Association of Natriuretic Peptide Levels After Transcatheter Aortic Valve Replacement With Subsequent Clinical Outcomes | Valvular Heart Disease | JAMA Cardiology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Smith  JG, Newton-Cheh  C, Almgren  P,  et al.  Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation.   J Am Coll Cardiol. 2010;56(21):1712-1719. doi:10.1016/j.jacc.2010.05.049PubMedGoogle ScholarCrossref
2.
Januzzi  JL  Jr, Sakhuja  R, O’donoghue  M,  et al.  Utility of amino-terminal pro–brain natriuretic peptide testing for prediction of 1-year mortality in patients with dyspnea treated in the emergency department.   Arch Intern Med. 2006;166(3):315-320. doi:10.1001/archinte.166.3.315PubMedGoogle ScholarCrossref
3.
Anand  IS, Fisher  LD, Chiang  YT,  et al; Val-HeFT Investigators.  Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT).   Circulation. 2003;107(9):1278-1283. doi:10.1161/01.CIR.0000054164.99881.00PubMedGoogle ScholarCrossref
4.
Lerman  A, Gibbons  RJ, Rodeheffer  RJ,  et al.  Circulating N-terminal atrial natriuretic peptide as a marker for symptomless left-ventricular dysfunction.   Lancet. 1993;341(8853):1105-1109. doi:10.1016/0140-6736(93)93125-KPubMedGoogle ScholarCrossref
5.
Yasue  H, Yoshimura  M, Sumida  H,  et al.  Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure.   Circulation. 1994;90(1):195-203. doi:10.1161/01.CIR.90.1.195PubMedGoogle ScholarCrossref
6.
Bergler-Klein  J, Klaar  U, Heger  M,  et al.  Natriuretic peptides predict symptom-free survival and postoperative outcome in severe aortic stenosis.   Circulation. 2004;109(19):2302-2308. doi:10.1161/01.CIR.0000126825.50903.18PubMedGoogle ScholarCrossref
7.
Clavel  MA, Malouf  J, Michelena  HI,  et al.  B-type natriuretic peptide clinical activation in aortic stenosis: impact on long-term survival.   J Am Coll Cardiol. 2014;63(19):2016-2025. doi:10.1016/j.jacc.2014.02.581PubMedGoogle ScholarCrossref
8.
Lindman  BR, Breyley  JG, Schilling  JD,  et al.  Prognostic utility of novel biomarkers of cardiovascular stress in patients with aortic stenosis undergoing valve replacement.   Heart. 2015;101(17):1382-1388. doi:10.1136/heartjnl-2015-307742PubMedGoogle ScholarCrossref
9.
Monin  JL, Lancellotti  P, Monchi  M,  et al.  Risk score for predicting outcome in patients with asymptomatic aortic stenosis.   Circulation. 2009;120(1):69-75. doi:10.1161/CIRCULATIONAHA.108.808857PubMedGoogle ScholarCrossref
10.
Lindman  BR, Dweck  MR, Lancellotti  P,  et al.  Management of asymptomatic severe aortic stenosis: evolving concepts in timing of valve replacement.   JACC Cardiovasc Imaging. 2020;13(2, pt 1):481-493. doi:10.1016/j.jcmg.2019.01.036PubMedGoogle ScholarCrossref
11.
Leon  MB, Smith  CR, Mack  MJ,  et al; PARTNER 2 Investigators.  Transcatheter or surgical aortic-valve replacement in intermediate-risk patients.   N Engl J Med. 2016;374(17):1609-1620. doi:10.1056/NEJMoa1514616PubMedGoogle ScholarCrossref
12.
Webb  JG, Doshi  D, Mack  MJ,  et al.  A randomized evaluation of the SAPIEN XT transcatheter heart valve system in patients with aortic stenosis who are not candidates for surgery.   JACC Cardiovasc Interv. 2015;8(14):1797-1806. doi:10.1016/j.jcin.2015.08.017PubMedGoogle ScholarCrossref
13.
Thourani  VH, Kodali  S, Makkar  RR,  et al.  Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis.   Lancet. 2016;387(10034):2218-2225. doi:10.1016/S0140-6736(16)30073-3PubMedGoogle ScholarCrossref
14.
