Effect of Aerobic and Resistance Exercise on Cardiac Adipose Tissues: Secondary Analyses From a Randomized Clinical Trial | Cardiology | JAMA Cardiology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Pagidipati  NJ, Gaziano  TA.  Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement.  Circulation. 2013;127(6):749-756. doi:10.1161/CIRCULATIONAHA.112.128413PubMedGoogle ScholarCrossref
2.
Hubert  HB, Feinleib  M, McNamara  PM, Castelli  WP.  Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study.  Circulation. 1983;67(5):968-977. doi:10.1161/01.CIR.67.5.968PubMedGoogle ScholarCrossref
3.
Lavie  CJ, Laddu  D, Arena  R, Ortega  FB, Alpert  MA, Kushner  RF.  Healthy weight and obesity prevention: JACC health promotion series.  J Am Coll Cardiol. 2018;72(13):1506-1531. doi:10.1016/j.jacc.2018.08.1037PubMedGoogle ScholarCrossref
4.
Iacobellis  G.  Local and systemic effects of the multifaceted epicardial adipose tissue depot.  Nat Rev Endocrinol. 2015;11(6):363-371. doi:10.1038/nrendo.2015.58PubMedGoogle ScholarCrossref
5.
Mazurek  T, Zhang  L, Zalewski  A,  et al.  Human epicardial adipose tissue is a source of inflammatory mediators.  Circulation. 2003;108(20):2460-2466. doi:10.1161/01.CIR.0000099542.57313.C5PubMedGoogle ScholarCrossref
6.
Christensen  RH, von Scholten  BJ, Hansen  CS,  et al.  Epicardial, pericardial and total cardiac fat and cardiovascular disease in type 2 diabetic patients with elevated urinary albumin excretion rate.  Eur J Prev Cardiol. 2017;24(14):1517-1524. doi:10.1177/2047487317717820PubMedGoogle ScholarCrossref
7.
Ding  J, Hsu  F-C, Harris  TB,  et al.  The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA).  Am J Clin Nutr. 2009;90(3):499-504. doi:10.3945/ajcn.2008.27358PubMedGoogle ScholarCrossref
8.
Shah  RV, Anderson  A, Ding  J,  et al.  Pericardial, but not hepatic, fat by CT Is associated with CV outcomes and structure: the Multi-Ethnic Study of Atherosclerosis.  JACC Cardiovasc Imaging. 2017;10(9):1016-102. doi:10.1016/j.jcmg.2016.10.024PubMedGoogle ScholarCrossref
9.
Lavie  CJ, Oktay  AA, Pandey  A.  Pericardial fat and CVD: is all fat created equally?  JACC Cardiovasc Imaging. 2017;10(9):1028-1030. doi:10.1016/j.jcmg.2016.11.018PubMedGoogle ScholarCrossref
10.
Iacobellis  G.  Epicardial fat: a new cardiovascular therapeutic target.  Curr Opin Pharmacol. 2016;27:13-18. doi:10.1016/j.coph.2016.01.004PubMedGoogle ScholarCrossref
11.
Marchington  JM, Mattacks  CAPC, Pond  CM.  Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties.  Comp Biochem Physiol B. 1989;94(2):225-232. doi:10.1016/0305-0491(89)90337-4PubMedGoogle ScholarCrossref
12.
Sicari  R, Sironi  AM, Petz  R,  et al.  Pericardial rather than epicardial fat is a cardiometabolic risk marker: an MRI vs echo study.  J Am Soc Echocardiogr. 2011;24(10):1156-1162. doi:10.1016/j.echo.2011.06.013PubMedGoogle ScholarCrossref
13.
Ding  J, Kritchevsky  SB, Harris  TB,  et al; Multi-Ethnic Study of Atherosclerosis.  The association of pericardial fat with calcified coronary plaque.  Obesity (Silver Spring). 2008;16(8):1914-1919. doi:10.1038/oby.2008.278PubMedGoogle ScholarCrossref
14.
Iacobellis  G, Mohseni  M, Bianco  SD, Banga  PK.  Liraglutide causes large and rapid epicardial fat reduction.  Obesity (Silver Spring). 2017;25(2):311-316. doi:10.1002/oby.21718PubMedGoogle ScholarCrossref
15.
Díaz-Rodríguez  E, Agra  RM, Fernández  ÁL,  et al.  Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability.  Cardiovasc Res. 2018;114(2):336-346. doi:10.1093/cvr/cvx186PubMedGoogle ScholarCrossref
16.
Sato  T, Aizawa  Y, Yuasa  S,  et al.  The effect of dapagliflozin treatment on epicardial adipose tissue volume.  Cardiovasc Diabetol. 2018;17(1):6. doi:10.1186/s12933-017-0658-8PubMedGoogle ScholarCrossref
17.
Alexopoulos  N, Melek  BH, Arepalli  CD,  et al.  Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: a substudy of the BELLES trial (Beyond Endorsed Lipid Lowering with EBT Scanning).  J Am Coll Cardiol. 2013;61(19):1956-1961. doi:10.1016/j.jacc.2012.12.051PubMedGoogle ScholarCrossref
18.
Willens  HJ, Byers  P, Chirinos  JA, Labrador  E, Hare  JM de ME, de Marchena  E.  Effects of weight loss after bariatric surgery on epicardial fat measured using echocardiography.  Am J Cardiol. 2007;99(9):1242-1245. doi:10.1016/j.amjcard.2006.12.042PubMedGoogle ScholarCrossref
19.
Iacobellis  G, Singh  N, Wharton  S, Sharma  AM.  Substantial changes in epicardial fat thickness after weight loss in severely obese subjects.  Obesity (Silver Spring). 2008;16(7):1693-1697. doi:10.1038/oby.2008.251PubMedGoogle ScholarCrossref
20.
Kim  M-K, Tomita  T, Kim  M-J, Sasai  H, Maeda  S, Tanaka  K.  Aerobic exercise training reduces epicardial fat in obese men.  J Appl Physiol (1985). 2009;106(1):5-11. doi:10.1152/japplphysiol.90756.2008PubMedGoogle ScholarCrossref
