[Skip to Navigation]
Sign In
Figure 1.  Diagnostic Yield of Stress Cardiovascular Magnetic Resonance Imaging (CMR) in Stable Chest Pain
Diagnostic Yield of Stress Cardiovascular Magnetic Resonance Imaging (CMR) in Stable Chest Pain

FFR indicates fractional flow reserve; ICA, invasive coronary angiography.

Figure 2.  Prognostic Value of Inducible Ischemia in Stable Chest Pain for All-Cause Death and Cardiovascular Death
Prognostic Value of Inducible Ischemia in Stable Chest Pain for All-Cause Death and Cardiovascular Death

Study-specific odds ratios were pooled using the Mantel-Haenszel method. The dashed vertical line represents the pooled effect estimate. Squares represent weighted point estimates of the effect of each study. The diamond size is proportional to the overall weight in the random-effects model.

Figure 3.  Prognostic Significance of Late Gadolinium Enhancement (LGE) in Stable Chest Pain
Prognostic Significance of Late Gadolinium Enhancement (LGE) in Stable Chest Pain

Study-specific odds ratios were pooled using the Mantel-Haenszel method. The dashed vertical line represents the pooled effect estimate. Squares represent weighted point estimates of the effect of each study. The diamond size is proportional to the overall weight in the random-effects model.

Figure 4.  Pooled annualized event rate (AER) by Stress Cardiovascular Magnetic Resonance Imaging FIndings in Stable Chest Pain
Pooled annualized event rate (AER) by Stress Cardiovascular Magnetic Resonance Imaging FIndings in Stable Chest Pain

P < .001 for all comparisons. AER indicates annualized event rate; CV, cardiovascular; LGE, late gadolinium enhancement.

Figure 5.  Prognostic Value of Inducible Ischemia in Stable Chest Pain for Major Adverse Cardiac Events
Prognostic Value of Inducible Ischemia in Stable Chest Pain for Major Adverse Cardiac Events

Study-specific odds ratios were pooled using the Mantel-Haenszel method. The dashed vertical line represents the pooled effect estimate. Squares represent weighted point estimates of the effect of each study. The diamond size is proportional to the overall weight in the random-effects model.

