Effect of Face-to-Face vs Virtual Reality Training on Cardiopulmonary Resuscitation Quality: A Randomized Clinical Trial | Cardiology | JAMA Cardiology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Benjamin  EJ, Virani  SS, Callaway  CW,  et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.  Heart Disease and stroke statistics-2018 update: a report from the American Heart Association.   Circulation. 2018;137(12):e67-e492. doi:10.1161/CIR.0000000000000558PubMedGoogle Scholar
Malta Hansen  C, Kragholm  K, Pearson  DA,  et al.  Association of bystander and first-responder intervention with survival after out-of-hospital cardiac arrest in North Carolina, 2010-2013.   JAMA. 2015;314(3):255-264. doi:10.1001/jama.2015.7938PubMedGoogle Scholar
Duval  S, Pepe  PE, Aufderheide  TP,  et al.  Optimal combination of compression rate and depth during cardiopulmonary resuscitation for functionally favorable survival.   JAMA Cardiol. 2019. doi:10.1001/jamacardio.2019.2717PubMedGoogle Scholar
Bobrow  BJ, Spaite  DW, Vadeboncoeur  TF,  et al.  Implementation of a regional telephone cardiopulmonary resuscitation program and outcomes after out-of-hospital cardiac arrest.   JAMA Cardiol. 2016;1(3):294-302. doi:10.1001/jamacardio.2016.0251PubMedGoogle Scholar
Fordyce  CB, Hansen  CM, Kragholm  K,  et al.  Association of public health initiatives with outcomes for out-of-hospital cardiac arrest at home and in public locations.   JAMA Cardiol. 2017;2(11):1226-1235. doi:10.1001/jamacardio.2017.3471PubMedGoogle Scholar
Hansen  SM, Hansen  CM, Folke  F,  et al.  Bystander defibrillation for out-of-hospital cardiac arrest in public vs residential locations.   JAMA Cardiol. 2017;2(5):507-514. doi:10.1001/jamacardio.2017.0008PubMedGoogle Scholar
Kragholm  K, Wissenberg  M, Mortensen  RN,  et al.  Bystander efforts and 1-year outcomes in out-of-hospital cardiac arrest.   N Engl J Med. 2017;376(18):1737-1747. doi:10.1056/NEJMoa1601891PubMedGoogle Scholar
Kitamura  T, Kiyohara  K, Sakai  T,  et al.  Public-access defibrillation and out-of-hospital cardiac arrest in Japan.   N Engl J Med. 2016;375(17):1649-1659. doi:10.1056/NEJMsa1600011PubMedGoogle Scholar
Hasselqvist-Ax  I, Riva  G, Herlitz  J,  et al.  Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest.   N Engl J Med. 2015;372(24):2307-2315. doi:10.1056/NEJMoa1405796PubMedGoogle Scholar
Blewer  AL, Ibrahim  SA, Leary  M,  et al.  Cardiopulmonary resuscitation training disparities in the United States.   J Am Heart Assoc. 2017;6(5):6. doi:10.1161/JAHA.117.006124PubMedGoogle Scholar
Panchal  AR, Cash  RE, Crowe  RP,  et al.  Delphi analysis of science gaps in the 2015 American Heart Association cardiac arrest guidelines.   J Am Heart Assoc. 2018;7(13):7. doi:10.1161/JAHA.118.008571PubMedGoogle Scholar
Malta Hansen  C, Rosenkranz  SM, Folke  F,  et al.  Lay bystanders’ perspectives on what facilitates cardiopulmonary resuscitation and use of automated external defibrillators in real cardiac arrests.   J Am Heart Assoc. 2017;6(3):6. doi:10.1161/JAHA.116.004572PubMedGoogle Scholar
Søreide  E, Morrison  L, Hillman  K,  et al; Utstein Formula for Survival Collaborators.  The formula for survival in resuscitation.   Resuscitation. 2013;84(11):1487-1493. doi:10.1016/j.resuscitation.2013.07.020PubMedGoogle Scholar
Greif  R, Lockey  AS, Conaghan  P, Lippert  A, De Vries  W, Monsieurs  KG; Education and implementation of resuscitation section Collaborators; Collaborators.  European Resuscitation Council guidelines for resuscitation 2015: section 10: education and implementation of resuscitation.   Resuscitation. 2015;95:288-301. doi:10.1016/j.resuscitation.2015.07.032PubMedGoogle Scholar
Cheng  A, Nadkarni  VM, Mancini  MB,  et al; American Heart Association Education Science Investigators; and on behalf of the American Heart Association Education Science and Programs Committee, Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; Council on Cardiovascular and Stroke Nursing; and Council on Quality of Care and Outcomes Research.  Resuscitation education science: educational strategies to improve outcomes from cardiac arrest: a scientific statement from the American Heart Association.   Circulation. 2018;138(6):e82-e122. doi:10.1161/CIR.0000000000000583PubMedGoogle Scholar
