Coronavirus Disease 2019 (COVID-19) Infection and Renin Angiotensin System Blockers

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already surpassed the combined mortality inflicted by the severe acute respiratory syndrome (SARS) epidemic of 2002 and 2003 and the Middle East respiratory syndrome (MERS) epidemic of 2013. The pandemic is spreading at an exponential rate, with millions of people across the globe at risk of contracting SARS-CoV-2. Initial reports suggest that hypertension, diabetes, and cardiovascular diseases were the most frequent comorbidities in affected patients, and case fatality rates tended to be high in these individuals. In the largest Chinese study to date,1 which included 44,672 confirmed cases, preexisting comorbidities that had high mortality rates included cardiovascular disease (10.5%), diabetes (7.3%), and hypertension (6.0%). Patients with such comorbidities are commonly treated with renin angiotensin system blockers, such as angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs). However, the use of ACEIs/ARBs in patients with COVID-19 or at risk of COVID-19 infection is currently a subject of intense debate. Below, we outline the mechanisms by which ACEIs/ARBs may be of benefit in those with COVID-19, what the current recommendations are for their use in infected patients, and suggested areas for further research.

SARS-CoV-2 uses the angiotensin-converting enzyme (ACE) 2 receptor for entry into target cells. ACE2 is predominantly expressed by epithelial cells of the lung, intestine, kidney, heart, and blood vessels. Both ACE and ACE2 belong to the ACE family of dipeptidyl carboxyaminopeptidases and exert distinct physiological functions. ACE cleaves angiotensin I to angiotensin II, which in turn binds and activates angiotensin II receptor type 1. This activation leads to vasoconstrictive, proinflammatory, and pro-oxidative effects. In contrast, ACE2 also degrades angiotensin II to angiotensin 1-7 and angiotensin I to angiotensin 1-9. When angiotensin 1-9 binds to the Mas receptor, it leads to anti-inflammatory, antioxidant, and vasodilatory effects. It is important to note that 2 forms of ACE2 exist: a structural transmembrane protein with extracellular domain that serves as a receptor for spike protein of SARS-CoV-2 and a soluble form that represents the circulating ACE2. Understanding the relationship between SARS-CoV-2 and membranous and soluble ACE2 may help us better understand the adaptive or maladaptive processes operative in COVID-19 infection.

Animal (mice) studies have shown that expression of ACE2 is substantially increased in patients treated with ACEIs/ARBs.2 Similar to these observations, higher urinary ACE2 levels were seen in patients with hypertension treated with the ARB olmesartan. In another study,4 circulating ACE2 levels were increased in patients with diabetes treated with ACEIs. Based on these observations, some experts have speculated that use of ACEIs/ARBs leading to increased expression of ACE2 could potentially facilitate infection with COVID-19.

A recent study by Liu et al5 showed that serum angiotensin II levels in patients with COVID-19 pneumonia was significantly higher compared with healthy individuals and were linearly associated with viral load and lung injury. Based on this, it can be postulated that SARS-CoV-2 binding to ACE2 may attenuate residual ACE2 activity, skewing the ACE/ACE2 balance to a state of heightened angiotensin II activity leading to pulmonary vasoconstriction and inflammatory and oxidative organ damage, which increases the risk for acute lung injury (ALI). Conceivably, renin angiotensin system modulation, either by ACEIs/ARBs or recombinant ACE2, leading to increased expression of ACE2 may help mitigate some of these deleterious effects of angiotensin II. It is also postulated that increased levels of soluble form of ACE2 may act as a competitive inhibitor of SARS-CoV-2 and slow virus entry into the cells and protect from lung injury.6 Presently, to our knowledge, there are no clinical data on the utility of initiating ACEI/ARB therapy in treating patients with COVID-19. There is some evidence that ACEIs/ARBs may be beneficial in patients with ALI or acute respiratory distress syndrome (ARDS). In a meta-analysis of 37 studies,7 ACEIs and ARBs were associated with reduced risk of pneumonia and pneumonia-related mortality compared with control treatment. In a small double-blind, placebo-controlled randomized clinical trial of 61 patients,8 those randomized to receive enalaprilat (up to 10 mg intravenously over 24 hours following a regimen based on blood pressure) had numerically higher ventilator-free days (12.3 vs 8.7 days; $P = .18$) and days alive outside the intensive care unit (8.9 vs 4.9 days; $P = .09$) compared with those randomized to placebo. The trial did not complete its intended sample size owing to slow enrollment. In a retrospective cohort study from Korea with 132 patients with ARDS,9 patients taking ACEIs/ARBs showed better survival compared with controls, albeit several confounding factors could have influenced the results. In a subgroup of patients with severe COVID-19, hyperinflammation and cytokine storm syndrome led to acute respiratory failure from ARDS. What drives such intense hyperinflammation is not yet known; however, through upregulation of ACE2, ACEIs/ARBs can exert antiinflammatory and antioxidative effects, which may be beneficial in preventing ALI and ARDS.10 Based on the pathophysiology of SARS-CoV-2 infection and pleiotro-
Table. Recommendations on the Use of Angiotensin-Converting Enzyme Inhibitors (ACEIs) and Angiotensin Receptor Blockers (ARBs) in Patients With Coronavirus Disease 2019 (COVID-19)