1.
Knuuti  J, Wijns  W, Saraste  A,  et al; ESC Scientific Document Group.  2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes.   Eur Heart J. 2020;41(3):407-477. doi:10.1093/eurheartj/ehz425 PubMedGoogle ScholarCrossref
2.
Gulati  M, Levy  PD, Mukherjee  D,  et al.  2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.  Circulation. 2021;144(22):e368-e454. doi:10.1161/CIR.0000000000001029PubMedCrossref
3.
Patel  AR, Salerno  M, Kwong  RY, Singh  A, Heydari  B, Kramer  CM.  Stress cardiac magnetic resonance myocardial perfusion imaging: JACC review topic of the week.   J Am Coll Cardiol. 2021;78(16):1655-1668. doi:10.1016/j.jacc.2021.08.022 PubMedGoogle ScholarCrossref
4.
Edvardsen  T, Asch  FM, Davidson  B,  et al.  Non-invasive imaging in coronary syndromes: recommendations of the European Association of Cardiovascular Imaging and the American Society of Echocardiography, in collaboration with the American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance.   Eur Heart J Cardiovasc Imaging. 2022;23(2):e6-e33. doi:10.1093/ehjci/jeab244 PubMedGoogle ScholarCrossref
5.
Bruder  O, Wagner  A, Lombardi  M,  et al.  European Cardiovascular Magnetic Resonance (EuroCMR) registry—multi national results from 57 centers in 15 countries.   J Cardiovasc Magn Reson. 2013;15(1):9. doi:10.1186/1532-429X-15-9 PubMedGoogle ScholarCrossref
6.
Kwong  RY, Petersen  SE, Schulz-Menger  J,  et al; Global Cardiovascular Magnetic Resonance Registry (GCMR) Investigators.  The Global Cardiovascular Magnetic Resonance Registry (GCMR) of the Society for Cardiovascular Magnetic Resonance (SCMR): its goals, rationale, data infrastructure, and current developments.   J Cardiovasc Magn Reson. 2017;19(1):23. doi:10.1186/s12968-016-0321-7 PubMedGoogle ScholarCrossref
7.
Kwong  RY, Ge  Y, Steel  K,  et al.  Cardiac magnetic resonance stress perfusion imaging for evaluation of patients with chest pain.   J Am Coll Cardiol. 2019;74(14):1741-1755. doi:10.1016/j.jacc.2019.07.074 PubMedGoogle ScholarCrossref
8.
Arai  AE, Schulz-Menger  J, Berman  D,  et al; GadaCAD Investigators.  Gadobutrol-enhanced cardiac magnetic resonance imaging for detection of coronary artery disease.   J Am Coll Cardiol. 2020;76(13):1536-1547. doi:10.1016/j.jacc.2020.07.060 PubMedGoogle ScholarCrossref
9.
Nagel  E, Greenwood  JP, McCann  GP,  et al; MR-INFORM Investigators.  Magnetic resonance perfusion or fractional flow reserve in coronary disease.   N Engl J Med. 2019;380(25):2418-2428. doi:10.1056/NEJMoa1716734 PubMedGoogle ScholarCrossref
10.
Nissen  L, Winther  S, Westra  J,  et al.  Diagnosing coronary artery disease after a positive coronary computed tomography angiography: the Dan-NICAD open label, parallel, head to head, randomized controlled diagnostic accuracy trial of cardiovascular magnetic resonance and myocardial perfusion scintigraphy.   Eur Heart J Cardiovasc Imaging. 2018;19(4):369-377. doi:10.1093/ehjci/jex342 PubMedGoogle ScholarCrossref
11.
Haberkorn  SM, Haberkorn  SI, Bönner  F, Kelm  M, Hopkin  G, Petersen  SE.  Vasodilator myocardial perfusion cardiac magnetic resonance imaging is superior to dobutamine stress echocardiography in the detection of relevant coronary artery stenosis: a systematic review and meta-analysis on their diagnostic accuracy.   Front Cardiovasc Med. 2021;8:630846. doi:10.3389/fcvm.2021.630846 PubMedGoogle ScholarCrossref
12.
Danad  I, Szymonifka  J, Twisk  JWR,  et al.  Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis.  Eur Heart J. 2017;38(13):991-998. doi:10.1093/eurheartj/ehw095PubMedCrossref
13.
Smulders  MW, Jaarsma  C, Nelemans  PJ,  et al.  Comparison of the prognostic value of negative non-invasive cardiac investigations in patients with suspected or known coronary artery disease—a meta-analysis.   Eur Heart J Cardiovasc Imaging. 2017;18(9):980-987. doi:10.1093/ehjci/jex014 PubMedGoogle ScholarCrossref
14.
El Aidi  H, Adams  A, Moons  KGM,  et al.  Cardiac magnetic resonance imaging findings and the risk of cardiovascular events in patients with recent myocardial infarction or suspected or known coronary artery disease: a systematic review of prognostic studies.   J Am Coll Cardiol. 2014;63(11):1031-1045. doi:10.1016/j.jacc.2013.11.048 PubMedGoogle ScholarCrossref
15.
Page  MJ, McKenzie  JE, Bossuyt  PM,  et al.  The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.   Syst Rev. 2021;10(1):89. doi:10.1186/s13643-021-01626-4 PubMedGoogle ScholarCrossref
16.
Higgins  J, Thomas  J, Chandler  J,  et al, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.3. The Cochrane Collaboration; 2022. Accessed May 2, 2023. https://training.cochrane.org/handbook/current
17.
Whiting  PF, Rutjes  AWS, Westwood  ME,  et al; QUADAS-2 Group.  QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.   Ann Intern Med. 2011;155(8):529-536. doi:10.7326/0003-4819-155-8-201110180-00009 PubMedGoogle ScholarCrossref
18.
Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute. 2021. Accessed November 11, 2021. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
19.
Furuya-Kanamori  L, Kostoulas  P, Doi  SAR.  A new method for synthesizing test accuracy data outperformed the bivariate method.   J Clin Epidemiol. 2021;132:51-58. doi:10.1016/j.jclinepi.2020.12.015 PubMedGoogle ScholarCrossref
20.
Hartung  J, Knapp  G.  A refined method for the meta-analysis of controlled clinical trials with binary outcome.   Stat Med. 2001;20(24):3875-3889. doi:10.1002/sim.1009 PubMedGoogle ScholarCrossref
21.
Baujat  B, Mahé  C, Pignon  JP, Hill  C.  A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials.   Stat Med. 2002;21(18):2641-2652. doi:10.1002/sim.1221 PubMedGoogle ScholarCrossref
22.
Deeks  JJ, Macaskill  P, Irwig  L.  The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed.   J Clin Epidemiol. 2005;58(9):882-893. doi:10.1016/j.jclinepi.2005.01.016 PubMedGoogle ScholarCrossref
23.
Egger  M, Davey Smith  G, Schneider  M, Minder  C.  Bias in meta-analysis detected by a simple, graphical test.   BMJ. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629 PubMedGoogle ScholarCrossref
24.
Hachamovitch  R, Hayes  S, Friedman  JD,  et al.  Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan?   J Am Coll Cardiol. 2003;41(8):1329-1340. doi:10.1016/S0735-1097(03)00125-6 PubMedGoogle ScholarCrossref
25.
Becker  M, Hundemer  A, Zwicker  C,  et al.  Detection of coronary artery disease in postmenopausal women: the significance of integrated stress imaging tests in a 4-year prognostic study.   Clin Res Cardiol. 2015;104(3):258-271. doi:10.1007/s00392-014-0780-5 PubMedGoogle ScholarCrossref
26.
Bernhardt  P, Spiess  J, Levenson  B,  et al.  Combined assessment of myocardial perfusion and late gadolinium enhancement in patients after percutaneous coronary intervention or bypass grafts: a multicenter study of an integrated cardiovascular magnetic resonance protocol.   JACC Cardiovasc Imaging. 2009;2(11):1292-1300. doi:10.1016/j.jcmg.2009.05.011 PubMedGoogle ScholarCrossref
27.
Bettencourt  N, Chiribiri  A, Schuster  A,  et al.  Cardiac magnetic resonance myocardial perfusion imaging for detection of functionally significant obstructive coronary artery disease: a prospective study.   Int J Cardiol. 2013;168(2):765-773. doi:10.1016/j.ijcard.2012.09.231 PubMedGoogle ScholarCrossref
28.
Biglands  JD, Ibraheem  M, Magee  DR, Radjenovic  A, Plein  S, Greenwood  JP.  Quantitative myocardial perfusion imaging versus visual analysis in diagnosing myocardial ischemia: a CE-MARC substudy.   JACC Cardiovasc Imaging. 2018;11(5):711-718. doi:10.1016/j.jcmg.2018.02.019 PubMedGoogle ScholarCrossref
29.
Chen  MY, Bandettini  WP, Shanbhag  SM,  et al.  Concordance and diagnostic accuracy of vasodilator stress cardiac MRI and 320-detector row coronary CTA.   Int J Cardiovasc Imaging. 2014;30(1):109-119. doi:10.1007/s10554-013-0300-0 PubMedGoogle ScholarCrossref
30.
Doesch  C, Seeger  A, Hoevelborn  T,  et al.  Adenosine stress cardiac magnetic resonance imaging for the assessment of ischemic heart disease.   Clin Res Cardiol. 2008;97(12):905-912. doi:10.1007/s00392-008-0708-z PubMedGoogle ScholarCrossref
31.
Doyle  M, Fuisz  A, Kortright  E,  et al.  The impact of myocardial flow reserve on the detection of coronary artery disease by perfusion imaging methods: an NHLBI WISE study.   J Cardiovasc Magn Reson. 2003;5(3):475-485. doi:10.1081/JCMR-120022263 PubMedGoogle ScholarCrossref
32.
Gebker  R, Frick  M, Jahnke  C,  et al.  Value of additional myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of intermediate coronary artery disease.   Int J Cardiovasc Imaging. 2012;28(1):89-97. doi:10.1007/s10554-010-9764-3 PubMedGoogle ScholarCrossref
33.
Gebker  R, Jahnke  C, Manka  R,  et al.  Additional value of myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of coronary artery disease.   Circ Cardiovasc Imaging. 2008;1(2):122-130. doi:10.1161/CIRCIMAGING.108.779108 PubMedGoogle ScholarCrossref
34.
Gebker  R, Jahnke  C, Paetsch  I,  et al.  Diagnostic performance of myocardial perfusion MR at 3 T in patients with coronary artery disease.   Radiology. 2008;247(1):57-63. doi:10.1148/radiol.2471070596 PubMedGoogle ScholarCrossref
35.
Greenwood  JP, Maredia  N, Younger  JF,  et al.  Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial.   Lancet. 2012;379(9814):453-460. doi:10.1016/S0140-6736(11)61335-4 PubMedGoogle ScholarCrossref
36.
Greulich  S, Steubing  H, Birkmeier  S,  et al.  Impact of arrhythmia on diagnostic performance of adenosine stress CMR in patients with suspected or known coronary artery disease.   J Cardiovasc Magn Reson. 2015;17:94. doi:10.1186/s12968-015-0195-0 PubMedGoogle ScholarCrossref
37.
Hamada  S, Gotschy  A, Wissmann  L,  et al.  Multi-centre study of whole-heart dynamic 3D cardiac magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: gender based analysis of diagnostic performance.   Eur Heart J Cardiovasc Imaging. 2017;18(10):1099-1106. doi:10.1093/ehjci/jex160 PubMedGoogle ScholarCrossref
38.
Husser  O, Bodí  V, Sanchís  J,  et al.  Additional diagnostic value of systolic dysfunction induced by dipyridamole stress cardiac magnetic resonance used in detecting coronary artery disease.   Rev Esp Cardiol. 2009;62(4):383-391. doi:10.1016/S0300-8932(09)70895-4 PubMedGoogle ScholarCrossref
39.
Ishida  N, Sakuma  H, Motoyasu  M,  et al.  Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography.   Radiology. 2003;229(1):209-216. doi:10.1148/radiol.2291021118 PubMedGoogle ScholarCrossref
40.
Klem  I, Greulich  S, Heitner  JF,  et al.  Value of cardiovascular magnetic resonance stress perfusion testing for the detection of coronary artery disease in women.   JACC Cardiovasc Imaging. 2008;1(4):436-445. doi:10.1016/j.jcmg.2008.03.010 PubMedGoogle ScholarCrossref
41.
Klumpp  B, Miller  S, Seeger  A,  et al.  Is the diagnostic yield of myocardial stress perfusion MRI impaired by three-vessel coronary artery disease?   Acta Radiol. 2015;56(2):143-151. doi:10.1177/0284185114523758 PubMedGoogle ScholarCrossref
42.
Kotecha  T, Chacko  L, Chehab  O,  et al.  Assessment of multivessel coronary artery disease using cardiovascular magnetic resonance pixelwise quantitative perfusion mapping.   JACC Cardiovasc Imaging. 2020;13(12):2546-2557. doi:10.1016/j.jcmg.2020.06.041 PubMedGoogle ScholarCrossref
43.
Manka  R, Jahnke  C, Kozerke  S,  et al.  Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting.   J Am Coll Cardiol. 2011;57(4):437-444. doi:10.1016/j.jacc.2010.05.067 PubMedGoogle ScholarCrossref
44.
Manka  R, Paetsch  I, Kozerke  S,  et al.  Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location.   Eur Heart J. 2012;33(16):2016-2024. doi:10.1093/eurheartj/ehs170 PubMedGoogle ScholarCrossref
45.
Manka  R, Wissmann  L, Gebker  R,  et al.  Multicenter evaluation of dynamic three-dimensional magnetic resonance myocardial perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve.   Circ Cardiovasc Imaging. 2015;8(5):e003061. doi:10.1161/CIRCIMAGING.114.003061 PubMedGoogle ScholarCrossref
46.
Merkle  N, Wöhrle  J, Nusser  T,  et al.  Diagnostic performance of magnetic resonance first pass perfusion imaging is equally potent in female compared to male patients with coronary artery disease.   Clin Res Cardiol. 2010;99(1):21-28. doi:10.1007/s00392-009-0071-8 PubMedGoogle ScholarCrossref
47.
Min  JY, Ko  SM, Song  IY, Yi  JG, Hwang  HK, Shin  JK.  Comparison of the diagnostic accuracies of 1.5T and 3T stress myocardial perfusion cardiovascular magnetic resonance for detecting significant coronary artery disease.   Korean J Radiol. 2018;19(6):1007-1020. doi:10.3348/kjr.2018.19.6.1007 PubMedGoogle ScholarCrossref
48.
Motwani  M, Maredia  N, Fairbairn  TA,  et al.  High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease.   Circ Cardiovasc Imaging. 2012;5(3):306-313. doi:10.1161/CIRCIMAGING.111.971796 PubMedGoogle ScholarCrossref
49.
Pilz  G, Bernhardt  P, Klos  M, Ali  E, Wild  M, Höfling  B.  Clinical implication of adenosine-stress cardiac magnetic resonance imaging as potential gatekeeper prior to invasive examination in patients with AHA/ACC class II indication for coronary angiography.   Clin Res Cardiol. 2006;95(10):531-538. doi:10.1007/s00392-006-0422-7 PubMedGoogle ScholarCrossref
50.
Schwitter  J, Wacker  CM, van Rossum  AC,  et al.  MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial.   Eur Heart J. 2008;29(4):480-489. doi:10.1093/eurheartj/ehm617 PubMedGoogle ScholarCrossref
51.
Schwitter  J, Wacker  CM, Wilke  N,  et al; MR-IMPACT Investigators.  MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial.   Eur Heart J. 2013;34(10):775-781. doi:10.1093/eurheartj/ehs022 PubMedGoogle ScholarCrossref
52.
Takase  B, Nagata  M, Kihara  T,  et al.  Whole-heart dipyridamole stress first-pass myocardial perfusion MRI for the detection of coronary artery disease.   Jpn Heart J. 2004;45(3):475-486. doi:10.1536/jhj.45.475 PubMedGoogle ScholarCrossref
53.
Ebersberger  U, Makowski  MR, Schoepf  UJ,  et al.  Magnetic resonance myocardial perfusion imaging at 3.0 Tesla for the identification of myocardial ischaemia: comparison with coronary catheter angiography and fractional flow reserve measurements.   Eur Heart J Cardiovasc Imaging. 2013;14(12):1174-1180. doi:10.1093/ehjci/jet074 PubMedGoogle ScholarCrossref
54.
Ramos  V, Bettencourt  N, Silva  J,  et al.  Noninvasive anatomical and functional assessment of coronary artery disease.   Rev Port Cardiol. 2015;34(4):223-232. doi:10.1016/j.repc.2014.10.008 PubMedGoogle ScholarCrossref
55.
Watkins  S, McGeoch  R, Lyne  J,  et al.  Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease.   Circulation. 2009;120(22):2207-2213. doi:10.1161/CIRCULATIONAHA.109.872358 PubMedGoogle ScholarCrossref
56.
Catalano  O, Moro  G, Mori  A,  et al.  Cardiac magnetic resonance in stable coronary artery disease: added prognostic value to conventional risk profiling.   Biomed Res Int. 2018;2018:2806148. doi:10.1155/2018/2806148 PubMedGoogle ScholarCrossref
57.
Esteban-Fernández  A, Bastarrika  G, Castanon  E,  et al.  Prognostic role of stress cardiac magnetic resonance in the elderly.   Rev Esp Cardiol (Engl Ed). 2020;73(3):241-247. doi:10.1016/j.rec.2019.02.007 PubMedGoogle ScholarCrossref
58.
Heitner  JF, Kim  RJ, Kim  HW,  et al.  Prognostic value of vasodilator stress cardiac magnetic resonance imaging: a multicenter study with 48 000 patient-years of follow-up.   JAMA Cardiol. 2019;4(3):256-264. doi:10.1001/jamacardio.2019.0035 PubMedGoogle ScholarCrossref
59.
Hundley  WG, Morgan  TM, Neagle  CM, Hamilton  CA, Rerkpattanapipat  P, Link  KM.  Magnetic resonance imaging determination of cardiac prognosis.   Circulation. 2002;106(18):2328-2333. doi:10.1161/01.CIR.0000036017.46437.02 PubMedGoogle ScholarCrossref
