 46 Study Group.  Rivaroxaban versus placebo in patients with acute coronary syndromes (ATLAS ACS-TIMI 46): a randomised, double-blind, phase II trial.  Lancet. 2009;374(9683):29-38.PubMedGoogle ScholarCrossref
16.
Mega  JL, Braunwald  E, Wiviott  SD,  et al; ATLAS ACS 2–TIMI 51 Investigators.  Rivaroxaban in patients with a recent acute coronary syndrome.  N Engl J Med. 2012;366(1):9-19.PubMedGoogle ScholarCrossref
17.
Steg  PG, Mehta  SR, Jukema  JW,  et al; RUBY-1 Investigators.  RUBY-1: a randomized, double-blind, placebo-controlled trial of the safety and tolerability of the novel oral factor Xa inhibitor darexaban (YM150) following acute coronary syndrome.  Eur Heart J. 2011;32(20):2541-2554.PubMedGoogle ScholarCrossref
18.
Oldgren  J, Budaj  A, Granger  CB,  et al; RE-DEEM Investigators.  Dabigatran vs. placebo in patients with acute coronary syndromes on dual antiplatelet therapy: a randomized, double-blind, phase II trial.  Eur Heart J. 2011;32(22):2781-2789.PubMedGoogle ScholarCrossref
19.
Liberati  A, Altman  DG, Tetzlaff  J,  et al.  The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration.  BMJ. 2009;339:b2700.PubMedGoogle ScholarCrossref
20.
Higgins  JPT, Sterne  JAC, Savović  J,  et al.  A revised tool for assessing risk of bias in randomized trials.  Cochrane Database Syst Rev. 2016;10(suppl 1):29-31. doi:10.1002/14651858.CD201601Google Scholar
21.
Steinberg  BA, Shrader  P, Thomas  L,  et al; ORBIT-AF Investigators and Patients.  Off-label dosing of non-vitamin K antagonist oral anticoagulants and adverse outcomes: the ORBIT-AF II registry.  J Am Coll Cardiol. 2016;68(24):2597-2604.PubMedGoogle ScholarCrossref
22.
Borenstein  M, Hedges  LV, Higgins  JPT, Rothstein  HR. Fixed-effect versus random-effects models. https://www.meta-analysis.com/downloads/Meta-analysis%20Fixed-effect%20vs%20Random-effects%20models.pdf. Accessed August 8, 2017.
23.
Higgins  JPT, Thompson  SG, Deeks  JJ, Altman  DG.  Measuring inconsistency in meta-analyses.  BMJ. 2003;327(7414):557-560.PubMedGoogle ScholarCrossref
24.
Sterne  JA, Egger  M, Smith  GD.  Systematic reviews in health care: investigating and dealing with publication and other biases in meta-analysis.  BMJ. 2001;323(7304):101-105.PubMedGoogle ScholarCrossref
25.
Baker  WL, White  CM, Cappelleri  JC, Kluger  J, Coleman  CI; Health Outcomes, Policy, and Economics (HOPE) Collaborative Group.  Understanding heterogeneity in meta-analysis: the role of meta-regression.  Int J Clin Pract. 2009;63(10):1426-1434.PubMedGoogle ScholarCrossref
26.
Higgins  J, Green  S. Sensitivity analysis. http://handbook-5-1.cochrane.org/. Accessed December 8, 2017.
27.
Puymirat  E, Simon  T, Steg  PG,  et al; USIK USIC 2000 Investigators; FAST MI Investigators.  Association of changes in clinical characteristics and management with improvement in survival among patients with ST-segment elevation myocardial infarction.  JAMA. 2012;308(10):998-1006.PubMedGoogle ScholarCrossref
28.
Townsend  N, Wilson  L, Bhatnagar  P, Wickramasinghe  K, Rayner  M, Nichols  M.  Cardiovascular disease in Europe: epidemiological update 2016.  Eur Heart J. 2016;37(42):3232-3245.PubMedGoogle ScholarCrossref
29.
Hartley  A, Marshall  DC, Salciccioli  JD, Sikkel  MB, Maruthappu  M, Shalhoub  J.  Trends in mortality from ischemic heart disease and cerebrovascular disease in Europe: 1980-2009.  Circulation. 2016;133(20):1916-1926.PubMedGoogle ScholarCrossref
30.
Wallentin  L, Becker  RC, Budaj  A,  et al; PLATO Investigators.  Ticagrelor versus clopidogrel in patients with acute coronary syndromes.  N Engl J Med. 2009;361(11):1045-1057.PubMedGoogle ScholarCrossref
31.
Wiviott  SD, Braunwald  E, McCabe  CH,  et al; TRITON-TIMI 38 Investigators.  Prasugrel versus clopidogrel in patients with acute coronary syndromes.  N Engl J Med. 2007;357(20):2001-2015.PubMedGoogle ScholarCrossref
32.
