Immortal time bias refers to a period of time during follow-up when the outcome (in our case, waitlist mortality) cannot occur. It is true that a candidate has to remain alive or eligible for transplant to receive an initial first-rank offer. However, we assessed risk of waitlist mortality after candidates received their initial first-rank offers, not at the time of listing, and thus immortal time bias does not apply.3 This was done to assess center-level behavior toward offers that are intended for the sickest patients on the waitlist.

Finally, as conveyed by earlier studies showing conflicting outcomes after the new allocation system began in October 2018,1,3,5 we believe it would be premature to determine if the new system had a measurable impact on centers’ organ acceptance behavior and waitlist mortality. The evolving clinical profiles of recipients and use of mechanical circulatory support devices along with an increasing use of hearts donated after circulatory death call for continuous reassessment of the new system. Our imminent goal is to start the conversation around what necessitates public reporting to help standardize organ allocation practices in the US. Acceptance rates may be a starting point as this can provide another objective measure to aid clinicians, patients, and their families who are choosing transplant programs.

Ashley Y. Choi, MHS
Hui-Jie Lee, PhD
Matthew G. Hartwig, MD

Author Affiliations: Duke University School of Medicine, Durham, North Carolina (Choi); Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina (Lee); Department of Surgery, Duke University Medical Center, Durham, North Carolina (Hartwig).

Corresponding Author: Ashley Y. Choi, MHS, Duke University School of Medicine, PO Box 3863, Durham, NC 27710 (choi.ashley@duke.edu).


Conflict of Interest Disclosures: Ms Choi and Dr Lee have received grants from the National Center for Advancing Translational Science. No other disclosures were reported.


CORRECTION

Error in Methods and Table: The Original Investigation “Rivaroxaban and Aspirin in Patients With Symptomatic Lower Extremity Peripheral Artery Disease: a Subanalysis of the COMPASS Randomized Clinical Trial,”1 published September 30, 2020, contained an error in the Methods section. The sentence listing “(1) 2.5 mg of rivaroxaban twice daily plus 81 mg of aspirin once per day…and (3) 81 mg of aspirin once per day” should instead have noted 100 mg of aspirin in each of the locations it is mentioned. The same values appear in the headings of Table 1, where 81 mg should again have been 100 mg. This article was corrected online.


Error in Author Degree: The Original Investigation “Value of Coronary Artery Calcium Scanning in Association With the Net Benefit of Aspirin in Primary Prevention of Atherosclerotic Cardiovascular Disease,”1 published October 28, 2020, contained an error in the author byline. Dr Ajufo’s name and degrees should be listed as “Ezimakama Ajufu, BM, BCh.” This article was corrected online.


Errors in Figure 3 and Supplement: The Original Investigation “Association of Adiposity, Circulating Protein Biomarkers, and Risk of Major Vascular Diseases,”1 published online December 2, 2020, contained errors with respect to the Supplement and Figure 3. Table 13 and 14 displays Figure 19 and 20 in the Supplement were not mentioned in the main article text. The mentions have been added. In addition, Figure 3 in the article was altered to shorten vertical dotted lines, the length of which may have led to reader confusion. The article has been corrected online.


Errors in Figure: In the Brief Report titled, “Association of Subclinical Heart Maladaptation With the Pooled Cohort Equations to Prevent Heart Failure Risk Score for Incident Heart Failure,”1 published online November 11, 2020, there were errors in Figure 2. In all 4 panels, odds ratio more than 1 should indicate increased rate of abnormality and odds ratio less than 1 should indicate decreased rate of abnormality. This article was corrected online.