60.
Klumpp  B, Seeger  A, Bretschneider  C,  et al.  Is myocardial stress perfusion MR-imaging suitable to predict the long term clinical outcome after revascularization?   Eur J Radiol. 2013;82(10):1776-1782. doi:10.1016/j.ejrad.2013.06.003 PubMedGoogle ScholarCrossref
61.
Knott  KD, Seraphim  A, Augusto  JB,  et al.  The prognostic significance of quantitative myocardial perfusion: an artificial intelligence–based approach using perfusion mapping.   Circulation. 2020;141(16):1282-1291. doi:10.1161/CIRCULATIONAHA.119.044666 PubMedGoogle ScholarCrossref
62.
Macwar  RR, Williams  BA, Shirani  J.  Prognostic value of adenosine cardiac magnetic resonance imaging in patients presenting with chest pain.   Am J Cardiol. 2013;112(1):46-50. doi:10.1016/j.amjcard.2013.02.054 PubMedGoogle ScholarCrossref
63.
Marcos-Garces  V, Gavara  J, Monmeneu  JV,  et al.  Vasodilator stress CMR and all-cause mortality in stable ischemic heart disease: a large retrospective registry.   JACC Cardiovasc Imaging. 2020;13(8):1674-1686. doi:10.1016/j.jcmg.2020.02.027 PubMedGoogle ScholarCrossref
64.
Pezel  T, Unterseeh  T, Garot  P,  et al.  Long-term prognostic value of stress cardiovascular magnetic resonance-related coronary revascularization to predict death: a large registry with >200 000 patient-years of follow-up.   Circ Cardiovasc Imaging. 2021;14(10):e012789. doi:10.1161/CIRCIMAGING.121.012789 PubMedGoogle ScholarCrossref
65.
Shah  R, Heydari  B, Coelho-Filho  O,  et al.  Stress cardiac magnetic resonance imaging provides effective cardiac risk reclassification in patients with known or suspected stable coronary artery disease.   Circulation. 2013;128(6):605-614. doi:10.1161/CIRCULATIONAHA.113.001430 PubMedGoogle ScholarCrossref
66.
Bingham  SE, Hachamovitch  R.  Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events.   Circulation. 2011;123(14):1509-1518. doi:10.1161/CIRCULATIONAHA.109.907659 PubMedGoogle ScholarCrossref
67.
Bodi  V, Husser  O, Sanchis  J,  et al.  Prognostic implications of dipyridamole cardiac MR imaging: a prospective multicenter registry.   Radiology. 2012;262(1):91-100. doi:10.1148/radiol.11110134 PubMedGoogle ScholarCrossref
68.
Coelho-Filho  OR, Seabra  LF, Mongeon  FP,  et al.  Stress myocardial perfusion imaging by CMR provides strong prognostic value to cardiac events regardless of patient’s sex.   JACC Cardiovasc Imaging. 2011;4(8):850-861. doi:10.1016/j.jcmg.2011.04.015 PubMedGoogle ScholarCrossref
69.
Freed  BH, Narang  A, Bhave  NM,  et al.  Prognostic value of normal regadenoson stress perfusion cardiovascular magnetic resonance.   J Cardiovasc Magn Reson. 2013;15(1):108. doi:10.1186/1532-429X-15-108 PubMedGoogle ScholarCrossref
70.
Kuijpers  D, van Dijkman  PRM, Janssen  CHC, Vliegenthart  R, Zijlstra  F, Oudkerk  M.  Dobutamine stress MRI. part II. risk stratification with dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia.   Eur Radiol. 2004;14(11):2046-2052. doi:10.1007/s00330-004-2426-x PubMedGoogle ScholarCrossref
71.
Lo  KY, Leung  KF, Chu  CM, Loke  KL, Chan  CK, Yue  CS.  Prognostic value of adenosine stress myocardial perfusion by cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease.   QJM. 2011;104(5):425-432. doi:10.1093/qjmed/hcq238 PubMedGoogle ScholarCrossref
72.
Ng  MY, Chin  CY, Yap  PM,  et al.  Prognostic value of perfusion cardiovascular magnetic resonance with adenosine triphosphate stress in stable coronary artery disease.   J Cardiovasc Magn Reson. 2021;23(1):75. doi:10.1186/s12968-021-00770-z PubMedGoogle ScholarCrossref
73.
Pezel  T, Garot  P, Kinnel  M,  et al.  Long-term prognostic value of ischaemia and cardiovascular magnetic resonance–related revascularization for stable coronary disease, irrespective of patient’s sex: a large retrospective study.   Eur Heart J Cardiovasc Imaging. 2021;22(11):1321-1331. doi:10.1093/ehjci/jeab186 PubMedGoogle ScholarCrossref
74.
Pezel  T, Unterseeh  T, Kinnel  M,  et al.  Long-term prognostic value of stress perfusion cardiovascular magnetic resonance in patients without known coronary artery disease.   J Cardiovasc Magn Reson. 2021;23(1):43. doi:10.1186/s12968-021-00737-0 PubMedGoogle ScholarCrossref
75.
Pontone  G, Andreini  D, Bertella  E,  et al.  Prognostic value of dipyridamole stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a mid-term follow-up study.   Eur Radiol. 2016;26(7):2155-2165. doi:10.1007/s00330-015-4064-x PubMedGoogle ScholarCrossref
76.
Wallace  EL, Morgan  TM, Walsh  TF,  et al.  Dobutamine cardiac magnetic resonance results predict cardiac prognosis in women with known or suspected ischemic heart disease.   JACC Cardiovasc Imaging. 2009;2(3):299-307. doi:10.1016/j.jcmg.2008.10.015 PubMedGoogle ScholarCrossref
77.
Abbasi  SA, Heydari  B, Shah  RV,  et al.  Risk stratification by regadenoson stress magnetic resonance imaging in patients with known or suspected coronary artery disease.   Am J Cardiol. 2014;114(8):1198-1203. doi:10.1016/j.amjcard.2014.07.041 PubMedGoogle ScholarCrossref
78.
Bikiri  E, Mereles  D, Voss  A,  et al.  Dobutamine stress cardiac magnetic resonance versus echocardiography for the assessment of outcome in patients with suspected or known coronary artery disease: are the two imaging modalities comparable?   Int J Cardiol. 2014;171(2):153-160. doi:10.1016/j.ijcard.2013.11.038 PubMedGoogle ScholarCrossref
79.
Heydari  B, Juan  YH, Liu  H,  et al.  Stress perfusion cardiac magnetic resonance imaging effectively risk stratifies diabetic patients with suspected myocardial ischemia.   Circ Cardiovasc Imaging. 2016;9(4):e004136. doi:10.1161/CIRCIMAGING.115.004136 PubMedGoogle ScholarCrossref
80.
Jahnke  C, Nagel  E, Gebker  R,  et al.  Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging.   Circulation. 2007;115(13):1769-1776. doi:10.1161/CIRCULATIONAHA.106.652016 PubMedGoogle ScholarCrossref
81.
Kelle  S, Egnell  C, Vierecke  J,  et al.  Prognostic value of negative dobutamine-stress cardiac magnetic resonance imaging.   Med Sci Monit. 2009;15(10):MT131-MT136.PubMedGoogle Scholar
82.
Lubbers  DD, Rijlaarsdam-Hermsen  D, Kuijpers  D,  et al.  Performance of adenosine “stress-only” perfusion MRI in patients without a history of myocardial infarction: a clinical outcome study.   Int J Cardiovasc Imaging. 2012;28(1):109-115. doi:10.1007/s10554-010-9775-0 PubMedGoogle ScholarCrossref
83.
Shah  RV, Heydari  B, Coelho-Filho  O,  et al.  Vasodilator stress perfusion CMR imaging is feasible and prognostic in obese patients.   JACC Cardiovasc Imaging. 2014;7(5):462-472. doi:10.1016/j.jcmg.2013.11.011 PubMedGoogle ScholarCrossref
84.
Tonino  PAL, Fearon  WF, De Bruyne  B,  et al.  Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation.   J Am Coll Cardiol. 2010;55(25):2816-2821. doi:10.1016/j.jacc.2009.11.096 PubMedGoogle ScholarCrossref
85.
De Bruyne  B, Fearon  WF, Pijls  NHJ,  et al; FAME 2 Trial Investigators.  Fractional flow reserve–guided PCI for stable coronary artery disease.   N Engl J Med. 2014;371(13):1208-1217. doi:10.1056/NEJMoa1408758 PubMedGoogle ScholarCrossref
86.
Jaarsma  C, Leiner  T, Bekkers  SC,  et al.  Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis.   J Am Coll Cardiol. 2012;59(19):1719-1728. doi:10.1016/j.jacc.2011.12.040 PubMedGoogle ScholarCrossref
87.
Yang  K, Yu  SQ, Lu  MJ, Zhao  SH.  Comparison of diagnostic accuracy of stress myocardial perfusion imaging for detecting hemodynamically significant coronary artery disease between cardiac magnetic resonance and nuclear medical imaging: a meta-analysis.   Int J Cardiol. 2019;293:278-285. doi:10.1016/j.ijcard.2019.06.054 PubMedGoogle ScholarCrossref
88.
Cheng  ASH, Pegg  TJ, Karamitsos  TD,  et al.  Cardiovascular magnetic resonance perfusion imaging at 3-Tesla for the detection of coronary artery disease: a comparison with 1.5-Tesla.   J Am Coll Cardiol. 2007;49(25):2440-2449. doi:10.1016/j.jacc.2007.03.028 PubMedGoogle ScholarCrossref
89.
Bernhardt  P, Walcher  T, Rottbauer  W, Wöhrle  J.  Quantification of myocardial perfusion reserve at 1.5 and 3.0 Tesla: a comparison to fractional flow reserve.   Int J Cardiovasc Imaging. 2012;28(8):2049-2056. doi:10.1007/s10554-012-0037-1 PubMedGoogle ScholarCrossref
90.
Walcher  T, Ikuye  K, Rottbauer  W, Wöhrle  J, Bernhardt  P.  Is contrast-enhanced cardiac magnetic resonance imaging at 3 T superior to 1.5 T for detection of coronary artery disease?   Int J Cardiovasc Imaging. 2013;29(2):355-361. doi:10.1007/s10554-012-0099-0 PubMedGoogle ScholarCrossref
91.
Sharrack  N, Chiribiri  A, Schwitter  J, Plein  S.  How to do quantitative myocardial perfusion cardiovascular magnetic resonance.   Eur Heart J Cardiovasc Imaging. 2022;23(3):315-318. doi:10.1093/ehjci/jeab193 PubMedGoogle ScholarCrossref
92.
Vasu  S, Bandettini  WP, Hsu  LY,  et al.  Regadenoson and adenosine are equivalent vasodilators and are superior than dipyridamole: a study of first pass quantitative perfusion cardiovascular magnetic resonance.   J Cardiovasc Magn Reson. 2013;15(1):85. doi:10.1186/1532-429X-15-85 PubMedGoogle ScholarCrossref
93.
Lijmer  JG, Mol  BW, Heisterkamp  S,  et al.  Empirical evidence of design-related bias in studies of diagnostic tests.   JAMA. 1999;282(11):1061-1066. doi:10.1001/jama.282.11.1061 PubMedGoogle ScholarCrossref
94.
Pijls  NH, De Bruyne  B, Peels  K,  et al.  Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses.   N Engl J Med. 1996;334(26):1703-1708. doi:10.1056/NEJM199606273342604 PubMedGoogle ScholarCrossref
95.
van de Hoef  TP, Meuwissen  M, Escaned  J,  et al.  Fractional flow reserve as a surrogate for inducible myocardial ischaemia.   Nat Rev Cardiol. 2013;10(8):439-452. doi:10.1038/nrcardio.2013.86 PubMedGoogle ScholarCrossref
96.
Soares  A, Brown  DL.  The fallacies of fractional flow reserve.   Int J Cardiol. 2020;302:34-35. doi:10.1016/j.ijcard.2019.12.040 PubMedGoogle ScholarCrossref
97.
Neumann FJ, Sousa-Uva M, Ahlsson A, et al; ESC Scientific Document Group. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87-165. doi:10.1093/eurheartj/ehy394Crossref
98.
Mohdnazri  SR, Keeble  TR, Sharp  AS.  Fractional flow reserve: does a cut-off value add value?   Interv Cardiol. 2016;11(1):17-26. doi:10.15420/icr.2016:7:2 PubMedGoogle ScholarCrossref
99.
Johnson  NP, Tóth  GG, Lai  D,  et al.  Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes.   J Am Coll Cardiol. 2014;64(16):1641-1654. doi:10.1016/j.jacc.2014.07.973 PubMedGoogle ScholarCrossref
100.
Siontis  GC, Mavridis  D, Greenwood  JP,  et al.  Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials.   BMJ. 2018;360:k504. doi:10.1136/bmj.k504 PubMedGoogle ScholarCrossref
101.
Pandya  A, Yu  YJ, Ge  Y,  et al.  Evidence-based cardiovascular magnetic resonance cost-effectiveness calculator for the detection of significant coronary artery disease.   J Cardiovasc Magn Reson. 2022;24(1):1. doi:10.1186/s12968-021-00833-1 PubMedGoogle ScholarCrossref
102.
Ge  Y, Pandya  A, Steel  K,  et al.  Cost-effectiveness analysis of stress cardiovascular magnetic resonance imaging for stable chest pain syndromes.   JACC Cardiovasc Imaging. 2020;13(7):1505-1517. doi:10.1016/j.jcmg.2020.02.029 PubMedGoogle ScholarCrossref
103.
Ge Y, Steel K, Antiochos P, et al. Stress CMR in patients with obesity: insights from the Stress CMR Perfusion Imaging in the United States (SPINS) registry. Eur Heart J Cardiovasc Imaging. 2021;22(5):518-527. doi:10.1093/ehjci/jeaa281Crossref
104.
Greenwood  JP, Walker  S.  Stress CMR imaging for stable chest pain syndromes: underused and undervalued?   JACC Cardiovasc Imaging. 2020;13(7):1518-1520. doi:10.1016/j.jcmg.2020.04.006 PubMedGoogle ScholarCrossref
105.
Schwitter  J.  The SPINS trial: building evidence and a consequence?   J Am Coll Cardiol. 2019;74(14):1756-1759. doi:10.1016/j.jacc.2019.07.075 PubMedGoogle ScholarCrossref
106.
Gargiulo  P, Dellegrottaglie  S, Bruzzese  D,  et al.  The prognostic value of normal stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a meta-analysis.   Circ Cardiovasc Imaging. 2013;6(4):574-582. doi:10.1161/CIRCIMAGING.113.000035 PubMedGoogle ScholarCrossref
107.
Lipinski  MJ, McVey  CM, Berger  JS, Kramer  CM, Salerno  M.  Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis.   J Am Coll Cardiol. 2013;62(9):826-838. doi:10.1016/j.jacc.2013.03.080 PubMedGoogle ScholarCrossref
108.
Jukema  R, Maaniitty  T, van Diemen  P,  et al.  Warranty period of coronary computed tomography angiography and [15O]H2O positron emission tomography in symptomatic patients.   Eur Heart J Cardiovasc Imaging. 2023;24(3):304-311. doi:10.1093/ehjci/jeac258 PubMedGoogle ScholarCrossref
109.
Xu  J, Cai  F, Geng  C, Wang  Z, Tang  X.  Diagnostic performance of CMR, SPECT, and PET imaging for the identification of coronary artery disease: a meta-analysis.   Front Cardiovasc Med. 2021;8:621389. doi:10.3389/fcvm.2021.621389 PubMedGoogle ScholarCrossref
110.
Pontone  G, Guaricci  AI, Palmer  SC,  et al.  Diagnostic performance of non-invasive imaging for stable coronary artery disease: a meta-analysis.   Int J Cardiol. 2020;300:276-281. doi:10.1016/j.ijcard.2019.10.046 PubMedGoogle ScholarCrossref
111.
Knuuti  J, Ballo  H, Juarez-Orozco  LE,  et al.  The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability.   Eur Heart J. 2018;39(35):3322-3330. doi:10.1093/eurheartj/ehy267 PubMedGoogle ScholarCrossref
112.
Jeremias  A, Kirtane  AJ, Stone  GW.  A test in context: fractional flow reserve: accuracy, prognostic implications, and limitations.   J Am Coll Cardiol. 2017;69(22):2748-2758. doi:10.1016/j.jacc.2017.04.019 PubMedGoogle ScholarCrossref
113.
Manisty  C, Ripley  DP, Herrey  AS,  et al.  Splenic switch-off: a tool to assess stress adequacy in adenosine perfusion cardiac MR imaging.   Radiology. 2015;276(3):732-740. doi:10.1148/radiol.2015142059 PubMedGoogle ScholarCrossref
114.
Kotecha  T, Monteagudo  JM, Martinez-Naharro  A,  et al.  Quantitative cardiovascular magnetic resonance myocardial perfusion mapping to assess hyperaemic response to adenosine stress.   Eur Heart J Cardiovasc Imaging. 2021;22(3):273-281. doi:10.1093/ehjci/jeaa252 PubMedGoogle ScholarCrossref
115.
Burrage  MK, Shanmuganathan  M, Masi  A,  et al.  Cardiovascular magnetic resonance stress and rest T1-mapping using regadenoson for detection of ischemic heart disease compared to healthy controls.   Int J Cardiol. 2021;333:239-245. doi:10.1016/j.ijcard.2021.03.010 PubMedGoogle ScholarCrossref
116.
Cerqueira  MD, Nguyen  P, Staehr  P, Underwood  SR, Iskandrian  AE; ADVANCE-MPI Trial Investigators.  Effects of age, gender, obesity, and diabetes on the efficacy and safety of the selective A2A agonist regadenoson versus adenosine in myocardial perfusion imaging integrated ADVANCE-MPI trial results.   JACC Cardiovasc Imaging. 2008;1(3):307-316. doi:10.1016/j.jcmg.2008.02.003 PubMedGoogle ScholarCrossref
117.
Steen  H, Montenbruck  M, Kelle  S,  et al.  Fast-strain encoded cardiac magnetic resonance during vasodilator perfusion stress testing.   Front Cardiovasc Med. 2021;8:765961. doi:10.3389/fcvm.2021.765961 PubMedGoogle ScholarCrossref
118.
Zhou  R, Huang  W, Yang  Y,  et al.  Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging.   J Cardiovasc Magn Reson. 2018;20(1):6. doi:10.1186/s12968-018-0427-1 PubMedGoogle ScholarCrossref
119.
Foley  JRJ, Richmond  C, Fent  GJ,  et al.  Rapid cardiovascular magnetic resonance for ischemic heart disease investigation (RAPID-IHD).   JACC Cardiovasc Imaging. 2020;13(7):1632-1634. doi:10.1016/j.jcmg.2020.01.029 PubMedGoogle ScholarCrossref
Original Investigation
June 7, 2023