<table>
<thead>
<tr>
<th>Professional society; source</th>
<th>Date of release</th>
<th>Key statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFSA, ACC, and AHA; https://www.acc.org/latest-in-cardiology/articles/2020/03/17/0859/hfsa-acc-aha-statement-addresses-concerns-re-using-raas-antagonists-in-covid-19</td>
<td>March 17, 2020</td>
<td>"The HFSA, ACC, and AHA recommend continuation of RAAS antagonists for those patients who are currently prescribed such agents for indications for which these agents are known to be beneficial, such as heart failure, hypertension, or ischemic heart disease. In the event patients with cardiovascular disease are diagnosed with COVID-19, individualized treatment decisions should be made according to each patient’s hemodynamic status and clinical presentation. Therefore, be advised not to add or remove any RAAS-related treatments, beyond actions based on standard clinical practice.”</td>
</tr>
<tr>
<td>ESC Council on Hypertension; https://www.escardio.org/Councils/Council-on-Hypertension-(CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang II/00032245-2019-Council-on-Hypertension-position-statement-on-covid-19</td>
<td>March 13, 2020</td>
<td>"The Council on Hypertension strongly recommend that physicians and patients should continue treatment with their usual anti-hypertensive therapy because there is no clinical or scientific evidence to suggest that treatment with ACEI or ARBs should be discontinued because of the Covid-19 infection.”</td>
</tr>
</tbody>
</table>
| ESH; https://www.eshonline.org/spotlight/esh-statement-on-covid-19/ | March 12, 2020 | • *In stable patients with COVID-19 infections or at risk for COVID-19 infections, treatment with ACEIs and ARBs should be executed according to the recommendations in the 2018 ESC/ESH guidelines.*
• *The currently available data on COVID-19 infections do not support a differential use of RAAS blockers (ACEi or ARBs) in COVID-19 patients.* |
| Hypertension Canada; https://hypertension.ca/wp-content/uploads/2020/03/2020-30-15-Hypertension-Canada-Statement-on-COVID-19-AEI-ARB.pdf | March 13, 2020 | • *However, there is no evidence that patients with hypertension or those treated with ARB or ACE inhibitor antihypertensive therapy are at higher risk of adverse outcomes from COVID-19 infection.*
• *We endorse patients with hypertension to continue with their current blood pressure treatment.* |
| The Canadian Cardiovascular Society and the Canadian Heart Failure Society; https://www.ccs.ca/images/Images_2020/CSS_CHFS_statement_regarding_COVID_EN.pdf | March 15, 2020 | "The Canadian Cardiovascular Society and the Canadian Heart Failure Society strongly discourage the discontinuation of guideline directed medical therapy (GDMT) involving Angiotensin Converting Enzyme Inhibitors (ACEI), Angiotensin Receptor Blockers (ARB) or Angiotensin Receptor Neprilysin Inhibitors (ARNI) in hypertensive or heart failure patients as a result of the COVID-19 pandemic." |
• *The currently available data on COVID-19 infections do not support a differential use of RAAS blockers (ACEi or ARBs) in COVID-19 patients.* |

Abbreviations: ACC, American College of Cardiology; AHA, American Heart Association; BCS, British Cardiovascular Society; BSH, British Society for Heart Failure; ESC, European Society of Cardiology; ESH, European Society of Hypertension; HFSA, Heart Failure Society of America; RAAS, renin angiotensin aldosterone system.

pic effects of ACEis/ARBs, these agents may have a potential role in the management of select patients with severe COVID-19.

Several professional societies have put forward their guidance regarding the use of ACEis/ARBs in patients with COVID-19. In summary, all guidelines recommend continuing ACEIs/ARBs in patients with COVID-19 unless clinically indicated (Table). Furthermore, they do not suggest initiation of ACEis/ARBs in those without another clinical indication (eg, hypertension, heart failure, diabetes), given the lack of strong evidence showing benefit of these medications in COVID-19. We agree with these recommendations, given the current state of evidence. However, the biological plausibility of salutary effects of ACEIs/ARBs in those with COVID-19 is intriguing. A multicenter, double-blind, placebo-controlled phase 2 randomized clinical trial of starting losartan in patients with COVID-19 in outpatient settings (ClinicalTrials.gov identifier: NCT04311177) and in in-patient settings (ClinicalTrials.gov identifier: NCT04312009) is currently being planned. Accordingly, further epidemiological studies and prospective trials are urgently needed to investigate if use of ACEis/ARBs can reduce the incidence or mortality associated with COVID-19–associated ALI or ARDS, both in patients with and without additional clinical indications for ACEIs/ARBs.