Herrmann  HC, Thourani  VH, Kodali  SK,  et al; PARTNER Investigators.  One-year clinical outcomes with SAPIEN 3 transcatheter aortic valve replacement in high-risk and inoperable patients with severe aortic stenosis.   Circulation. 2016;134(2):130-140. doi:10.1161/CIRCULATIONAHA.116.022797PubMedGoogle ScholarCrossref
15.
Douglas  PS, Waugh  RA, Bloomfield  G,  et al.  Implementation of echocardiography core laboratory best practices: a case study of the PARTNER I trial.   J Am Soc Echocardiogr. 2013;26(4):348-358.e3. doi:10.1016/j.echo.2013.01.013PubMedGoogle ScholarCrossref
16.
Lang  RM, Badano  LP, Mor-Avi  V,  et al.  Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.   J Am Soc Echocardiogr. 2015;28(1):1-39.e14. doi:10.1016/j.echo.2014.10.003PubMedGoogle ScholarCrossref
17.
Kappetein  AP, Head  SJ, Généreux  P,  et al.  Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document.   J Am Coll Cardiol. 2012;60(15):1438-1454. doi:10.1016/j.jacc.2012.09.001PubMedGoogle ScholarCrossref
18.
Lindman  BR, Stewart  WJ, Pibarot  P,  et al.  Early regression of severe left ventricular hypertrophy after transcatheter aortic valve replacement is associated with decreased hospitalizations.   JACC Cardiovasc Interv. 2014;7(6):662-673. doi:10.1016/j.jcin.2014.02.011PubMedGoogle ScholarCrossref
19.
Reynolds  MR, Magnuson  EA, Wang  K,  et al; PARTNER Trial Investigators.  Health-related quality of life after transcatheter or surgical aortic valve replacement in high-risk patients with severe aortic stenosis: results from the PARTNER (Placement of Aortic Transcatheter Valve) trial (cohort A).   J Am Coll Cardiol. 2012;60(6):548-558. doi:10.1016/j.jacc.2012.03.075PubMedGoogle ScholarCrossref
20.
Arnold  SV, Spertus  JA, Lei  Y,  et al.  Use of the Kansas City Cardiomyopathy Questionnaire for monitoring health status in patients with aortic stenosis.   Circ Heart Fail. 2013;6(1):61-67. doi:10.1161/CIRCHEARTFAILURE.112.970053PubMedGoogle ScholarCrossref
21.
Lindman  BR, Clavel  MA, Abu-Alhayja’a  R,  et al.  Multimarker approach to identify patients with higher mortality and rehospitalization rate after surgical aortic valve replacement for aortic stenosis.   JACC Cardiovasc Interv. 2018;11(21):2172-2181. doi:10.1016/j.jcin.2018.07.039PubMedGoogle ScholarCrossref
22.
Eilers  PHC, Marx  BD.  Flexible smoothing with B-splines and penalties.   Stat Sci. 1996;11(2):89-102. doi:10.1214/ss/1038425655Google ScholarCrossref
23.
Januzzi  JL  Jr, Ahmad  T, Mulder  H,  et al.  Natriuretic peptide response and outcomes in chronic heart failure with reduced ejection fraction.   J Am Coll Cardiol. 2019;74(9):1205-1217. doi:10.1016/j.jacc.2019.06.055PubMedGoogle ScholarCrossref
24.
Myhre  PL, Vaduganathan  M, Claggett  B,  et al.  B-type natriuretic peptide during treatment with sacubitril/valsartan: the PARADIGM-HF trial.   J Am Coll Cardiol. 2019;73(11):1264-1272. doi:10.1016/j.jacc.2019.01.018PubMedGoogle ScholarCrossref
25.
Zile  MR, Claggett  BL, Prescott  MF,  et al.  Prognostic implications of changes in N-terminal pro-B-type natriuretic peptide in patients with heart failure.   J Am Coll Cardiol. 2016;68(22):2425-2436. doi:10.1016/j.jacc.2016.09.931PubMedGoogle ScholarCrossref
26.
Kafa  R, Kusunose  K, Goodman  AL,  et al.  Association of abnormal postoperative left ventricular global longitudinal strain with outcomes in severe aortic stenosis following aortic valve replacement.   JAMA Cardiol. 2016;1(4):494-496. doi:10.1001/jamacardio.2016.1132PubMedGoogle ScholarCrossref