Diagnostic and Prognostic Value of Stress Cardiovascular Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease: A Systematic Review and Meta-analysis

Author Affiliations
  • 1Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
  • 2Department of Clinical Sciences, Lund University, Malmö, Sweden
  • 3William Harvey Research Institute, Barts Biomedical Research Centre, National Institute for Health and Care Research, Queen Mary University London, Charterhouse Square, London, United Kingdom
  • 4Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
  • 5Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
  • 6Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
  • 7Cardiology Unit, Rimini Hospital, Local Health Authority of Romagna, Rimini, Italy
  • 8Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
  • 9Department of Medicine, Karolinska Institute, Stockholm, Sweden
  • 10The Alan Turing Institute, London, United Kingdom
  • 11Health Data Research UK, London, United Kingdom
  • 12Royal Brompton and Harefield Hospitals, Guys and St Thomas NHS Trust London, London, United Kingdom
  • 13School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, Kings College London, London, United Kingdom
JAMA Cardiol. 2023;8(7):662-673. doi:10.1001/jamacardio.2023.1290
Key Points

Question  What is the diagnostic and prognostic value of stress cardiovascular magnetic resonance imaging (CMR) for the evaluation of stable chest pain?

Findings  In this systematic review and meta-analysis pooling 74 470 patients with stable chest pain over 381 357 person-years of follow-up, stress CMR yielded high diagnostic accuracy and accurate risk stratification in patients with known or suspected coronary artery disease, particularly when 3-T imaging was used. The presence of stress-inducible ischemia and late gadolinium enhancement was associated with higher mortality and likelihood of cardiovascular events, while normal stress CMR results were associated with a lower likelihood of cardiovascular events for at least 3.5 years.

Meaning  These findings suggest that combined assessment of inducible myocardial ischemia and late gadolinium enhancement by stress CMR is an accurate method to diagnose and risk stratify patients with stable chest pain and known or suspected coronary artery disease.

Abstract

Importance  The clinical utility of stress cardiovascular magnetic resonance imaging (CMR) in stable chest pain is still debated, and the low-risk period for adverse cardiovascular (CV) events after a negative test result is unknown.

Objective  To provide contemporary quantitative data synthesis of the diagnostic accuracy and prognostic value of stress CMR in stable chest pain.

Data Sources  PubMed and Embase databases, the Cochrane Database of Systematic Reviews, PROSPERO, and the ClinicalTrials.gov registry were searched for potentially relevant articles from January 1, 2000, through December 31, 2021.

Study Selection  Selected studies evaluated CMR and reported estimates of diagnostic accuracy and/or raw data of adverse CV events for participants with either positive or negative stress CMR results. Prespecified combinations of keywords related to the diagnostic accuracy and prognostic value of stress CMR were used. A total of 3144 records were evaluated for title and abstract; of those, 235 articles were included in the full-text assessment of eligibility. After exclusions, 64 studies (74 470 total patients) published from October 29, 2002, through October 19, 2021, were included.

Data Extraction and Synthesis  This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Main Outcomes and Measures  Diagnostic odds ratios (DORs), sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), odds ratio (OR), and annualized event rate (AER) for all-cause death, CV death, and major adverse cardiovascular events (MACEs) defined as the composite of myocardial infarction and CV death.

Results  A total of 33 diagnostic studies pooling 7814 individuals and 31 prognostic studies pooling 67 080 individuals (mean [SD] follow-up, 3.5 [2.1] years; range, 0.9-8.8 years; 381 357 person-years) were identified. Stress CMR yielded a DOR of 26.4 (95% CI, 10.6-65.9), a sensitivity of 81% (95% CI, 68%-89%), a specificity of 86% (95% CI, 75%-93%), and an AUROC of 0.84 (95% CI, 0.77-0.89) for the detection of functionally obstructive coronary artery disease. In the subgroup analysis, stress CMR yielded higher diagnostic accuracy in the setting of suspected coronary artery disease (DOR, 53.4; 95% CI, 27.7-103.0) or when using 3-T imaging (DOR, 33.2; 95% CI, 19.9-55.4). The presence of stress-inducible ischemia was associated with higher all-cause mortality (OR, 1.97; 95% CI, 1.69-2.31), CV mortality (OR, 6.40; 95% CI, 4.48-9.14), and MACEs (OR, 5.33; 95% CI, 4.04-7.04). The presence of late gadolinium enhancement (LGE) was associated with higher all-cause mortality (OR, 2.22; 95% CI, 1.99-2.47), CV mortality (OR, 6.03; 95% CI, 2.76-13.13), and increased risk of MACEs (OR, 5.42; 95% CI, 3.42-8.60). After a negative test result, pooled AERs for CV death were less than 1.0%.

Conclusion and Relevance  In this study, stress CMR yielded high diagnostic accuracy and delivered robust prognostication, particularly when 3-T scanners were used. While inducible myocardial ischemia and LGE were associated with higher mortality and risk of MACEs, normal stress CMR results were associated with a lower risk of MACEs for at least 3.5 years.

Introduction

Coronary artery disease (CAD) is the leading cause of cardiovascular (CV) morbidity and mortality worldwide. Noninvasive imaging plays a central role in the 2019 European Society of Cardiology guidelines on chronic coronary syndromes1 and the 2021 American Heart Association/American College of Cardiology (AHA/ACC) guidelines on chest pain.2 Evaluation of stress-inducible myocardial ischemia by assessment of perfusion reserve or regional wall motion abnormalities is a key element in the diagnostic workup of patients with stable chest pain and intermediate to high pretest probability of CAD.1,3

New recommendations for the use of noninvasive imaging in coronary syndromes developed by a transatlantic intersociety task force4 endorse the use of stress cardiovascular magnetic resonance imaging (CMR) to detect ischemia and guide clinical decision-making in patients with a high intermediate pretest clinical likelihood of CAD. Consistent with this endorsement, the 2021 AHA/ACC guidelines for the evaluation and diagnosis of chest pain delivered class 1 and 2A recommendations for stress CMR as first-line functional investigation for the evaluation of chest pain in patients with known or suspected CAD who are at intermediate risk.2

Coronary artery disease is one of the primary indications for CMR,5,6 and the use of stress CMR has been steadily growing worldwide.6 However, contemporary data on the diagnostic accuracy and prognostic value of stress CMR in patients with known or suspected CAD are currently lacking. After 20 years of clinical use and the completion of large multicenter observational studies7,8 and randomized clinical trials,9,10 which were not included in previous systematic reviews and meta-analyses,11-14 we appraised the best available contemporary evidence to deliver an updated quantitative synthesis on the diagnostic accuracy and prognostic value of stress CMR for the assessment of chest pain.

Methods

This systematic review and meta-analysis was planned, conducted, and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline for design, analysis, and reporting of meta-analyses of randomized and observational studies15 and the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy.16 A review protocol was prospectively registered on PROSPERO (CRD42022299275).

Systematic Review

We searched PubMed and Embase databases, the Cochrane Database of Systematic Reviews, the PROSPERO database, and the ClinicalTrials.gov registry for potentially relevant articles from January 1, 2000, through December 31, 2021 (eFigure 1 in Supplement 1). We used 2 prespecified combinations of keywords related to the diagnostic accuracy of stress CMR (eMethods in Supplement 1). We also searched reference lists of all identified articles for additional relevant studies, including hand searching reviews and published meta-analyses.

Two authors (G.B. and A.D.C.) performed the screening of titles and abstracts, reviewed full-text articles, and determined their eligibility. Discrepancies were resolved by consensus with other reviewers (F.R., M.Y.K., and A.C.). The review process was not blinded to study results. Studies were eligible if they met the following criteria: (1) were published as a full-length article, (2) were written in the English language, (3) had a prospective or retrospective study design, (4) enrolled 100 or more patients aged 18 years or older, and (5) reported estimates of the diagnostic accuracy of stress CMR compared with invasive coronary angiography (ICA) or fractional flow reserve (FFR) as the reference test and/or reported raw data for all-cause death, CV death, and major adverse cardiovascular events (MACEs, defined as the composite of CV death and myocardial infarction [MI]) for study participants with either positive or negative stress CMR scans. Studies were eligible regardless of whether they included patients who were referred for suspected or known CAD and regardless of the technique used for evaluation of inducible ischemia (ie, wall motion analysis or perfusion; qualitative, semiquantitative, or fully quantitative).

Two investigators (G.B. and A.D.C.) abstracted relevant data of patient populations, study-level characteristics, and outcomes from original eligible sources. The ascertainment of clinical events was accepted as reported. The quality of eligible studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies, version 2 (QUADAS-2) tool17 for diagnostic studies and the Newcastle-Ottawa Scale18 for prognostic studies.

Statistical Analysis

Categorical variables were reported as percentages and continuous variables as means with SDs or medians with IQRs, as appropriate. We used the inverse variance heterogeneity model for the meta-analysis of diagnostic studies, which proved superior to the standard bivariate model.19 For each study, raw data of true-positive, true-negative, false-positive, and false-negative results were either extracted from the study or generated from reported diagnostic estimates. Diagnostic odds ratios (DORs), area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, negative likelihood ratio (NLR), and positive likelihood ratio (PLR) were calculated. An ROC plot was used to summarize study-level findings. Pooled estimates of sensitivity and specificity for stress CMR derived from the meta-analysis were used to generate a leaf plot illustrating the association between pretest and posttest probability of CAD.

In the prognostic meta-analysis, summary effect sizes for all-cause death, CV death, and MI were calculated primarily for the presence or absence of inducible ischemia in addition to late gadolinium enhancement (LGE). A random-effects model was used, and study-specific odds ratios (ORs) were pooled using the Mantel-Haenszel method for each study outcome. The Hartung-Knapp adjustment20 was applied to all analyses except for those with 3 or fewer studies per group. Mean effects were not calculated for outcomes reported by fewer than 3 studies. Interstudy heterogeneity was assessed using the I2 statistic and represented as a Baujat plot.21 Significant heterogeneity was defined as I2 values of 50% or greater. The z statistic was computed for each end point of interest, and the results were considered statistically significant at 1-sided P < .05.