ARTICLE INFORMATION

Conflict of Interest Disclosures: Dr Maddox has received grants from the National Center for Advancing Translational Sciences, consulting fees from Creative Educational Concepts and Athenenum Partners, and honoraria and personal fees from the University of Utah, NewYork-Presbyterian, Westchester Medical Center, Sentara Heart Hospital, Henry Ford Health System, and University of California, San Diego; is the Executive Director of the Healthcare Innovation Lab at BJC HealthCare/ Washington University School of Medicine in St Louis; advises Myia Labs through his institution, which receives equity compensation; and is the director of JF Maddox Foundation. Dr Messerli has received personal fees from Menarini, Medtronic, and Pfizer. No other disclosures were reported.

REFERENCES

The Dilemma of Coronavirus Disease 2019, Aging, and Cardiovascular Disease
Insights From Cardiovascular Aging Science

As we brace for the imminent impact of the coronavirus disease 2019 (COVID-19) pandemic, we are faced with a controversy on how to best minimize the risk of lethal disease among the most vulnerable of us. Preliminary epidemiological data show an uneven-handed impact on the population, with an exponential increase in disease severity and mortality in those beyond the sixth decade of life with cardiovascular disease (CVD) and diabetes. Given that angiotensin-converting enzyme 2 (ACE2), an enzyme coopted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter epithelial cells, is upregulated in patients with CVD and diabetes treated with angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), it was proposed that this increase in ACE2 expression underpins the greater COVID-19 severity in this population. This has created substantial controversy regarding the approach to patients taking ACEIs/ARBs in preparation for the pandemic, with some advocating for discontinuing these medications while expert opinions recommended against discontinuation, given the lack of strong evidence.

To begin to unravel this complex dilemma, we must consider the role of ACE2 not only in COVID-19 pathogenesis but also as a component of renin-angiotensin system (RAS) signaling throughout the body. First, one must recognize the scarcity of data on the topic, particularly in humans. Nonetheless, the urgency of the situation makes it imperitive to use inductive reasoning to guide our next steps toward protecting our patients. It is well established now that while ACE2 is targeted by renin-angiotensin system blockage in patients with diabetes and hypertension treated with ACEIs/ARBs, it was proposed that this increase in ACE2 expression underpins the greater COVID-19 severity in this population. This has created substantial controversy regarding the approach to patients taking ACEIs/ARBs in preparation for the pandemic, with some advocating for discontinuing these medications while expert opinions recommended against discontinuation, given the lack of strong evidence.

What has been missing in discussions of the aforementioned dilemma is the age-associated decline in ACE2 expression, as observed in the lungs of rats, which is in line with a constellation of major inflammatory properties. Exaggerated forms of this proinflammatory profile are also salient pathophysiologic features of hypertension and diabetes, which are highly prevalent at older ages. The upregulation of ACE2 in individuals with diabetes and hypertension treated with ACEIs/ARBs is, in a way, restorative of physiological function. Hence, these observations raise an apparent paradox: given ACE2 itself is the gateway of SARS-CoV-2 entry into cells, how can the reduction in ACE2 levels in older persons and those with CVD predispose for greater COVID-19 severity?

This apparent paradox becomes clear if we distinguish the role of ACE2 as a gateway for SARS-CoV-2 facilitating the infection from its pivotal anti-inflammatory function in RAS signaling that is compromised in individuals with COVID-19, contributing to its severity (Figure). Indeed, data on the severe acute respiratory syndrome epidemic of 2003 demonstrates this divergence in factors predisposing to disease occurrence and its severity; in the former epidemic, although younger individuals in their third and fourth decades of life accounted for most of those infected, the severity was found among predisposed older individuals vs their younger counterparts. ACE2 indicates angiotensin-converting enzyme 2; CVD, cardiovascular disease; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Figure. Schematic of Inflammatory Profile Before and After Coronavirus Disease 2019 (COVID-19) Infection

<table>
<thead>
<tr>
<th>Older patients with CVD</th>
<th>Lower ACE2 levels</th>
<th>Higher angiotensin signaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infected older patients with CVD</td>
<td>Exaggerated low ACE2 levels</td>
<td>Exaggerated angiotensin II signaling</td>
</tr>
<tr>
<td>Likely lower incidence of disease, but higher severity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Younger patients without CVD</th>
<th>Lower ACE2 levels</th>
<th>Lower angiotensin II signaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infected younger patients without CVD</td>
<td>Modestly low ACE2 levels</td>
<td>Modestly elevated angiotensin II signaling</td>
</tr>
<tr>
<td>Likely higher incidence of disease, but lower severity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>