27.
Chin  CWL, Everett  RJ, Kwiecinski  J,  et al.  Myocardial fibrosis and cardiac decompensation in aortic stenosis.   JACC Cardiovasc Imaging. 2017;10(11):1320-1333. doi:10.1016/j.jcmg.2016.10.007PubMedGoogle ScholarCrossref
28.
Weidemann  F, Herrmann  S, Störk  S,  et al.  Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis.   Circulation. 2009;120(7):577-584. doi:10.1161/CIRCULATIONAHA.108.847772PubMedGoogle ScholarCrossref
29.
Yotti  R, Bermejo  J, Gutiérrez-Ibañes  E,  et al.  Systemic vascular load in calcific degenerative aortic valve stenosis: insight from percutaneous valve replacement.   J Am Coll Cardiol. 2015;65(5):423-433. doi:10.1016/j.jacc.2014.10.067PubMedGoogle ScholarCrossref
30.
Daubert  MA, Adams  K, Yow  E,  et al.  NT-proBNP goal achievement is associated with significant reverse remodeling and improved clinical outcomes in HFrEF.   JACC Heart Fail. 2019;7(2):158-168. doi:10.1016/j.jchf.2018.10.014PubMedGoogle ScholarCrossref
31.
Januzzi  JL  Jr, Prescott  MF, Butler  J,  et al; PROVE-HF Investigators.  Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction.   JAMA. 2019;322(11):1085-1095. doi:10.1001/jama.2019.12821PubMedGoogle ScholarCrossref
32.
Arnold  SV, Afilalo  J, Spertus  JA,  et al; U.S. CoreValve Investigators.  Prediction of poor outcome after transcatheter aortic valve replacement.   J Am Coll Cardiol. 2016;68(17):1868-1877. doi:10.1016/j.jacc.2016.07.762PubMedGoogle ScholarCrossref
33.
Lindman  BR, Alexander  KP, O’Gara  PT, Afilalo  J.  Futility, benefit, and transcatheter aortic valve replacement.   JACC Cardiovasc Interv. 2014;7(7):707-716. doi:10.1016/j.jcin.2014.01.167PubMedGoogle ScholarCrossref
34.
Vemulapalli  S, Dai  D, Hammill  BG,  et al.  Hospital resource utilization before and after transcatheter aortic valve replacement: the STS/ACC TVT registry.   J Am Coll Cardiol. 2019;73(10):1135-1146. doi:10.1016/j.jacc.2018.12.049PubMedGoogle ScholarCrossref
35.
Kolte  D, Khera  S, Sardar  MR,  et al.  Thirty-day readmissions after transcatheter aortic valve replacement in the United States: insights from the Nationwide Readmissions Database.   Circ Cardiovasc Interv. 2017;10(1):e004472. doi:10.1161/CIRCINTERVENTIONS.116.004472PubMedGoogle Scholar
36.
Rader  F, Sachdev  E, Arsanjani  R, Siegel  RJ.  Left ventricular hypertrophy in valvular aortic stenosis: mechanisms and clinical implications.   Am J Med. 2015;128(4):344-352. doi:10.1016/j.amjmed.2014.10.054PubMedGoogle ScholarCrossref
37.
Inohara  T, Manandhar  P, Kosinski  AS,  et al.  Association of renin-angiotensin inhibitor treatment with mortality and heart failure readmission in patients with transcatheter aortic valve replacement.   JAMA. 2018;320(21):2231-2241. doi:10.1001/jama.2018.18077PubMedGoogle ScholarCrossref
38.
Ochiai  T, Saito  S, Yamanaka  F,  et al.  Renin-angiotensin system blockade therapy after transcatheter aortic valve implantation.   Heart. 2018;104(8):644-651. doi:10.1136/heartjnl-2017-311738PubMedGoogle ScholarCrossref
39.
Amat-Santos  IJ, Catalá  P, Diez Del Hoyo  F,  et al.  Impact of renin-angiotensin system inhibitors on clinical outcomes and ventricular remodelling after transcatheter aortic valve implantation: rationale and design of the RASTAVI randomised multicentre study.   BMJ Open. 2018;8(2):e020255. doi:10.1136/bmjopen-2017-020255PubMedGoogle Scholar
Original Investigation
July 15, 2020