Morrow  DA, Braunwald  E, Bonaca  MP,  et al; TRA 2P–TIMI 50 Steering Committee and Investigators.  Vorapaxar in the secondary prevention of atherothrombotic events.  N Engl J Med. 2012;366(15):1404-1413.PubMedGoogle ScholarCrossref
33.
Tricoci  P, Huang  Z, Held  C,  et al; TRACER Investigators.  Thrombin-receptor antagonist vorapaxar in acute coronary syndromes.  N Engl J Med. 2012;366(1):20-33.PubMedGoogle ScholarCrossref
34.
Ohman  EM, Roe  MT, Steg  PG,  et al.  Clinically significant bleeding with low-dose rivaroxaban versus aspirin, in addition to P2Y12 inhibition, in acute coronary syndromes (GEMINI-ACS-1): a double-blind, multicentre, randomised trial.  Lancet. 2017;389(10081):1799-1808.PubMedGoogle ScholarCrossref
35.
Connolly  SJ, Eikelboom  JW, Bosch  J,  et al; COMPASS Investigators.  Rivaroxaban with or without aspirin in patients with stable coronary artery disease: an international, randomised, double-blind, placebo-controlled trial [published online November 10, 2017].  Lancet. doi:10.1016/S0140-6736(17)32458-3Google Scholar
36.
Eikelboom  JW, Connolly  SJ, Bosch  J,  et al; COMPASS Investigators.  Rivaroxaban with or without aspirin in stable cardiovascular disease.  N Engl J Med. 2017;377(14):1319-1330.PubMedGoogle ScholarCrossref
37.
Angiolillo  DJ, Capodanno  D, Goto  S.  Platelet thrombin receptor antagonism and atherothrombosis.  Eur Heart J. 2010;31(1):17-28.PubMedGoogle ScholarCrossref
38.
Brass  LF.  Thrombin and platelet activation.  Chest. 2003;124(3)(suppl):18S-25S.PubMedGoogle ScholarCrossref
39.
Szczeklik  A, Dropinski  J, Radwan  J, Krzanowski  M.  Persistent generation of thrombin after acute myocardial infarction.  Arterioscler Thromb. 1992;12(5):548-553.PubMedGoogle ScholarCrossref
40.
Merlini  PA, Ardissino  D, Rosenberg  RD,  et al.  In vivo thrombin generation and activity during and after intravenous infusion of heparin or recombinant hirudin in patients with unstable angina pectoris.  Arterioscler Thromb Vasc Biol. 2000;20(9):2162-2166.PubMedGoogle ScholarCrossref
41.
Loeffen  R, van Oerle  R, Leers  MPG,  et al.  Factor XIa and thrombin generation are elevated in patients with acute coronary syndrome and predict recurrent cardiovascular events.  PLoS One. 2016;11(7):e0158355.PubMedGoogle ScholarCrossref
42.
De Caterina  R, Husted  S, Wallentin  L,  et al.  Oral anticoagulants in coronary heart disease (Section IV).  Thromb Haemost. 2016;115(4):685-711.PubMedGoogle ScholarCrossref
43.
Eikelboom  JW, Mehta  SR, Anand  SS, Xie  C, Fox  KAA, Yusuf  S.  Adverse impact of bleeding on prognosis in patients with acute coronary syndromes.  Circulation. 2006;114(8):774-782.PubMedGoogle ScholarCrossref
44.
Mehran  R, Pocock  S, Nikolsky  E,  et al.  Impact of bleeding on mortality after percutaneous coronary intervention results from a patient-level pooled analysis of the REPLACE-2 (randomized evaluation of PCI linking angiomax to reduced clinical events), ACUITY (acute catheterization and urgent intervention triage strategy), and HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trials.  JACC Cardiovasc Interv. 2011;4(6):654-664.PubMedGoogle ScholarCrossref
45.
Rao  SV, O’Grady  K, Pieper  KS,  et al.  Impact of bleeding severity on clinical outcomes among patients with acute coronary syndromes.  Am J Cardiol. 2005;96(9):1200-1206.PubMedGoogle ScholarCrossref
46.
Ndrepepa  G, Berger  PB, Mehilli  J,  et al.  Periprocedural bleeding and 1-year outcome after percutaneous coronary interventions: appropriateness of including bleeding as a component of a quadruple end point.  J Am Coll Cardiol. 2008;51(7):690-697.PubMedGoogle ScholarCrossref
47.
Giugliano  RP, Giraldez  RR, Morrow  DA,  et al.  Relations between bleeding and outcomes in patients with ST-segment elevation myocardial infarction in the ExTRACT-TIMI 25 trial.  Eur Heart J. 2010;31(17):2103-2110.PubMedGoogle ScholarCrossref
Original Investigation
March 2018