Kleinman  ME, Brennan  EE, Goldberger  ZD,  et al.  Part 5: adult basic life support and cardiopulmonary resuscitation quality: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care.   Circulation. 2015;132(18)(suppl 2):S414-S435. doi:10.1161/CIR.0000000000000259PubMedGoogle Scholar
Perkins  GD, Handley  AJ, Koster  RW,  et al; Adult basic life support and automated external defibrillation section Collaborators.  European resuscitation council guidelines for resuscitation 2015: section 2: adult basic life support and automated external defibrillation.   Resuscitation. 2015;95:81-99. doi:10.1016/j.resuscitation.2015.07.015PubMedGoogle Scholar
Yeung  J, Kovic  I, Vidacic  M,  et al.  The school Lifesavers study-A randomised controlled trial comparing the impact of Lifesaver only, face-to-face training only, and Lifesaver with face-to-face training on CPR knowledge, skills and attitudes in UK school children.   Resuscitation. 2017;120:138-145. doi:10.1016/j.resuscitation.2017.08.010PubMedGoogle Scholar
Wong  MAME, Chue  S, Jong  M, Benny  HWK, Zary  N.  Clinical instructors’ perceptions of virtual reality in health professionals’ cardiopulmonary resuscitation education.   SAGE Open Med. 2018;6:2050312118799602. doi:10.1177/2050312118799602PubMedGoogle Scholar
Semeraro  F, Scapigliati  A, Ristagno  G,  et al.  Virtual reality for CPR training: how cool is that? dedicated to the “next generation”.   Resuscitation. 2017;121:e1-e2. doi:10.1016/j.resuscitation.2017.09.024PubMedGoogle Scholar
Sasson  C, Haukoos  JS, Bond  C,  et al.  Barriers and facilitators to learning and performing cardiopulmonary resuscitation in neighborhoods with low bystander cardiopulmonary resuscitation prevalence and high rates of cardiac arrest in Columbus, OH.   Circ Cardiovasc Qual Outcomes. 2013;6(5):550-558. doi:10.1161/CIRCOUTCOMES.111.000097PubMedGoogle Scholar
Nas  J, Thannhauser  J, Vart  P,  et al.  Rationale and design of the Lowlands Saves Lives trial: a randomised trial to compare CPR quality and long-term attitude towards CPR performance between face-to-face and virtual reality training with the Lifesaver VR app.   BMJ Open. In press.Google Scholar
Hansson  L, Hedner  T, Dahlöf  B.  Prospective randomized open blinded end-point (PROBE) study: a novel design for intervention trials.:Prospective Randomized Open Blinded End-Point.   Blood Press. 1992;1(2):113-119. doi:10.3109/08037059209077502PubMedGoogle Scholar
Ford  I, Norrie  J.  Pragmatic trials.   N Engl J Med. 2016;375(5):454-463. doi:10.1056/NEJMra1510059PubMedGoogle Scholar
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.   JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053PubMedGoogle Scholar
de Ronde  A, van Aken  M, de Puit  M, de Poot  C.  A study into fingermarks at activity level on pillowcases.   Forensic Sci Int. 2019;295:113-120. doi:10.1016/j.forsciint.2018.11.027PubMedGoogle Scholar
Roppolo  LP, Pepe  PE, Campbell  L,  et al.  Prospective, randomized trial of the effectiveness and retention of 30-min layperson training for cardiopulmonary resuscitation and automated external defibrillators: the American Airlines Study.   Resuscitation. 2007;74(2):276-285. doi:10.1016/j.resuscitation.2006.12.017PubMedGoogle Scholar
Bylow  H, Karlsson  T, Claesson  A, Lepp  M, Lindqvist  J, Herlitz  J.  Self-learning training versus instructor-led training for basic life support: a cluster randomised trial.   Resuscitation. 2019;139:122-132. doi:10.1016/j.resuscitation.2019.03.026PubMedGoogle Scholar
Kramer-Johansen  J, Edelson  DP, Losert  H, Köhler  K, Abella  BS.  Uniform reporting of measured quality of cardiopulmonary resuscitation (CPR).   Resuscitation. 2007;74(3):406-417. doi:10.1016/j.resuscitation.2007.01.024PubMedGoogle Scholar
Considine  J, Gazmuri  RJ, Perkins  GD,  et al.  Chest compression components (rate, depth, chest wall recoil and leaning): a scoping review.   Resuscitation. 2019;S0300-9572(19)30608-2. doi:10.1016/j.resuscitation.2019.08.042PubMedGoogle Scholar
Riggs  M, Franklin  R, Saylany  L.  Associations between cardiopulmonary resuscitation (CPR) knowledge, self-efficacy, training history and willingness to perform CPR and CPR psychomotor skills: a systematic review.   Resuscitation. 2019;138:259-272. doi:10.1016/j.resuscitation.2019.03.019PubMedGoogle Scholar
Stiell  IG, Brown  SP, Nichol  G,  et al; Resuscitation Outcomes Consortium Investigators.  What is the optimal chest compression depth during out-of-hospital cardiac arrest resuscitation of adult patients?   Circulation. 2014;130(22):1962-1970. doi:10.1161/CIRCULATIONAHA.114.008671PubMedGoogle Scholar