Association of Natriuretic Peptide Levels After Transcatheter Aortic Valve Replacement With Subsequent Clinical Outcomes

Author Affiliations
  • 1Structural Heart and Valve Center, Vanderbilt University Medical Center, Nashville, Tennessee
  • 2Cardiovascular Medicine Division, Vanderbilt University Medical Center, Nashville, Tennessee
  • 3Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
  • 4Cardiovascular Research Foundation, New York, New York
  • 5Center for Interventional Vascular Therapy, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York
  • 6Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
  • 7Interventional Cardiology and Structural Heart Disease, Massachusetts General Hospital, Boston
  • 8Harvard Medical School, Cambridge, Massachusetts
  • 9Department of Cardiovascular Surgery, Marcus Heart and Vascular Center, Piedmont Heart Institute, Atlanta, Georgia
JAMA Cardiol. 2020;5(10):1113-1123. doi:10.1001/jamacardio.2020.2614
Key Points

Question  What is the prognostic significance of elevated B-type natriuretic peptide levels after transcatheter aortic valve replacement (TAVR)?

Findings  In this cohort study including 3391 patients, among patients at intermediate, high, and prohibitive surgical risk treated with TAVR, elevated B-type natriuretic peptide levels after TAVR were associated with an increased hazard for subsequent mortality and rehospitalization. Decreases in B-type natriuretic peptide levels during follow-up were associated with lower risk of subsequent events.

Meaning  Further studies are warranted to evaluate whether strategies targeting the pathobiology underlying elevated natriuretic peptide levels after TAVR will improve patient outcomes.

Abstract

Importance  Among those with aortic stenosis, natriuretic peptide levels can provide risk stratification, predict symptom onset, and aid decisions regarding the timing of valve replacement. Less is known about the prognostic significance and potential clinical utility of natriuretic peptide levels measured after valve replacement.

Objective  To determine the associations of elevated B-type natriuretic peptide (BNP) levels after transcatheter aortic valve replacement (TAVR) and change in BNP levels between follow-up time points with risk of subsequent clinical outcomes.

Design, Setting, and Participants  In this cohort study, patients with severe symptomatic aortic stenosis at intermediate, high, or prohibitive surgical risk for aortic valve replacement who underwent TAVR from the PARTNER IIA cohort, PARTNER IIB cohort, SAPIEN 3 intermediate-risk registry, and SAPIEN 3 high-risk registry were included. B-type natriuretic peptide levels were obtained at baseline and discharge as well as 30 days and 1 year after TAVR. For each measurement, a BNP ratio was calculated using measured BNP level divided by the upper limit of normal for the assay used. Outcomes were evaluated in landmark analyses out to 2 years. Data were collected from April 2011 to January 2019.

Main Outcomes and Measures  All-cause death, cardiovascular death, rehospitalization, and the combined end point of cardiovascular death or rehospitalization.

Results  Among 3391 included patients, 1969 (58.1%) were male, and the mean (SD) age was 82 (7.5) years. Most patients had a BNP ratio greater than 1 at each follow-up time point, including 2820 of 3256 (86.6%) at baseline, 2652 of 2995 (88.5%) at discharge, 1779 of 2209 (80.5%) at 30 days, and 1799 of 2391 (75.2%) at 1 year. After adjustment, every 1-point increase in BNP ratio at 30 days (approximately equivalent to an increase of 100 pg/mL in BNP) was associated with an increased hazard of all-cause death (adjusted hazard ratio [aHR], 1.11; 95% CI, 1.07-1.15), cardiovascular death (aHR, 1.16; 95% CI, 1.11-1.21), and rehospitalization (aHR, 1.08; 95% CI, 1.03-1.14) between 30 days and 2 years. Among those with a BNP ratio of 2 or more at discharge, after adjustment, every 1-point decrease in BNP ratio between discharge and 30 days was associated with a decreased hazard of all-cause death (aHR, 0.92; 95% CI, 0.88-0.96) between 30 days and 2 years.

Conclusions and Relevance  Elevated BNP levels after TAVR was independently associated with increased subsequent mortality and rehospitalizations. Further studies to determine how best to mitigate this risk are warranted.

×