[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.240.35. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Shivkumar  K, Ajijola  OA, Anand  I,  et al.  Clinical neurocardiology-defining the value of neuroscience-based cardiovascular therapeutics.  J Physiol. 2016;594(14):3911-3954. doi:10.1113/JP271870Google Scholar
2.
Yancy  CW, Jessup  M, Bozkurt  B,  et al.  2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America.  J Am Coll Cardiol. 2017;70(6):776-803. doi:10.1016/j.jacc.2017.04.025PubMedGoogle ScholarCrossref
3.
Ardell  JL, Andresen  MC, Armour  JA,  et al.  Translational neurocardiology: preclinical models and cardioneural integrative aspects.  J Physiol. 2016;594(14):3877-3909. doi:10.1113/JP271869PubMedGoogle ScholarCrossref
4.
Chow  SL, Maisel  AS, Anand  I,  et al; American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology; Council on Basic Cardiovascular Sciences; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; Council on Epidemiology and Prevention; Council on Functional Genomics and Translational Biology; and Council on Quality of Care and Outcomes Research.  Role of biomarkers for the prevention, assessment, and management of heart failure: a scientific statement From the American Heart Association.  Circulation. 2017;135(22):e1054-e1091. doi:10.1161/CIR.0000000000000490PubMedGoogle ScholarCrossref
5.
Habecker  BA, Anderson  ME, Birren  SJ,  et al.  Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease.  J Physiol. 2016;594(14):3853-3875. doi:10.1113/JP271840PubMedGoogle ScholarCrossref
6.
Cohn  JN, Levine  TB, Olivari  MT,  et al.  Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure.  N Engl J Med. 1984;311(13):819-823. doi:10.1056/NEJM198409273111303PubMedGoogle ScholarCrossref
7.
Tatemoto  K.  Neuropeptide Y: complete amino acid sequence of the brain peptide.  Proc Natl Acad Sci U S A. 1982;79(18):5485-5489. doi:10.1073/pnas.79.18.5485PubMedGoogle ScholarCrossref
8.
Tatemoto  K, Carlquist  M, Mutt  V.  Neuropeptide Y: a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide.  Nature. 1982;296(5858):659-660. doi:10.1038/296659a0PubMedGoogle ScholarCrossref
9.
Malmström  RE.  Pharmacology of neuropeptide Y receptor antagonists: focus on cardiovascular functions.  Eur J Pharmacol. 2002;447(1):11-30. doi:10.1016/S0014-2999(02)01889-7PubMedGoogle ScholarCrossref
10.
Herring  N, Lokale  MN, Danson  EJ, Heaton  DA, Paterson  DJ.  Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway.  J Mol Cell Cardiol. 2008;44(3):477-485. doi:10.1016/j.yjmcc.2007.10.001PubMedGoogle ScholarCrossref
11.
Heredia  MdelP, Delgado  C, Pereira  L,  et al.  Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation.  J Mol Cell Cardiol. 2005;38(1):205-212. doi:10.1016/j.yjmcc.2004.11.001PubMedGoogle ScholarCrossref
12.
Cuculi  F, Herring  N, De Caterina  AR,  et al.  Relationship of plasma neuropeptide Y with angiographic, electrocardiographic and coronary physiology indices of reperfusion during ST elevation myocardial infarction.  Heart. 2013;99(16):1198-1203. doi:10.1136/heartjnl-2012-303443PubMedGoogle ScholarCrossref
13.
Hulting  J, Sollevi  A, Ullman  B, Franco-Cereceda  A, Lundberg  JM.  Plasma neuropeptide Y on admission to a coronary care unit: raised levels in patients with left heart failure.  Cardiovasc Res. 1990;24(2):102-108. doi:10.1093/cvr/24.2.102PubMedGoogle ScholarCrossref
14.
Ullman  B, Hulting  J, Lundberg  JM.  Prognostic value of plasma neuropeptide-Y in coronary care unit patients with and without acute myocardial infarction.  Eur Heart J. 1994;15(4):454-461. doi:10.1093/oxfordjournals.eurheartj.a060526PubMedGoogle ScholarCrossref
15.
Feng  QP, Hedner  T, Andersson  B, Lundberg  JM, Waagstein  F.  Cardiac neuropeptide Y and noradrenaline balance in patients with congestive heart failure.  Br Heart J. 1994;71(3):261-267. doi:10.1136/hrt.71.3.261PubMedGoogle ScholarCrossref
16.
Morris  MJ, Cox  HS, Lambert  GW,  et al.  Region-specific neuropeptide Y overflows at rest and during sympathetic activation in humans.  Hypertension. 1997;29(1 Pt 1):137-143. doi:10.1161/01.HYP.29.1.137PubMedGoogle ScholarCrossref
17.
Morton  GJ, Schwartz  MW.  The NPY/AgRP neuron and energy homeostasis.  Int J Obes Relat Metab Disord. 2001;25(suppl 5):S56-S62. doi:10.1038/sj.ijo.0801915PubMedGoogle ScholarCrossref
18.
Herring  N, Tapoulal  N, Kalla  M,  et al.  Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction.  Eur Heart J. 2019;40(24):1920-1929. doi:10.1093/eurheartj/ehz115Google ScholarCrossref
19.
Mouri  T, Sone  M, Takahashi  K,  et al.  Neuropeptide Y as a plasma marker for phaeochromocytoma, ganglioneuroblastoma and neuroblastoma.  Clin Sci (Lond). 1992;83(2):205-211. doi:10.1042/cs0830205PubMedGoogle ScholarCrossref
20.
Miller  MA, Sagnella  GA, Markandu  ND, MacGregor  GA.  Radioimmunoassay for plasma neuropeptide-Y in physiological and physiopathological states and response to sympathetic activation.  Clin Chim Acta. 1990;192(1):47-53. doi:10.1016/0009-8981(90)90270-3PubMedGoogle ScholarCrossref
21.
Jacobson  AF, Senior  R, Cerqueira  MD,  et al; ADMIRE-HF Investigators.  Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study.  J Am Coll Cardiol. 2010;55(20):2212-2221. doi:10.1016/j.jacc.2010.01.014PubMedGoogle ScholarCrossref
22.
Januzzi  JL  Jr, Camargo  CA, Anwaruddin  S,  et al.  The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study.  Am J Cardiol. 2005;95(8):948-954. doi:10.1016/j.amjcard.2004.12.032PubMedGoogle ScholarCrossref
23.
Januzzi  JL  Jr, Rehman  SU, Mohammed  AA,  et al.  Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction.  J Am Coll Cardiol. 2011;58(18):1881-1889. doi:10.1016/j.jacc.2011.03.072PubMedGoogle ScholarCrossref
24.
 Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF).  Lancet. 1999;353(9169):2001-2007. doi:10.1016/S0140-6736(99)04440-2PubMedGoogle ScholarCrossref
25.
Ajijola  OA, Yagishita  D, Reddy  NK,  et al.  Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: Neuropeptide and morphologic changes.  Heart Rhythm. 2015;12(5):1027-1035. doi:10.1016/j.hrthm.2015.01.045PubMedGoogle ScholarCrossref
Views 3,350
Citations 0
Original Investigation
December 26, 2019