Leary  M, McGovern  SK, Chaudhary  Z, Patel  J, Abella  BS, Blewer  AL.  Comparing bystander response to a sudden cardiac arrest using a virtual reality CPR training mobile app versus a standard CPR training mobile app.   Resuscitation. 2019;139:167-173. doi:10.1016/j.resuscitation.2019.04.017PubMedGoogle Scholar
Lemkes  JS, Janssens  GN, van der Hoeven  NW,  et al.  Coronary angiography after cardiac arrest without ST-segment elevation.   N Engl J Med. 2019;380(15):1397-1407. doi:10.1056/NEJMoa1816897PubMedGoogle Scholar
Bonnes  JL, Brouwer  MA, Navarese  EP,  et al.  Manual cardiopulmonary resuscitation versus CPR including a mechanical chest compression device in out-of-hospital cardiac arrest: a comprehensive meta-analysis from randomized and observational studies.   Ann Emerg Med. 2016;67(3):349-360.e3. doi:10.1016/j.annemergmed.2015.09.023PubMedGoogle Scholar
Bhanji  F, Donoghue  AJ, Wolff  MS,  et al.  Part 14: education: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care.   Circulation. 2015;132(18)(suppl 2):S561-S573. doi:10.1161/CIR.0000000000000268PubMedGoogle Scholar
Rumsfeld  JS, Brooks  SC, Aufderheide  TP,  et al; American Heart Association Emergency Cardiovascular Care Committee; Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; Council on Quality of Care and Outcomes Research; Council on Cardiovascular and Stroke Nursing; and Council on Epidemiology and Prevention.  Use of mobile devices, social media, and crowdsourcing as digital strategies to improve emergency cardiovascular care: a scientific statement from the American Heart Association.   Circulation. 2016;134(8):e87-e108. doi:10.1161/CIR.0000000000000428PubMedGoogle Scholar
Bench  S, Winter  C, Francis  G.  Use of a virtual reality device for basic life support training: prototype testing and an exploration of users’ views and experience.   Simul Healthc. 2019;14(5):287-292. doi:10.1097/SIH.0000000000000387PubMedGoogle Scholar
Cerezo Espinosa  C, Segura Melgarejo  F, Melendreras Ruiz  R,  et al.  Virtual reality in cardiopulmonary resuscitation training: a randomized trial  [in Spanish].  Emergencias. 2019;31(1):43-46.PubMedGoogle Scholar
Khanal  P, Vankipuram  A, Ashby  A,  et al.  Collaborative virtual reality based advanced cardiac life support training simulator using virtual reality principles.   J Biomed Inform. 2014;51:49-59. doi:10.1016/j.jbi.2014.04.005PubMedGoogle Scholar
Semeraro  F, Frisoli  A, Bergamasco  M, Cerchiari  EL.  Virtual reality enhanced mannequin (VREM) that is well received by resuscitation experts.   Resuscitation. 2009;80(4):489-492. doi:10.1016/j.resuscitation.2008.12.016PubMedGoogle Scholar
Drummond  D, Delval  P, Abdenouri  S,  et al.  Serious game versus online course for pretraining medical students before a simulation-based mastery learning course on cardiopulmonary resuscitation: a randomised controlled study.   Eur J Anaesthesiol. 2017;34(12):836-844. doi:10.1097/EJA.0000000000000675PubMedGoogle Scholar
Mäkinen  M, Niemi-Murola  L, Mäkelä  M, Castren  M.  Methods of assessing cardiopulmonary resuscitation skills: a systematic review.   Eur J Emerg Med. 2007;14(2):108-114. doi:10.1097/MEJ.0b013e328013dc02PubMedGoogle Scholar
Stiell  IG, Brown  SP, Christenson  J,  et al; Resuscitation Outcomes Consortium (ROC) Investigators.  What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation?   Crit Care Med. 2012;40(4):1192-1198. doi:10.1097/CCM.0b013e31823bc8bbPubMedGoogle Scholar
Semeraro  F, Ristagno  G, Giulini  G,  et al.  Virtual reality cardiopulmonary resuscitation (CPR): comparison with a standard CPR training mannequin.   Resuscitation. 2019;135:234-235. doi:10.1016/j.resuscitation.2018.12.016PubMedGoogle Scholar
Young  JQ, Van Merrienboer  J, Durning  S, Ten Cate  O.  Cognitive Load Theory: implications for medical education: AMEE Guide No. 86.   Med Teach. 2014;36(5):371-384. doi:10.3109/0142159X.2014.889290PubMedGoogle Scholar
Roppolo  LP, Heymann  R, Pepe  P,  et al.  A randomized controlled trial comparing traditional training in cardiopulmonary resuscitation (CPR) to self-directed CPR learning in first year medical students: the two-person CPR study.   Resuscitation. 2011;82(3):319-325. doi:10.1016/j.resuscitation.2010.10.025PubMedGoogle Scholar
Original Investigation
November 17, 2019