21.
Wilund  KR, Tomayko  EJ, Wu  PT,  et al.  Intradialytic exercise training reduces oxidative stress and epicardial fat: a pilot study.  Nephrol Dial Transplant. 2010;25(8):2695-2701. doi:10.1093/ndt/gfq106PubMedGoogle ScholarCrossref
22.
Rosety  MA, Pery  MT, Rodriguez-Pareja  MA,  et al.  A short-term circuit resistance programme reduced epicardial fat in obese aged women.  Nutr Hosp. 2015;32(5):2193-2197.PubMedGoogle Scholar
23.
Fornieles González  G, Rosety Rodríguez  MA, Rodríguez Pareja  MA,  et al.  A home-based treadmill training reduced epicardial and abdominal fat in postmenopausal women with metabolic syndrome.  Nutr Hosp. 2014;30(3):609-613.PubMedGoogle Scholar
24.
Fernandez-del-Valle  M, Gonzales  JU, Kloiber  S, Mitra  S, Klingensmith  J, Larumbe-Zabala  E.  Effects of resistance training on MRI-derived epicardial fat volume and arterial stiffness in women with obesity: a randomized pilot study.  Eur J Appl Physiol. 2018;118(6):1231-1240. doi:10.1007/s00421-018-3852-9PubMedGoogle ScholarCrossref
25.
Lavie  CJ, Ozemek  C, Carbone  S, Katzmarzyk  PT, Blair  SN.  Sedentary behavior, exercise, and cardiovascular health.  Circ Res. 2019;124(5):799-815. doi:10.1161/CIRCRESAHA.118.312669PubMedGoogle ScholarCrossref
26.
Wedell-Neergaard  AS, Lang Lehrskov  L, Christensen  RH,  et al.  Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial.  Cell Metab. 2019;29(4):844-855.e3. doi:10.1016/j.cmet.2018.12.007PubMedGoogle ScholarCrossref
27.
Fletcher  GF, Landolfo  C, Niebauer  J, Ozemek  C, Arena  R, Lavie  CJ.  Reprint of: promoting physical activity and exercise: JACC health promotion series.  J Am Coll Cardiol. 2018;72(23 pt B):3053-3070. doi:10.1016/j.jacc.2018.10.025PubMedGoogle ScholarCrossref
28.
Christensen  RH, Wedell-Neergaard  AS, Lehrskov  LL,  et al.  The role of exercise combined with tocilizumab in visceral and epicardial adipose tissue and gastric emptying rate in abdominally obese participants: protocol for a randomised controlled trial.  Trials. 2018;19(1):266. doi:10.1186/s13063-018-2637-0PubMedGoogle ScholarCrossref
29.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.  JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053.Google ScholarCrossref
30.
Doesch  C, Streitner  F, Bellm  S,  et al.  Epicardial adipose tissue assessed by cardiac magnetic resonance imaging in patients with heart failure due to dilated cardiomyopathy.  Obesity (Silver Spring). 2013;21(3):E253-E261. doi:10.1002/oby.20149PubMedGoogle ScholarCrossref
31.
Koo  TK, Li  MY.  A guideline of selecting and reporting intraclass correlation coefficients for reliability research.  J Chiropr Med. 2016;15(2):155-163. doi:10.1016/j.jcm.2016.02.012PubMedGoogle ScholarCrossref
32.
Treuth  MS, Schmitz  K, Catellier  DJ,  et al.  Defining accelerometer thresholds for activity intensities in adolescent girls.  Med Sci Sports Exerc. 2004;36(7):1259-1266.PubMedGoogle Scholar
33.
Jonker  JT, de Mol  P, de Vries  ST,  et al.  Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function.  Radiology. 2013;269(2):434-442. doi:10.1148/radiol.13121631PubMedGoogle ScholarCrossref
34.
Fulghum  K, Hill  BG.  Metabolic mechanisms of exercise-induced cardiac remodeling.  Front Cardiovasc Med. 2018;5(September):127. doi:10.3389/fcvm.2018.00127PubMedGoogle ScholarCrossref
35.
DeMaria  AN, Neumann  A, Lee  G, Fowler  W, Mason  DT.  Alterations in ventricular mass and performance induced by exercise training in man evaluated by echocardiography.  Circulation. 1978;57(2):237-244. doi:10.1161/01.CIR.57.2.237PubMedGoogle ScholarCrossref
36.
Verboven  M, Van Ryckeghem  L, Belkhouribchia  J,  et al.  Effect of exercise intervention on cardiac function in type 2 diabetes mellitus: a systematic review.  Sports Med. 2019;49(2):255-268. doi:10.1007/s40279-018-1003-4PubMedGoogle ScholarCrossref
37.
Hambrecht  R, Gielen  S, Linke  A,  et al.  Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: A randomized trial.  JAMA. 2000;283(23):3095-3101. doi:10.1001/jama.283.23.3095PubMedGoogle ScholarCrossref
38.
Zinman  B, Wanner  C, Lachin  JM,  et al; EMPA-REG OUTCOME Investigators.  Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.  N Engl J Med. 2015;373(22):2117-2128. doi:10.1056/NEJMoa1504720PubMedGoogle ScholarCrossref
39.
Dutour  A, Abdesselam  I, Ancel  P,  et al.  Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy.  Diabetes Obes Metab. 2016;18(9):882-891. doi:10.1111/dom.12680PubMedGoogle ScholarCrossref
40.
Yagi  S, Hirata  Y, Ise  T,  et al.  Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus.  Diabetol Metab Syndr. 2017;9(1):78. doi:10.1186/s13098-017-0275-4PubMedGoogle ScholarCrossref
Original Investigation
July 3, 2019