Direct Oral Anticoagulants in Addition to Antiplatelet Therapy for Secondary Prevention After Acute Coronary Syndromes: A Systematic Review and Meta-analysis

Author Affiliations
  • 1Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
  • 2Cardio Center, Humanitas Research Hospital, Rozzano-Milan, Italy
  • 3Interventional Cardiology Unit, San Raffaele Hospital, Milan, Italy
  • 4Duke Clinical Research Institute, Duke Health, Durham, North Carolina
JAMA Cardiol. 2018;3(3):234-241. doi:10.1001/jamacardio.2017.5306
Key Points

Question  Do direct oral anticoagulants (DOAC) in addition to antiplatelet therapy (APT) safely reduce ischemic events after acute coronary syndromes (ACS), and are there differences according to ACS type?

Findings  In this systematic review and meta-analysis of 6 trials comprising 29 667 patients, direct oral anticoagulants with APT was associated with a reduced risk of ischemic events at the cost of an increase in major bleedings compared with APT alone. Direct oral anticoagulants was associated with a reduction in ischemic events after ST-segment elevation myocardial infarction with no effects after non–ST-segment elevation ACS, while the increased risk of major bleeding was consistent after ST-segment elevation myocardial infarction and non–ST-segment elevation ACS.

Meaning  The risk-benefit profile of direct oral anticoagulants in addition to APT appears to differ by ACS type; direct oral anticoagulants might represent an attractive strategy in patients with ST-segment elevation myocardial infarction.

Abstract

Importance  Patients with acute coronary syndrome (ACS) remain at high risk for experiencing recurrent ischemic events. Direct oral anticoagulants (DOAC) have been proposed for secondary prevention after ACS.

Objective  To evaluate the safety and efficacy of DOAC in addition to antiplatelet therapy (APT) after ACS, focusing on treatment effects stratified by baseline clinical presentation (non–ST-segment elevation ACS [NSTE-ACS] vs ST-segment elevation myocardial infarction [STEMI]).

Data Sources  PubMed, Embase, BioMedCentral, Google Scholar, and the Cochrane Central Register of Controlled Trials were searched from inception to March 1, 2017.

Study Selection  Randomized clinical trials on DOAC after ACS were evaluated for inclusion. Overall, 473 studies were screened, 19 clinical trials were assessed as potentially eligible, and 6 were included in the meta-analysis.

Data Extraction and Synthesis  Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were used to abstract data and assess quality and validity. The risk of bias tool, version 2.0 (Cochrane) was used for risk of bias assessment. Data were pooled using random-effects models.

Main Outcomes and Measures  The prespecified primary efficacy end point was the composite of cardiovascular death, myocardial infarction, and stroke. The prespecified primary safety end point was major bleeding.

Results  Six trials that included 29 667 patients were identified (14 580 patients [49.1%] with STEMI and 15 036 [50.7%] with NSTE-ACS). The primary efficacy end point risk was significantly lower in patients who were treated with DOAC as compared with APT alone (odds ratio [OR], 0.85; 95% CI, 0.77-0.93; P < .001). This benefit was pronounced in patients with STEMI (OR, 0.76; 95% CI, 0.66-0.88; P < .001), while no significant treatment effect was observed in patients with NSTE-ACS (OR, 0.92; 95% CI, 0.78-1.09; P = .36; P for interaction = .09). With respect to safety, DOACs were associated with a higher risk of major bleeding as compared with APT alone (OR, 3.17; 95% CI, 2.27-4.42; P < .001), with consistent results in patients with STEMI (OR, 3.45; 95% CI, 1.95-6.09; P < .001) and NSTE-ACS (OR, 2.19; 95% CI, 1.38-3.48; P < .001; P for interaction = .23).

Conclusions and Relevance  To our knowledge, these findings are the first evidence to support differential treatment effects of DOAC in addition to APT according to ACS baseline clinical presentation. In patients with NSTE-ACS, the risk-benefit profile of DOAC appears unfavorable. Conversely, DOAC in addition to APT might represent an attractive option for patients with STEMI.

×