Coronary Sinus Neuropeptide Y Levels and Adverse Outcomes in Patients With Stable Chronic Heart Failure

Author Affiliations
  • 1Neurocardiology Research Center of Excellence, Cardiac Arrhythmia Center, University of California, Los Angeles
  • 2Massachusetts General Hospital, Boston
  • 3Department of Biomathematics, University of California, Los Angeles
  • 4British Heart Foundation Centre of Research Excellence, Department of Physiology, Anatomy, and Genetics, Burdon Sanderson Cardiac Centre, University of Oxford, Oxford, England
JAMA Cardiol. Published online December 26, 2019. doi:10.1001/jamacardio.2019.4717
Key Points

Question  Is the adrenergic cotransmitter neuropeptide Y (NPY) associated with outcomes in patients with stable heart failure (HF)?

Findings  In a cohort of patients with stable HF undergoing cardiac resynchronization therapy device implantation, coronary sinus blood was sampled for NPY levels. A threshold level of NPY was identified, which was associated with death, heart transplant, and ventricular assist device placement; molecular studies on human sympathetic neurons indicated increased release of NPY in HF patients.

Meaning  Using NPY, hyperadrenergic activation associated with adverse outcomes may be identifiable in patients with stable HF.

Abstract

Importance  Chronic heart failure (CHF) is associated with increased sympathetic drive and may increase expression of the cotransmitter neuropeptide Y (NPY) within sympathetic neurons.

Objective  To determine whether myocardial NPY levels are associated with outcomes in patients with stable CHF.

Design, Setting, and Participants  Prospective observational cohort study conducted at a single-center, tertiary care hospital. Stable patients with heart failure undergoing elective cardiac resynchronization therapy device implantation between 2013 and 2015.

Main Outcomes and Measures  Chronic heart failure hospitalization, death, orthotopic heart transplantation, and ventricular assist device placement.

Results  Coronary sinus (CS) blood samples were obtained during cardiac resynchronization therapy (CRT) device implantation in 105 patients (mean [SD] age 68 [12] years; 82 men [78%]; mean [SD] left ventricular ejection fraction [LVEF] 26% [7%]). Clinical, laboratory, and outcome data were collected prospectively. Stellate ganglia (SG) were collected from patients with CHF and control organ donors for molecular analysis. Mean (SD) CS NPY levels were 85.1 (31) pg/mL. On bivariate analyses, CS NPY levels were associated with estimated glomerular filtration rate (eGFR; rs = −0.36, P < .001); N-terminal–pro hormone brain natriuretic peptide (rs = 0.33; P = .004), and LV diastolic dimension (rs = −0.35; P < .001), but not age, LVEF, functional status, or CRT response. Adjusting for GFR, age, and LVEF, the hazard ratio for event-free (death, cardiac transplant, or left ventricular assist device) survival for CS NPY ≥ 130 pg/mL was 9.5 (95% CI, 2.92-30.5; P < .001). Immunohistochemistry demonstrated significantly reduced NPY protein (mean [SD], 13.7 [7.6] in the cardiomyopathy group vs 31.4 [3.7] in the control group; P < .001) in SG neurons from patients with CHF while quantitative polymerase chain reaction demonstrated similar mRNA levels compared with control individuals, suggesting increased release from SG neurons in patients with CHF.

Conclusions and Relevance  The CS levels of NPY may be associated with outcomes in patients with stable CHF undergoing CRT irrespective of CRT response. Increased neuronal traffic and release may be the mechanism for elevated CS NPY levels in patients with CHF. Further studies are warranted to confirm these findings.

Trial Registration  ClinicalTrials.gov identifier: NCT01949246

×