Effect of Aerobic and Resistance Exercise on Cardiac Adipose Tissues: Secondary Analyses From a Randomized Clinical Trial

Author Affiliations
  • 1The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
  • 2Department of Radiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
  • 3Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
  • 4Department of Rheumatology, Institute of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
  • 5Department of Cardiology, Copenhagen University Hospital Bispebjerg, Capital Region of Copenhagen, Copenhagen, Denmark
JAMA Cardiol. 2019;4(8):778-787. doi:10.1001/jamacardio.2019.2074
Key Points

Question  Are epicardial and pericardial adipose tissues regulated by both endurance and resistance training?

Findings  In this secondary analysis of a randomized clinical trial including 50 individuals with abdominal obesity, endurance and resistance training significantly reduced epicardial adipose tissue mass by 32% and 24%, respectively. While resistance training reduced pericardial adipose tissue mass by 32%, there was no effect of endurance training on pericardial adipose tissue.

Meaning  Endurance and resistance training have the potential to reduce cardiac adipose tissue mass and may have clinical potential given that excessive cardiac adipose tissue is associated with an increased incidence of cardiovascular disease.

Abstract

Importance  Epicardial and pericardial adipose tissues are emerging as important risk factors for cardiovascular disease, and there is a growing interest in discovering strategies to reduce the accumulation of fat in these depots.

Objective  To investigate whether a 12-week endurance or resistance training intervention regulates epicardial and pericardial adipose tissue mass.

Design, Setting, and Participants  Secondary analysis of a randomized, assessor-blinded clinical trial initiated on August 2016 and completed April 2018. This single-center, community-based study included 50 physically inactive participants with abdominal obesity.

Interventions  Participants were randomized to a supervised high-intensity interval endurance training (3 times a week for 45 minutes), resistance training (3 times a week for 45 minutes), or no exercise (control group).

Main Outcomes and Measures  Change in epicardial and pericardial adipose tissue mass assessed by magnetic resonance imaging, based on a prespecified secondary analysis plan including 3 of 5 parallel groups.

Results  Of 50 participants (mean [SD] age, 41 [14] years, 10 men [26%]; mean [SD] body mass index [calculated as weight in kilograms divided by height in meters squared], 32 [5]), 39 [78%] completed the study. Endurance training and resistance training reduced epicardial adipose tissue mass by 32% (95% CI, 10%-53%) and 24% (95% CI, 1%-46%), respectively, compared with the no exercise control group (56% [95% CI, 24%-88%]; P = .001 and 48% [95% CI, 15%-81%]; P < .001, respectively). While there was a nonsignificant reduction in pericardial adipose tissue mass after endurance training (11% [95% CI, −5% to 27%]; P = .17), resistance training significantly reduced pericardial adipose tissue mass by 31% (95% CI, 16%-47%; P < .001) when compared with the no exercise control group. Compared with the no exercise control group, there was an increase in left ventricular mass by endurance (20 g [95% CI, 11%-30%]; P < .001) and resistance training (18 g [95% CI, 8%-28%]; P < .001). Other cardiometabolic outcomes remained unchanged after the 12-week trial period.

Conclusions and Relevance  In individuals with abdominal obesity, both endurance and resistance training reduced epicardial adipose tissue mass, while only resistance training reduced pericardial adipose tissue mass. These data highlight the potential preventive importance of different exercise modalities as means to reduce cardiac fat in individuals with abdominal obesity.

Trial Registration  ClinicalTrials.gov identifier: NCT02901496

×