Meta-analysis results were presented using classic forest plots with point estimates of the effect size and 95% CIs, with square area indicating study weight. A jackknife sensitivity analysis was performed for each outcome to evaluate the robustness of the results and the effect of each study on the summary estimate of effect. The likelihood of publication bias was assessed using funnel plots by displaying individual study ORs with 95% CIs for the end points of interest, with the addition of the nonparametric trim-and-fill procedure to adjust for funnel plot asymmetry by generating hypothetical missing studies; for all models including more than 10 studies, funnel plot asymmetry was also evaluated using tests proposed by Deeks et al22 for diagnostic studies and Egger et al23 for prognostic studies (with 1-sided P < .10 indicating significant publication bias).

Subgroup analyses were performed to investigate possible sources of heterogeneity and to assess the effect of selected variables, including sample size, sex, CAD prevalence, thresholds of diameter stenosis, year of publication, magnetic field strength, and stressor agent. Annualized event rates (AERs) for studies were calculated by dividing the number of events by the follow-up duration. The low-risk period was defined as the mean interval during which the patient group with a negative test remained lower than the threshold of 1% of the cumulative MACE rate.24 All statistical analyses were performed using R software, version 4.1.0. (R Foundation for Statistical Computing) (R packages and functions are detailed in the eMethods in Supplement 1).

Results

Of 3144 records (1152 diagnostic studies and 1992 prognostic studies) identified and retrieved for title and abstract evaluation, 2909 (1038 diagnostic studies and 1871 prognostic studies) were excluded, resulting in 235 potentially relevant articles (114 diagnostic studies and 121 prognostic studies) included in the full-text assessment of eligibility. After exclusions, 64 studies,7-10,25-83 including 33 diagnostic studies8,10,25-55 pooling 7814 individuals and 31 prognostic studies7,9,25,56-83 pooling 67 080 individuals, published between October 29, 2002, and October 19, 2021, were included in the meta-analysis (eFigure 1 in Supplement 1). The study-level prevalence of CAD ranged between 11% and 83% in diagnostic studies. The mean (SD) follow-up was 3.5 (2.1) years (range, 0.9-8.8 years), for a total of 381 357 person-years among 74 470 total patients. The overall quality of included studies was high (eFigure 2 and eTable 3 in Supplement 1). The main characteristics of studies included in the diagnostic8,10,25-55 and prognostic7,9,25,56-83 meta-analyses are summarized in eTables 1 and 2 in Supplement 1.

Diagnostic Meta-analysis
Stress CMR vs ICA

The diagnostic accuracy of stress CMR compared with ICA as the reference test was reported in 30 studies8,10,25-52 pooling 7496 symptomatic patients, of whom 537 had known CAD and 2825 had suspected CAD. In the per-patient analysis, stress CMR yielded a pooled DOR of 19.1 (95% CI, 12.6-29.1), a sensitivity of 84% (95% CI, 79%-88%), a specificity of 79% (95% CI, 73%-84%), a PLR of 4.0 (95% CI, 3.0-5.3), an NLR of 0.2 (95% CI, 0.2-0.3), and an AUROC of 0.81 (95% CI, 0.78-0.84) for the detection of anatomically obstructive CAD (Figure 1A). In the per-vessel analysis, stress CMR yielded a pooled DOR of 21.0 (95% CI, 10.2-43.4), a sensitivity of 72% (95% CI, 61%-81%), a specificity of 89% (95% CI, 82%-94%), a PLR of 6.7 (95% CI, 3.8-11.8), an NLR of 0.3 (95% CI, 0.2-0.5), and an AUROC of 0.82 (95% CI, 0.76-0.87).

Stress CMR vs Invasive FFR

The diagnostic accuracy of stress CMR compared with invasive FFR as the reference test was reported in 8 studies10,27,37,44,45,53-55 pooling 1196 symptomatic patients, of whom 354 had known CAD and 593 had suspected CAD. In the per-patient analysis, stress CMR yielded a pooled DOR of 26.4 (95% CI, 10.6-65.9), a sensitivity of 81% (95% CI, 68%-89%), a specificity of 86% (95% CI, 75%-93%), a PLR of 5.8 (95% CI, 3.0-11.4), an NLR of 0.2 (95% CI, 0.1-0.4), and an AUROC of 0.84 (95% CI, 0.77-0.89) for the detection of functionally obstructive CAD (Figure 1B). In the per-vessel analysis, stress CMR yielded a pooled DOR of 24.1 (95% CI, 5.5-105.4), a sensitivity of 70% (95% CI, 46%-86%), a specificity of 91% (95% CI, 74%-97%), a PLR of 8.0 (95% CI, 2.4-26.5), an NLR of 0.3 (95% CI, 0.1-0.8), and an AUROC of 0.83 (95% CI, 0.70-0.91).

Prognostic Meta-analysis
All-Cause Mortality

A total of 11 studies9,56-65 pooling 51 166 individuals reported all-cause mortality. The presence of inducible ischemia was associated with a 2-fold increased mortality (OR, 1.97; 95% CI, 1.69-2.31; P = .002) (Figure 2A). The presence of LGE was associated with 2-fold increased mortality (OR, 2.22; 95% CI, 1.99-2.47; P < .001) (Figure 3A). Pooled AERs for all-cause mortality were 2.97% in patients with inducible ischemia vs 1.40% in patients without inducible ischemia (P < .001) and 4.46% in patients with LGE vs 2.30% in patients without LGE (P < .001) (Figure 4A).

Cardiovascular Mortality

A total of 14 studies9,62,65-76 pooling 12 252 individuals reported CV death data. The presence of inducible ischemia detected by stress CMR was associated with 6-fold increased CV mortality (OR, 6.40; 95% CI, 4.48-9.14; P < .001) (Figure 2B). The presence of LGE was associated with 6-fold increased CV mortality (OR, 6.03; 95% CI, 2.76-13.13; P < .001) (Figure 3B). Pooled AERs for CV death were 2.51% in patients with inducible ischemia vs 0.59% in patients without inducible ischemia (P < .001) and 2.51% in patients with LGE vs 0.71% in patients without LGE (P < .001) (Figure 4B).

MACEs

A total of 22 studies7,9,25,59,60,65-68,71-83 pooling 17 084 individuals reported MACE data. The presence of inducible ischemia was associated with a 5-fold higher likelihood of incident MACEs (OR, 5.33; 95% CI, 4.04-7.04; P < .001) (Figure 5). The presence of LGE was associated with a 5-fold higher likelihood of MACEs (OR, 5.42; 95% CI, 3.42-8.60; P < .001) (Figure 3C). Pooled AERs for MACEs were 4.31% in patients with ischemia vs 0.98% in patients without ischemia (P < .001)and 2.90% in patients with LGE vs 0.78% in patients without LGE (P < .001) (Figure 4A).

Combining ischemia and LGE information, we documented the highest AER when both were present and the lowest AER when both were absent (Figure 4B). At a mean follow-up of 3.5 years, normal stress CMR results featuring the absence of both inducible ischemia and LGE were associated with a pooled AER of 0.58%, while the presence of both ischemia and LGE yielded a pooled AER of 4.24% (P < .001).

Study Quality and Publication Bias

According to the QUADAS-2 tool, risk of bias was low in 2927-55 of 33 diagnostic studies8,10,25-55 (eFigure 2 in Supplement 1). Of 31 prognostic studies,7,9,25,56-83 15 studies7,9,25,56,60,62-64,66,68,73,74,76,78,80 scored 9 stars and 16 studies57-59,61,65,67,69-72,75,77,79,81-83 scored 8 stars according to the Newcastle-Ottawa Scale (eTable 3 in Supplement 1). In ICA studies,8,10,25-52 the Deeks test22 ruled out small study bias and publication bias (P = .34) (eFigure 3 in Supplement 1). The Deeks test was not performed in FFR studies10,27,37,44,45,53-55 because the number of studies was insufficient. With regard to prognostic studies,7,9,25,56-83 we ruled out publication bias by visual inspection of funnel plots and the Egger test23 of intercept, which was nonsignificant for each outcome (eFigure 4 in Supplement 1).

Subgroup Analysis

Results of the subgroup analysis are summarized in eTables 4 and 5 in Supplement 1. Stress CMR yielded higher diagnostic performance for the detection of anatomically and functionally obstructive CAD in 2 scenarios: suspected CAD (DOR, 53.4; 95% CI, 27.7-103.0) and 3-T imaging (DOR, 33.2; 95% CI, 19.9-55.4). In FFR studies,10,27,37,44,45,53-55 higher diagnostic accuracy was observed when women were assessed or when the FFR cutoff was lowered to 0.75. In ICA studies,8,10,25-52 quantitative assessment yielded higher DORs and specificity compared with visual assessment, and dipyridamole achieved higher accuracy overall compared with adenosine.

Sensitivity Analysis

Two diagnostic studies10,51 were visually and quantitatively identified as outliers in the ICA analysis8,10,25-52 (eFigure 3 in Supplement 1). Removal of the 2 outliers10,51 increased diagnostic accuracy, with a pooled DOR of 25.2 (eFigure 5 in Supplement 1). In the FFR analysis,10,27,37,44,45,53-55 removal of the single outlier10 improved diagnostic summary estimates, attaining a pooled DOR of 41.3 (eFigure 6 in Supplement 1). No single prognostic study changed the pooled OR for each end point of interest.

Discussion

The current systematic review and meta-analysis covered the last 20 years of clinical research in the field of stress CMR using state-of-the-art statistical methods for quantitative data synthesis. We provided the largest summary evidence available by pooling 74 470 patients and 381 357 person-years of follow-up. Our findings reaffirmed that stress CMR yields high diagnostic accuracy, robust cardiac prognostication, and accurate risk stratification in patients with stable chest pain and known or suspected CAD. Our analysis was focused on symptomatic patients, consistent with current international guideline indications on deferring or eliminating unnecessary testing when the diagnostic yield is low or when individuals are asymptomatic.1,2

Stress CMR consistently delivered high diagnostic accuracy across multiple clinical scenarios and temporal pattern analyses. This accuracy was particularly evident with regard to the detection of functionally obstructive lesions assessed by FFR, which was found to provide optimum balance between myocardial revascularization and medical treatment in the FAME (Fractional Flow Reserve Versus Angiography in Multivessel Evaluation) trials.84,85 In addition to results from previous meta-analyses,86,87 our findings provide evidence that stress CMR has better diagnostic performance in the setting of suspected CAD or when using 3-T imaging due to improved contrast resolution88-90 and quantitative perfusion assessment, which can be advantageous to better identify the extent of disease or peri-infarction ischemia in multivessel CAD compared with visual assessment alone and can more accurately detect microvascular disease and the effectiveness of the stressor agents.91 The signal of dipyridamole outperforming adenosine was intriguing and possibly reflected the incremental diagnostic value of combined perfusion and wall motion assessment.75 This finding requires careful interpretation and prospective verification in regadenoson studies and needs to be weighed against the cost, potential tolerability, and benefit of the stressor agents.92

In our diagnostic meta-analysis, 2 studies10,51 were identified as outliers that had a diagnostic yield lower than the mean for stress CMR. The Dan-NICAD (Danish Study of Non-Invasive Diagnostic Testing in Coronary Artery Disease) randomized clinical trial10 enrolled patients with a low to intermediate pretest probability of CAD and an abnormal coronary computed tomography (CT) angiographic scan before CMR and found low sensitivity for second-line perfusion investigations. However, the specific study design could have led to selection bias and potentially impacted diagnostic estimates.93 The MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial II) study51 compared stress CMR with single-photon emission CT in a population with intermediate CAD prevalence (49%). However, this study51 had a fairly high number of patients with previous MI (27%); in these patients, it can be more difficult to discriminate myocardial scarring and residual ischemia, and the expected higher prevalence of microvascular disease in this population can inflate the number of false-positive findings. This multicenter study51 enrolling participants from 33 different institutions aimed to frame a realistic clinical environment not restricted to high-volume leading centers. In both studies,10,51 measurements were performed by an independent core laboratory with readers fully blinded to additional patient information and results, limiting the bias of the clinical context when reporting stress CMR studies.