Effect of Face-to-Face vs Virtual Reality Training on Cardiopulmonary Resuscitation Quality: A Randomized Clinical Trial

Author Affiliations
  • 1Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
  • 2Department of Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
JAMA Cardiol. 2020;5(3):328-335. doi:10.1001/jamacardio.2019.4992
Key Points

Question  Does virtual reality (VR) cardiopulmonary resuscitation (CPR) training result in CPR quality and performance comparable with face-to-face training?

Findings  In this randomized noninferiority trial of 381 individuals, VR training resulted in noninferior chest compression rate but inferior compression depth; proportions of participants fulfilling guideline-endorsed compression depth or rate recommendations were lower in VR training, although overall these criteria were met in more than 50%. Cardiopulmonary resuscitation scenario performance and chest compression fraction were worse, but leaning was less common than in face-to-face training.

Meaning  Although VR training may lead to chest compression rates similar to face-to-face training, it needs further development to achieve comparable compression depth and overall CPR performance.


Importance  Bystander cardiopulmonary resuscitation (CPR) is crucial for survival after cardiac arrest but not performed in most cases. New, low-cost, and easily accessible training methods, such as virtual reality (VR), may reach broader target populations, but data on achieved CPR skills are lacking.

Objective  To compare CPR quality between VR and face-to-face CPR training.

Design, Setting, and Participants  Randomized noninferiority trial with a prospective randomized open blinded end point design. Participants were adult attendees from the science section of the Lowlands Music Festival (August 16 to 18, 2019) in the Netherlands. Analysis began September 2019.

Interventions  Two standardized 20-minute protocols on CPR and automated external defibrillator use: instructor-led face-to-face training or VR training using a smartphone app endorsed by the Resuscitation Council (United Kingdom).

Main Outcomes and Measures  During a standardized CPR scenario following the training, we assessed the primary outcome CPR quality, measured as chest compression depth and rate using CPR manikins. Overall CPR performance was assessed by examiners, blinded for study groups, using a European Resuscitation Council–endorsed checklist (maximum score, 13). Additional secondary outcomes were chest compression fraction, proportions of participants with mean depth (50 mm-60 mm) or rate (100 min−1-120 min−1) within guideline ranges, and proportions compressions with full release.

Results  A total of 381 participants were randomized: 216 women (57%); median (interquartile range [IQR]) age, 26 (22-31) years. The VR app (n = 190 [49.9%]) was inferior to face-to-face training (n = 191 [50.1%]) for chest compression depth (mean [SD], VR: 49 [10] mm vs face to face: 57 [5] mm; mean [95% CI] difference, −8 [−9 to −6] mm), and noninferior for chest compression rate (mean [SD]: VR: 114 [12] min−1 vs face to face: 109 [12] min−1; mean [95% CI] difference, 6 [3 to 8] min−1). The VR group had lower overall CPR performance scores (median [IQR], 10 [8-12] vs 12 [12-13]; P < .001). Chest compression fraction (median [IQR], 61% [52%-66%] vs 67% [62%-71%]; P < .001) and proportions of participants fulfilling depth (51% [n = 89] vs 75% [n = 133], P < .001) and rate (50% [n = 87] vs 63% [n = 111], P = .01) requirements were also lower in the VR group. The proportion of compressions with full release was higher in the VR group (median [IQR], 98% [59%-100%] vs 88% [55%-99%]; P = .002).

Conclusions and Relevance  In this randomized noninferiority trial, VR training resulted in comparable chest compression rate but inferior compression depth compared with face-to-face training. Given the potential of VR training to reach a larger target population, further development is needed to achieve the compression depth and overall CPR skills acquired by face-to-face training.

Trial Registration  ClinicalTrials.gov identifier: NCT04013633