of patients raises concerns about the widespread use of hydroxychloroquine, with or without azithromycin, to treat COVID-19 in settings where patients cannot be adequately monitored.

Francis Bessière, MD, PhD
Hugo Roccia, MD
Antoine Delinière, MD
Rome Charrière, MD
Philippe Chevalier, MD, PhD
Laurent Argaud, MD, PhD
Martin Cour, MD, PhD

Author Affiliations: Hospices Civils de Lyon, Hôpital Cardiologique Louis Pradel, Service d’électrophysiologie et de Stimulation Cardiaque, Université de Lyon, Lyon, France (Bessière, Delinière, Chevalier); Hospices Civils de Lyon, Hôpital Cardiologique Louis Pradel, Centre de Référence National des Troubles du Rythme Cardiaque d’origine Héréditaire, Lyon, France (Bessière, Delinière, Chevalier, Cour); Hospices Civils de Lyon, Hôpital Edouard Herriot, Médecine Intensive - Réanimation, Lyon, France (Roccia, Argaud); Centre Hospitalier de Valence, Service de Maladies Infectieuses, Valence, France (Charrière).

Accepted for Publication: April 14, 2020

Corresponding Author: Martin Cour, MD, PhD, Médecine Intensive-Réanimation, Hôpital Edouard Herriot, 5, Place d’Arsonval, 69437 Lyon Cedex 03, France (martin.cour@chu-lyon.fr).

Author Contributions: Drs Bessière and Cour had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: Bessière, Roccia, Chevalier, Argaud, Cour. Acquisition, analysis, or interpretation of data: Bessière, Roccia, Delinière, Charrière, Chevalier, Cour.

Drafting of the manuscript: Bessière, Roccia, Chevalier, Cour.

Critical revision of the manuscript for important intellectual content: Bessière, Roccia, Delinière, Charrière, Argaud, Cour.

Statistical analysis: Bessière, Cour.

Supervision: Bessière, Delinière, Chevalier, Argaud, Cour.

Conflict of Interest Disclosures: Dr Bessière reports grants and personal fees from Abbott, Boston Scientific, Medtronic, Biosense, and Volta Medical outside the submitted work. Dr Chevalier reports grants from Abbott, Boston Scientific, and Medtronic outside the submitted work. No other disclosures were reported.

Published Online: May 1, 2020. doi:10.1001/jamacardio.2020.1787

Correction: This article was corrected on June 24, 2020, to fix errors in the Conflict of Interest Disclosures.

Additional Contributions: We thank Verena Landel, DRCI, Hospices Civils de Lyon, for her help in manuscript preparation. She was not compensated for her contributions.

COMMENT & RESPONSE

Myocardial Injury in COVID-19—Can We Successfully Target Inflammation?

To the Editor One of the most intriguing issues that rapidly arose in the clinical management of patients with coronavirus disease 2019 (COVID-19) was concurrent myocardial injury with or without corresponding symptoms. Therefore, we read with
great interest the work by Guo et al,1 which presented valuable data regarding the significance of cardiac involvement in patients with COVID-19. Remarkably, in this cohort of 187 patients, those without known underlying cardiovascular disease (CVD) but with myocardial injury had worse outcomes compared with those with underlying CVD but normal troponin levels.1 Furthermore, N-terminal pro–B-type natriuretic peptide kinetics suggested a potentially clinically significant association with cardiac function beyond merely biochemical myocardial injury.1

These findings, combined with the observed positive correlation of troponin level with C-reactive protein level, were interpreted as a potential indication that, among other mechanisms such as hypoxemia, the COVID-19–related inflammatory cascade could affect the myocardium directly. In study by our research group,2 inhibition of inflammation by colchicine was associated with significant cardioprotective effects (evaluated both by total troponin output and magnetic resonance imaging) in the context of acute myocardial infarction. Colchicine effects include inhibition of the NLR family pyrin domain containing 3 (NLRP3) inflammasome, which is presumed to be involved in ischemia-reperfusion injury.2 Interestingly, severe acute respiratory syndrome coronavirus (SARS-CoV) infection has been implicated with NLRP3 inflammasome activation;4 notably, SARS-CoV and SARS-CoV-2 are highly homologous in genome.1 On the basis of this pathophysiological premise and given the negative prognostic significance of COVID-19–related myocardial injury and other inflammation-related complications, we have proposed the use of colchicine in this context and are going to evaluate it in a prospective randomized study (ClinicalTrials.gov identifier: NCT04326790).

Undeniably, in view of the findings of Guo et al,1 the importance of effective myocardial injury prevention will be even greater in the subset of patients with COVID-19 and known CVD, who in this cohort presented with the highest mortality. The issue in question here is whether we will be able to do the obvious—that is, could we use treatments specifically targeting the COVID-19–associated inflammation storm to improve outcomes or even just buy time for our patients? “The true mystery of the world is the visible, not the invisible.”5

Georgios Giannopoulos, MD, PhD
Dimitrios A. Vrachatis, MD, MSc, PhD
Spyridon G. Deftereos, MD, PhD

Author Affiliations: General Hospital of Athens “G.Gennimatas,” Athens, Greece (Giannopoulos); Department of Cardiovascular Medicine, Humanitas Clinical and Research Hospital, Milan, Italy (Vrachatis); Attikon Hospital, 2nd Department of Cardiology, National and Kapodistrian University of Athens Medical School, Athens, Greece (Deftereos).

Correspondence Address: George Giannopoulos, MD, PhD, General Hospital of Athens “G.Gennimatas,” 154 Mesogeion Ave, Athens 11527, Greece (ggiann@med.uoa.gr).

Published Online: July 15, 2020. doi:10.1001/jamacardio.2020.2569

Conflict of Interest Disclosures: Dr Vrachatis is personally supported by a scholarship from Hellenic Society of Cardiology. No other disclosures were reported.

Hence, we speculated that patients with COVID-19 might benefit from treatments specifically targeting the COVID-19-associated inflammation storm. Indeed, in addition to antiviral medications, numerous immune-modulating medications to regulate inflammatory response are currently being investigated in patients with COVID-19. In clinical practice, glucocorticoid is generally used to inhibit severe inflammation in high-risk patients. Besides, chloroquine, which has been used as an antimalarial agent, blocks virus infection by increasing the endosomal pH required for virus/cell fusion and has been demonstrated in vitro to have inhibitory activity in SARS-CoV-2. Yet, for patients with COVID-19 experiencing an inflammation storm, more evidence is needed to verify the effectiveness of glucocorticoid and immunosuppressive therapy. For us, it may be reasonable to triage patients with COVID-19 according to the presence of underlying CVD and evidence of myocardial injury for prioritized treatment and particularly for treatments specifically targeting on inflammation.

Yongzhen Fan, MD
Tao Guo, MD
Zhibing Lu, MD

Author Affiliations: Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.

Corresponding Author: Zhibing Lu, MD, Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 E Lake Rd, Hubei 430071, China (luzhibing222@163.com).

Published Online: July 15, 2020. doi:10.1001/jamacardio.2020.2572

Conflict of Interest Disclosures: None reported.