When interpreting these findings, we should remember that myocardial ischemia exists on a continuum, and binary categorizations have inherent limitations. Furthermore, shortcomings in the accuracy of established invasive gold standards must be carefully considered. Notably, FFR was first calibrated against noninvasive tests,94 including bicycle exercise testing, thallium scintigraphy, and stress echocardiography with dobutamine, which were themselves validated against ICA as the reference test, resulting in problematic circular thinking.95,96 An FFR threshold of 0.80 or lower has been adopted into clinical practice guidelines97 as an actionable value to guide revascularization despite robust evidence supporting larger treatment benefit at lower FFR values98,99; our findings indicate better agreement at an FFR threshold of 0.75.

The 2019 MR-INFORM (MR Perfusion Imaging to Guide Management of Patients With Stable Coronary Artery Disease) trial9 randomized 918 symptomatic patients at high pretest probability of CAD to undergo ICA plus FFR vs stress CMR-guided assessment. The MACE rate and percentage of patients free of angina were similar for both strategies at 1 year; however, the use of stress CMR was associated with a lower incidence of downstream ICA and coronary revascularization than the use of FFR.9 Similar findings have been reported in the setting of low-risk acute coronary syndromes by a network meta-analysis of diagnostic randomized clinical trials,100 which found that stress CMR was associated with fewer referrals to downstream ICA than coronary CT angiography or other noninvasive imaging modalities and without obvious consequences for the subsequent risk of MI.

This evidence translates into a distinctly favorable cost-effectiveness profile for stress CMR compared with its relevant comparators.101 According to a cost-effectiveness analysis102 comparing different first-line diagnostic approaches for stable chest pain and a decision-analytic model estimating lifetime health care costs and quality-adjusted life-years derived from the multicenter SPINS (Stress CMR Perfusion Imaging in the United States) study,103 stress CMR strongly dominated single-photon emission CT and coronary CT angiography strategies when considering either all MACEs or CV mortality alone. Thus, having access to CMR is a beneficial situation for patients and may lead to substantial cost savings by reducing the need for additional unnecessary tests and revascularization procedures.104,105

The prognostic value of noninvasive cardiac assessments was the objective of a previous meta-analysis13 raising the possibility of clinical equipoise for estimation of CV death and MI. While the message that any negative test conveys excellent prognosis may be reassuring to patients and challenges the need for further downstream testing, the posttest probability of disease needs to be adjusted for baseline population event risk and should always be carefully interpreted in the context of pretest probability and prevalence of disease and according to the clinical scenario. In our analysis, the presence of inducible ischemia on stress CMR was a robust estimator of increased mortality and MACEs, further heightened by the presence of LGE. Conversely, normal stress CMR results were associated with a low incidence of MACEs, yielding a low-risk posttest period of at least 3.5 years. Our data were consistent with the results of previous meta-analyses106,107 and findings of the European Cardiovascular Magnetic Resonance (EuroCMR) registry,5 in which patients with suspected CAD and a negative stress CMR result experienced an AER for aborted sudden cardiac death and nonfatal MI of less than 1%.

Ultimately, the prognostic value of stress CMR, either performed with vasodilators or dobutamine, provides incremental risk stratification in patients with stable chest pain.65,80 Further studies are needed to establish the optimal CMR method for absolute quantification of myocardial blood flow and the optimal ischemic threshold associated with larger treatment effect, which would be useful to identify patients who would most benefit from myocardial revascularization vs safe deferral.

Strengths and Limitations

This study has several strengths. We summarized the largest evidence available, making use of the best methods for quantitative synthesis, and we provide robust estimates of the diagnostic and prognostic value of stress CMR. We provide new information on the duration of the low-risk period for MACEs after a normal stress CMR result. This knowledge has the potential to inform future clinical guidelines about ideal intervals for repeat imaging and to provide useful guidance for subsequent management of assessment strategies among symptomatic patients with initial normal imaging results or subclinical disease.108 Results of the subgroup analyses also suggest better diagnostic performance of stress CMR in the setting of suspected CAD, especially when using 3-T imaging and fully quantitative approaches.

This study also has limitations. First, we did not compare the yield of stress CMR with other imaging modalities because it was beyond the scope of the current work, and literature specifically addressing these topics already exists.109-111 Second, our results are mostly derived from observational studies reflecting different guideline recommendations across 2 decades of practice. Within this time span, thresholds for coronary stenosis have changed,112 methods for estimation of pretest probabilities of obstructive CAD have been updated and recalibrated,1,2 and CMR protocols have been implemented, including quantitative perfusion assessment,61 new tools for evaluation of stress adequacy,113-115 more widespread use of regadenoson,116 and other disruptive technical innovations.117-119 Third, we recognize there is a lack of information about medical therapy, completeness of myocardial revascularization, extent of inducible ischemia, degree of myocardial fibrosis, and prevalence of microvascular dysfunction. Despite the intrinsic challenges and limitations of study-level meta-analysis, including limited adjustment for confounding factors and susceptibility to the ecological fallacy, we attempted to synthesize the results in a robust manner that addressed potential bias.

Conclusions

This systematic review and meta-analysis found that in patients with stable chest pain and known or suspected CAD, stress CMR yielded high diagnostic accuracy to detect both anatomically and functionally significant CAD, with 3-T and quantitative perfusion approaches delivering higher diagnostic performance. Stress CMR also provided robust prognostic information and accurate risk stratification. While the presence of ischemia and LGE were associated with higher CV risk and mortality, normal stress CMR results were associated with a lower likelihood of MACEs for at least 3.5 years. These findings suggest that combined assessment of inducible myocardial ischemia and LGE by stress CMR is an accurate method to diagnose and risk stratify patients with known or suspected CAD.

Back to top
Article Information

Accepted for Publication: April 12, 2023.

Published Online: June 7, 2023. doi:10.1001/jamacardio.2023.1290

Corresponding Author: Chiara Bucciarelli-Ducci, MD, PhD, Royal Brompton Hospital, Sydney Street, London SW3 6NP, United Kingdom (c.bucciarelli-ducci@rbht.nhs.uk).

Author Contributions: Drs Ricci and Bisaccia had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Ricci, Khanji, Bisaccia, Di Cesare, Mantini, Zimarino, Fedorowski, Gallina, Petersen, Bucciarelli-Ducci.

Acquisition, analysis, or interpretation of data: Ricci, Khanji, Bisaccia, Cipriani, Di Cesare, Ceriello, Bucciarelli-Ducci.

Drafting of the manuscript: Ricci, Bisaccia, Di Cesare.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Ricci, Bisaccia.

Administrative, technical, or material support: Khanji, Cipriani, Di Cesare.

Supervision: Khanji, Cipriani, Di Cesare, Ceriello, Mantini, Zimarino, Fedorowski, Gallina, Petersen, Bucciarelli-Ducci.

Conflict of Interest Disclosures: Prof Fedorowski reported receiving personal fees from argenx, Finapres Medical Systems, and Medtronic outside the submitted work. Prof Petersen reported receiving personal fees from Circle Cardiovascular Imaging outside the submitted work. Prof Bucciarelli-Ducci reported receiving personal fees from Bayer, Circle Cardiovascular Imaging, Siemens Healthineers, and the Society for Cardiovascular Magnetic Resonance (for which she serves as chief executive officer) outside the submitted work. No other disclosures were reported.

Funding/Support: This study was supported by the 2020 Search for Excellence Starting Grant, Gabriele d’Annunzio University of Chieti-Pescara, Italy.

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data Sharing Statement: See Supplement 2.

References
1.
Knuuti  J, Wijns  W, Saraste  A,  et al; ESC Scientific Document Group.  2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes.   Eur Heart J. 2020;41(3):407-477. doi:10.1093/eurheartj/ehz425 PubMedGoogle ScholarCrossref
2.
Gulati  M, Levy  PD, Mukherjee  D,  et al.  2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.  Circulation. 2021;144(22):e368-e454. doi:10.1161/CIR.0000000000001029PubMedCrossref
3.
Patel  AR, Salerno  M, Kwong  RY, Singh  A, Heydari  B, Kramer  CM.  Stress cardiac magnetic resonance myocardial perfusion imaging: JACC review topic of the week.   J Am Coll Cardiol. 2021;78(16):1655-1668. doi:10.1016/j.jacc.2021.08.022 PubMedGoogle ScholarCrossref
4.
Edvardsen  T, Asch  FM, Davidson  B,  et al.  Non-invasive imaging in coronary syndromes: recommendations of the European Association of Cardiovascular Imaging and the American Society of Echocardiography, in collaboration with the American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance.   Eur Heart J Cardiovasc Imaging. 2022;23(2):e6-e33. doi:10.1093/ehjci/jeab244 PubMedGoogle ScholarCrossref
5.
Bruder  O, Wagner  A, Lombardi  M,  et al.  European Cardiovascular Magnetic Resonance (EuroCMR) registry—multi national results from 57 centers in 15 countries.   J Cardiovasc Magn Reson. 2013;15(1):9. doi:10.1186/1532-429X-15-9 PubMedGoogle ScholarCrossref
6.
Kwong  RY, Petersen  SE, Schulz-Menger  J,  et al; Global Cardiovascular Magnetic Resonance Registry (GCMR) Investigators.  The Global Cardiovascular Magnetic Resonance Registry (GCMR) of the Society for Cardiovascular Magnetic Resonance (SCMR): its goals, rationale, data infrastructure, and current developments.   J Cardiovasc Magn Reson. 2017;19(1):23. doi:10.1186/s12968-016-0321-7 PubMedGoogle ScholarCrossref
7.
Kwong  RY, Ge  Y, Steel  K,  et al.  Cardiac magnetic resonance stress perfusion imaging for evaluation of patients with chest pain.   J Am Coll Cardiol. 2019;74(14):1741-1755. doi:10.1016/j.jacc.2019.07.074 PubMedGoogle ScholarCrossref
8.
Arai  AE, Schulz-Menger  J, Berman  D,  et al; GadaCAD Investigators.  Gadobutrol-enhanced cardiac magnetic resonance imaging for detection of coronary artery disease.   J Am Coll Cardiol. 2020;76(13):1536-1547. doi:10.1016/j.jacc.2020.07.060 PubMedGoogle ScholarCrossref
9.
Nagel  E, Greenwood  JP, McCann  GP,  et al; MR-INFORM Investigators.  Magnetic resonance perfusion or fractional flow reserve in coronary disease.   N Engl J Med. 2019;380(25):2418-2428. doi:10.1056/NEJMoa1716734 PubMedGoogle ScholarCrossref
10.
Nissen  L, Winther  S, Westra  J,  et al.  Diagnosing coronary artery disease after a positive coronary computed tomography angiography: the Dan-NICAD open label, parallel, head to head, randomized controlled diagnostic accuracy trial of cardiovascular magnetic resonance and myocardial perfusion scintigraphy.   Eur Heart J Cardiovasc Imaging. 2018;19(4):369-377. doi:10.1093/ehjci/jex342 PubMedGoogle ScholarCrossref
11.
Haberkorn  SM, Haberkorn  SI, Bönner  F, Kelm  M, Hopkin  G, Petersen  SE.  Vasodilator myocardial perfusion cardiac magnetic resonance imaging is superior to dobutamine stress echocardiography in the detection of relevant coronary artery stenosis: a systematic review and meta-analysis on their diagnostic accuracy.   Front Cardiovasc Med. 2021;8:630846. doi:10.3389/fcvm.2021.630846 PubMedGoogle ScholarCrossref
12.
Danad  I, Szymonifka  J, Twisk  JWR,  et al.  Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis.  Eur Heart J. 2017;38(13):991-998. doi:10.1093/eurheartj/ehw095PubMedCrossref
13.
Smulders  MW, Jaarsma  C, Nelemans  PJ,  et al.  Comparison of the prognostic value of negative non-invasive cardiac investigations in patients with suspected or known coronary artery disease—a meta-analysis.   Eur Heart J Cardiovasc Imaging. 2017;18(9):980-987. doi:10.1093/ehjci/jex014 PubMedGoogle ScholarCrossref
14.
El Aidi  H, Adams  A, Moons  KGM,  et al.  Cardiac magnetic resonance imaging findings and the risk of cardiovascular events in patients with recent myocardial infarction or suspected or known coronary artery disease: a systematic review of prognostic studies.   J Am Coll Cardiol. 2014;63(11):1031-1045. doi:10.1016/j.jacc.2013.11.048 PubMedGoogle ScholarCrossref
15.
Page  MJ, McKenzie  JE, Bossuyt  PM,  et al.  The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.   Syst Rev. 2021;10(1):89. doi:10.1186/s13643-021-01626-4 PubMedGoogle ScholarCrossref
16.
Higgins  J, Thomas  J, Chandler  J,  et al, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.3. The Cochrane Collaboration; 2022. Accessed May 2, 2023. https://training.cochrane.org/handbook/current
17.
Whiting  PF, Rutjes  AWS, Westwood  ME,  et al; QUADAS-2 Group.  QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.   Ann Intern Med. 2011;155(8):529-536. doi:10.7326/0003-4819-155-8-201110180-00009 PubMedGoogle ScholarCrossref
18.
Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute. 2021. Accessed November 11, 2021. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
19.
Furuya-Kanamori  L, Kostoulas  P, Doi  SAR.  A new method for synthesizing test accuracy data outperformed the bivariate method.   J Clin Epidemiol. 2021;132:51-58. doi:10.1016/j.jclinepi.2020.12.015 PubMedGoogle ScholarCrossref
20.
Hartung  J, Knapp  G.  A refined method for the meta-analysis of controlled clinical trials with binary outcome.   Stat Med. 2001;20(24):3875-3889. doi:10.1002/sim.1009 PubMedGoogle ScholarCrossref
21.
Baujat  B, Mahé  C, Pignon  JP, Hill  C.  A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials.   Stat Med. 2002;21(18):2641-2652. doi:10.1002/sim.1221 PubMedGoogle ScholarCrossref
22.
Deeks  JJ, Macaskill  P, Irwig  L.  The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed.   J Clin Epidemiol. 2005;58(9):882-893. doi:10.1016/j.jclinepi.2005.01.016 PubMedGoogle ScholarCrossref
23.
Egger  M, Davey Smith  G, Schneider  M, Minder  C.  Bias in meta-analysis detected by a simple, graphical test.   BMJ. 1997;315(7109):629-634. doi:10.1136/bmj.315.7109.629 PubMedGoogle ScholarCrossref
24.
Hachamovitch  R, Hayes  S, Friedman  JD,  et al.  Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan?   J Am Coll Cardiol. 2003;41(8):1329-1340. doi:10.1016/S0735-1097(03)00125-6 PubMedGoogle ScholarCrossref
25.
Becker  M, Hundemer  A, Zwicker  C,  et al.  Detection of coronary artery disease in postmenopausal women: the significance of integrated stress imaging tests in a 4-year prognostic study.   Clin Res Cardiol. 2015;104(3):258-271. doi:10.1007/s00392-014-0780-5 PubMedGoogle ScholarCrossref
26.
Bernhardt  P, Spiess  J, Levenson  B,  et al.  Combined assessment of myocardial perfusion and late gadolinium enhancement in patients after percutaneous coronary intervention or bypass grafts: a multicenter study of an integrated cardiovascular magnetic resonance protocol.   JACC Cardiovasc Imaging. 2009;2(11):1292-1300. doi:10.1016/j.jcmg.2009.05.011 PubMedGoogle ScholarCrossref
27.
Bettencourt  N, Chiribiri  A, Schuster  A,  et al.  Cardiac magnetic resonance myocardial perfusion imaging for detection of functionally significant obstructive coronary artery disease: a prospective study.   Int J Cardiol. 2013;168(2):765-773. doi:10.1016/j.ijcard.2012.09.231 PubMedGoogle ScholarCrossref
28.
Biglands  JD, Ibraheem  M, Magee  DR, Radjenovic  A, Plein  S, Greenwood  JP.  Quantitative myocardial perfusion imaging versus visual analysis in diagnosing myocardial ischemia: a CE-MARC substudy.   JACC Cardiovasc Imaging. 2018;11(5):711-718. doi:10.1016/j.jcmg.2018.02.019 PubMedGoogle ScholarCrossref
29.
Chen  MY, Bandettini  WP, Shanbhag  SM,  et al.  Concordance and diagnostic accuracy of vasodilator stress cardiac MRI and 320-detector row coronary CTA.   Int J Cardiovasc Imaging. 2014;30(1):109-119. doi:10.1007/s10554-013-0300-0 PubMedGoogle ScholarCrossref
30.
Doesch  C, Seeger  A, Hoevelborn  T,  et al.  Adenosine stress cardiac magnetic resonance imaging for the assessment of ischemic heart disease.   Clin Res Cardiol. 2008;97(12):905-912. doi:10.1007/s00392-008-0708-z PubMedGoogle ScholarCrossref
31.
Doyle  M, Fuisz  A, Kortright  E,  et al.  The impact of myocardial flow reserve on the detection of coronary artery disease by perfusion imaging methods: an NHLBI WISE study.   J Cardiovasc Magn Reson. 2003;5(3):475-485. doi:10.1081/JCMR-120022263 PubMedGoogle ScholarCrossref
32.
Gebker  R, Frick  M, Jahnke  C,  et al.  Value of additional myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of intermediate coronary artery disease.   Int J Cardiovasc Imaging. 2012;28(1):89-97. doi:10.1007/s10554-010-9764-3 PubMedGoogle ScholarCrossref
33.
Gebker  R, Jahnke  C, Manka  R,  et al.  Additional value of myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of coronary artery disease.   Circ Cardiovasc Imaging. 2008;1(2):122-130. doi:10.1161/CIRCIMAGING.108.779108 PubMedGoogle ScholarCrossref
34.
Gebker  R, Jahnke  C, Paetsch  I,  et al.  Diagnostic performance of myocardial perfusion MR at 3 T in patients with coronary artery disease.   Radiology. 2008;247(1):57-63. doi:10.1148/radiol.2471070596 PubMedGoogle ScholarCrossref
35.
Greenwood  JP, Maredia  N, Younger  JF,  et al.  Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial.   Lancet. 2012;379(9814):453-460. doi:10.1016/S0140-6736(11)61335-4 PubMedGoogle ScholarCrossref
36.
Greulich  S, Steubing  H, Birkmeier  S,  et al.  Impact of arrhythmia on diagnostic performance of adenosine stress CMR in patients with suspected or known coronary artery disease.   J Cardiovasc Magn Reson. 2015;17:94. doi:10.1186/s12968-015-0195-0 PubMedGoogle ScholarCrossref
37.
Hamada  S, Gotschy  A, Wissmann  L,  et al.  Multi-centre study of whole-heart dynamic 3D cardiac magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: gender based analysis of diagnostic performance.   Eur Heart J Cardiovasc Imaging. 2017;18(10):1099-1106. doi:10.1093/ehjci/jex160 PubMedGoogle ScholarCrossref
38.
Husser  O, Bodí  V, Sanchís  J,  et al.  Additional diagnostic value of systolic dysfunction induced by dipyridamole stress cardiac magnetic resonance used in detecting coronary artery disease.   Rev Esp Cardiol. 2009;62(4):383-391. doi:10.1016/S0300-8932(09)70895-4 PubMedGoogle ScholarCrossref
39.
Ishida  N, Sakuma  H, Motoyasu  M,  et al.  Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography.   Radiology. 2003;229(1):209-216. doi:10.1148/radiol.2291021118 PubMedGoogle ScholarCrossref
40.
Klem  I, Greulich  S, Heitner  JF,  et al.  Value of cardiovascular magnetic resonance stress perfusion testing for the detection of coronary artery disease in women.   JACC Cardiovasc Imaging. 2008;1(4):436-445. doi:10.1016/j.jcmg.2008.03.010 PubMedGoogle ScholarCrossref
41.
Klumpp  B, Miller  S, Seeger  A,  et al.  Is the diagnostic yield of myocardial stress perfusion MRI impaired by three-vessel coronary artery disease?   Acta Radiol. 2015;56(2):143-151. doi:10.1177/0284185114523758 PubMedGoogle ScholarCrossref
42.
Kotecha  T, Chacko  L, Chehab  O,  et al.  Assessment of multivessel coronary artery disease using cardiovascular magnetic resonance pixelwise quantitative perfusion mapping.   JACC Cardiovasc Imaging. 2020;13(12):2546-2557. doi:10.1016/j.jcmg.2020.06.041 PubMedGoogle ScholarCrossref
43.
Manka  R, Jahnke  C, Kozerke  S,  et al.  Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting.   J Am Coll Cardiol. 2011;57(4):437-444. doi:10.1016/j.jacc.2010.05.067 PubMedGoogle ScholarCrossref
44.
Manka  R, Paetsch  I, Kozerke  S,  et al.  Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location.   Eur Heart J. 2012;33(16):2016-2024. doi:10.1093/eurheartj/ehs170 PubMedGoogle ScholarCrossref
45.
Manka  R, Wissmann  L, Gebker  R,  et al.  Multicenter evaluation of dynamic three-dimensional magnetic resonance myocardial perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve.   Circ Cardiovasc Imaging. 2015;8(5):e003061. doi:10.1161/CIRCIMAGING.114.003061 PubMedGoogle ScholarCrossref
46.
Merkle  N, Wöhrle  J, Nusser  T,  et al.  Diagnostic performance of magnetic resonance first pass perfusion imaging is equally potent in female compared to male patients with coronary artery disease.   Clin Res Cardiol. 2010;99(1):21-28. doi:10.1007/s00392-009-0071-8 PubMedGoogle ScholarCrossref
47.
Min  JY, Ko  SM, Song  IY, Yi  JG, Hwang  HK, Shin  JK.  Comparison of the diagnostic accuracies of 1.5T and 3T stress myocardial perfusion cardiovascular magnetic resonance for detecting significant coronary artery disease.   Korean J Radiol. 2018;19(6):1007-1020. doi:10.3348/kjr.2018.19.6.1007 PubMedGoogle ScholarCrossref
48.
Motwani  M, Maredia  N, Fairbairn  TA,  et al.  High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease.   Circ Cardiovasc Imaging. 2012;5(3):306-313. doi:10.1161/CIRCIMAGING.111.971796 PubMedGoogle ScholarCrossref
49.
Pilz  G, Bernhardt  P, Klos  M, Ali  E, Wild  M, Höfling  B.  Clinical implication of adenosine-stress cardiac magnetic resonance imaging as potential gatekeeper prior to invasive examination in patients with AHA/ACC class II indication for coronary angiography.   Clin Res Cardiol. 2006;95(10):531-538. doi:10.1007/s00392-006-0422-7 PubMedGoogle ScholarCrossref
50.
Schwitter  J, Wacker  CM, van Rossum  AC,  et al.  MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial.   Eur Heart J. 2008;29(4):480-489. doi:10.1093/eurheartj/ehm617 PubMedGoogle ScholarCrossref
51.
Schwitter  J, Wacker  CM, Wilke  N,  et al; MR-IMPACT Investigators.  MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial.   Eur Heart J. 2013;34(10):775-781. doi:10.1093/eurheartj/ehs022 PubMedGoogle ScholarCrossref
52.
Takase  B, Nagata  M, Kihara  T,  et al.  Whole-heart dipyridamole stress first-pass myocardial perfusion MRI for the detection of coronary artery disease.   Jpn Heart J. 2004;45(3):475-486. doi:10.1536/jhj.45.475 PubMedGoogle ScholarCrossref
53.
Ebersberger  U, Makowski  MR, Schoepf  UJ,  et al.  Magnetic resonance myocardial perfusion imaging at 3.0 Tesla for the identification of myocardial ischaemia: comparison with coronary catheter angiography and fractional flow reserve measurements.   Eur Heart J Cardiovasc Imaging. 2013;14(12):1174-1180. doi:10.1093/ehjci/jet074 PubMedGoogle ScholarCrossref
54.
Ramos  V, Bettencourt  N, Silva  J,  et al.  Noninvasive anatomical and functional assessment of coronary artery disease.   Rev Port Cardiol. 2015;34(4):223-232. doi:10.1016/j.repc.2014.10.008 PubMedGoogle ScholarCrossref
55.
Watkins  S, McGeoch  R, Lyne  J,  et al.  Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease.   Circulation. 2009;120(22):2207-2213. doi:10.1161/CIRCULATIONAHA.109.872358 PubMedGoogle ScholarCrossref
56.
Catalano  O, Moro  G, Mori  A,  et al.  Cardiac magnetic resonance in stable coronary artery disease: added prognostic value to conventional risk profiling.   Biomed Res Int. 2018;2018:2806148. doi:10.1155/2018/2806148 PubMedGoogle ScholarCrossref
57.
Esteban-Fernández  A, Bastarrika  G, Castanon  E,  et al.  Prognostic role of stress cardiac magnetic resonance in the elderly.   Rev Esp Cardiol (Engl Ed). 2020;73(3):241-247. doi:10.1016/j.rec.2019.02.007 PubMedGoogle ScholarCrossref
58.
Heitner  JF, Kim  RJ, Kim  HW,  et al.  Prognostic value of vasodilator stress cardiac magnetic resonance imaging: a multicenter study with 48 000 patient-years of follow-up.   JAMA Cardiol. 2019;4(3):256-264. doi:10.1001/jamacardio.2019.0035 PubMedGoogle ScholarCrossref
59.
Hundley  WG, Morgan  TM, Neagle  CM, Hamilton  CA, Rerkpattanapipat  P, Link  KM.  Magnetic resonance imaging determination of cardiac prognosis.   Circulation. 2002;106(18):2328-2333. doi:10.1161/01.CIR.0000036017.46437.02 PubMedGoogle ScholarCrossref
60.
Klumpp  B, Seeger  A, Bretschneider  C,  et al.  Is myocardial stress perfusion MR-imaging suitable to predict the long term clinical outcome after revascularization?   Eur J Radiol. 2013;82(10):1776-1782. doi:10.1016/j.ejrad.2013.06.003 PubMedGoogle ScholarCrossref
61.
Knott  KD, Seraphim  A, Augusto  JB,  et al.  The prognostic significance of quantitative myocardial perfusion: an artificial intelligence–based approach using perfusion mapping.   Circulation. 2020;141(16):1282-1291. doi:10.1161/CIRCULATIONAHA.119.044666 PubMedGoogle ScholarCrossref
62.
Macwar  RR, Williams  BA, Shirani  J.  Prognostic value of adenosine cardiac magnetic resonance imaging in patients presenting with chest pain.   Am J Cardiol. 2013;112(1):46-50. doi:10.1016/j.amjcard.2013.02.054 PubMedGoogle ScholarCrossref
63.
Marcos-Garces  V, Gavara  J, Monmeneu  JV,  et al.  Vasodilator stress CMR and all-cause mortality in stable ischemic heart disease: a large retrospective registry.   JACC Cardiovasc Imaging. 2020;13(8):1674-1686. doi:10.1016/j.jcmg.2020.02.027 PubMedGoogle ScholarCrossref
64.
Pezel  T, Unterseeh  T, Garot  P,  et al.  Long-term prognostic value of stress cardiovascular magnetic resonance-related coronary revascularization to predict death: a large registry with >200 000 patient-years of follow-up.   Circ Cardiovasc Imaging. 2021;14(10):e012789. doi:10.1161/CIRCIMAGING.121.012789 PubMedGoogle ScholarCrossref
65.
Shah  R, Heydari  B, Coelho-Filho  O,  et al.  Stress cardiac magnetic resonance imaging provides effective cardiac risk reclassification in patients with known or suspected stable coronary artery disease.   Circulation. 2013;128(6):605-614. doi:10.1161/CIRCULATIONAHA.113.001430 PubMedGoogle ScholarCrossref
66.
Bingham  SE, Hachamovitch  R.  Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events.   Circulation. 2011;123(14):1509-1518. doi:10.1161/CIRCULATIONAHA.109.907659 PubMedGoogle ScholarCrossref
67.
Bodi  V, Husser  O, Sanchis  J,  et al.  Prognostic implications of dipyridamole cardiac MR imaging: a prospective multicenter registry.   Radiology. 2012;262(1):91-100. doi:10.1148/radiol.11110134 PubMedGoogle ScholarCrossref
68.
Coelho-Filho  OR, Seabra  LF, Mongeon  FP,  et al.  Stress myocardial perfusion imaging by CMR provides strong prognostic value to cardiac events regardless of patient’s sex.   JACC Cardiovasc Imaging. 2011;4(8):850-861. doi:10.1016/j.jcmg.2011.04.015 PubMedGoogle ScholarCrossref
69.
Freed  BH, Narang  A, Bhave  NM,  et al.  Prognostic value of normal regadenoson stress perfusion cardiovascular magnetic resonance.   J Cardiovasc Magn Reson. 2013;15(1):108. doi:10.1186/1532-429X-15-108 PubMedGoogle ScholarCrossref
70.
Kuijpers  D, van Dijkman  PRM, Janssen  CHC, Vliegenthart  R, Zijlstra  F, Oudkerk  M.  Dobutamine stress MRI. part II. risk stratification with dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia.   Eur Radiol. 2004;14(11):2046-2052. doi:10.1007/s00330-004-2426-x PubMedGoogle ScholarCrossref
71.
Lo  KY, Leung  KF, Chu  CM, Loke  KL, Chan  CK, Yue  CS.  Prognostic value of adenosine stress myocardial perfusion by cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease.   QJM. 2011;104(5):425-432. doi:10.1093/qjmed/hcq238 PubMedGoogle ScholarCrossref
72.
Ng  MY, Chin  CY, Yap  PM,  et al.  Prognostic value of perfusion cardiovascular magnetic resonance with adenosine triphosphate stress in stable coronary artery disease.   J Cardiovasc Magn Reson. 2021;23(1):75. doi:10.1186/s12968-021-00770-z PubMedGoogle ScholarCrossref
73.
Pezel  T, Garot  P, Kinnel  M,  et al.  Long-term prognostic value of ischaemia and cardiovascular magnetic resonance–related revascularization for stable coronary disease, irrespective of patient’s sex: a large retrospective study.   Eur Heart J Cardiovasc Imaging. 2021;22(11):1321-1331. doi:10.1093/ehjci/jeab186 PubMedGoogle ScholarCrossref
74.
Pezel  T, Unterseeh  T, Kinnel  M,  et al.  Long-term prognostic value of stress perfusion cardiovascular magnetic resonance in patients without known coronary artery disease.   J Cardiovasc Magn Reson. 2021;23(1):43. doi:10.1186/s12968-021-00737-0 PubMedGoogle ScholarCrossref
75.
Pontone  G, Andreini  D, Bertella  E,  et al.  Prognostic value of dipyridamole stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a mid-term follow-up study.   Eur Radiol. 2016;26(7):2155-2165. doi:10.1007/s00330-015-4064-x PubMedGoogle ScholarCrossref
76.
Wallace  EL, Morgan  TM, Walsh  TF,  et al.  Dobutamine cardiac magnetic resonance results predict cardiac prognosis in women with known or suspected ischemic heart disease.   JACC Cardiovasc Imaging. 2009;2(3):299-307. doi:10.1016/j.jcmg.2008.10.015 PubMedGoogle ScholarCrossref
77.
Abbasi  SA, Heydari  B, Shah  RV,  et al.  Risk stratification by regadenoson stress magnetic resonance imaging in patients with known or suspected coronary artery disease.   Am J Cardiol. 2014;114(8):1198-1203. doi:10.1016/j.amjcard.2014.07.041 PubMedGoogle ScholarCrossref
78.
Bikiri  E, Mereles  D, Voss  A,  et al.  Dobutamine stress cardiac magnetic resonance versus echocardiography for the assessment of outcome in patients with suspected or known coronary artery disease: are the two imaging modalities comparable?   Int J Cardiol. 2014;171(2):153-160. doi:10.1016/j.ijcard.2013.11.038 PubMedGoogle ScholarCrossref
79.
Heydari  B, Juan  YH, Liu  H,  et al.  Stress perfusion cardiac magnetic resonance imaging effectively risk stratifies diabetic patients with suspected myocardial ischemia.   Circ Cardiovasc Imaging. 2016;9(4):e004136. doi:10.1161/CIRCIMAGING.115.004136 PubMedGoogle ScholarCrossref
80.
Jahnke  C, Nagel  E, Gebker  R,  et al.  Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging.   Circulation. 2007;115(13):1769-1776. doi:10.1161/CIRCULATIONAHA.106.652016 PubMedGoogle ScholarCrossref
81.
Kelle  S, Egnell  C, Vierecke  J,  et al.  Prognostic value of negative dobutamine-stress cardiac magnetic resonance imaging.   Med Sci Monit. 2009;15(10):MT131-MT136.PubMedGoogle Scholar
82.
Lubbers  DD, Rijlaarsdam-Hermsen  D, Kuijpers  D,  et al.  Performance of adenosine “stress-only” perfusion MRI in patients without a history of myocardial infarction: a clinical outcome study.   Int J Cardiovasc Imaging. 2012;28(1):109-115. doi:10.1007/s10554-010-9775-0 PubMedGoogle ScholarCrossref
83.
Shah  RV, Heydari  B, Coelho-Filho  O,  et al.  Vasodilator stress perfusion CMR imaging is feasible and prognostic in obese patients.   JACC Cardiovasc Imaging. 2014;7(5):462-472. doi:10.1016/j.jcmg.2013.11.011 PubMedGoogle ScholarCrossref
84.
Tonino  PAL, Fearon  WF, De Bruyne  B,  et al.  Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation.   J Am Coll Cardiol. 2010;55(25):2816-2821. doi:10.1016/j.jacc.2009.11.096 PubMedGoogle ScholarCrossref
85.
De Bruyne  B, Fearon  WF, Pijls  NHJ,  et al; FAME 2 Trial Investigators.  Fractional flow reserve–guided PCI for stable coronary artery disease.   N Engl J Med. 2014;371(13):1208-1217. doi:10.1056/NEJMoa1408758 PubMedGoogle ScholarCrossref
86.
Jaarsma  C, Leiner  T, Bekkers  SC,  et al.  Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis.   J Am Coll Cardiol. 2012;59(19):1719-1728. doi:10.1016/j.jacc.2011.12.040 PubMedGoogle ScholarCrossref
87.
Yang  K, Yu  SQ, Lu  MJ, Zhao  SH.  Comparison of diagnostic accuracy of stress myocardial perfusion imaging for detecting hemodynamically significant coronary artery disease between cardiac magnetic resonance and nuclear medical imaging: a meta-analysis.   Int J Cardiol. 2019;293:278-285. doi:10.1016/j.ijcard.2019.06.054 PubMedGoogle ScholarCrossref
88.
Cheng  ASH, Pegg  TJ, Karamitsos  TD,  et al.  Cardiovascular magnetic resonance perfusion imaging at 3-Tesla for the detection of coronary artery disease: a comparison with 1.5-Tesla.   J Am Coll Cardiol. 2007;49(25):2440-2449. doi:10.1016/j.jacc.2007.03.028 PubMedGoogle ScholarCrossref
89.
Bernhardt  P, Walcher  T, Rottbauer  W, Wöhrle  J.  Quantification of myocardial perfusion reserve at 1.5 and 3.0 Tesla: a comparison to fractional flow reserve.   Int J Cardiovasc Imaging. 2012;28(8):2049-2056. doi:10.1007/s10554-012-0037-1 PubMedGoogle ScholarCrossref
90.
Walcher  T, Ikuye  K, Rottbauer  W, Wöhrle  J, Bernhardt  P.  Is contrast-enhanced cardiac magnetic resonance imaging at 3 T superior to 1.5 T for detection of coronary artery disease?   Int J Cardiovasc Imaging. 2013;29(2):355-361. doi:10.1007/s10554-012-0099-0 PubMedGoogle ScholarCrossref
91.
Sharrack  N, Chiribiri  A, Schwitter  J, Plein  S.  How to do quantitative myocardial perfusion cardiovascular magnetic resonance.   Eur Heart J Cardiovasc Imaging. 2022;23(3):315-318. doi:10.1093/ehjci/jeab193 PubMedGoogle ScholarCrossref
92.
Vasu  S, Bandettini  WP, Hsu  LY,  et al.  Regadenoson and adenosine are equivalent vasodilators and are superior than dipyridamole: a study of first pass quantitative perfusion cardiovascular magnetic resonance.   J Cardiovasc Magn Reson. 2013;15(1):85. doi:10.1186/1532-429X-15-85 PubMedGoogle ScholarCrossref
93.
Lijmer  JG, Mol  BW, Heisterkamp  S,  et al.  Empirical evidence of design-related bias in studies of diagnostic tests.   JAMA. 1999;282(11):1061-1066. doi:10.1001/jama.282.11.1061 PubMedGoogle ScholarCrossref
94.
Pijls  NH, De Bruyne  B, Peels  K,  et al.  Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses.   N Engl J Med. 1996;334(26):1703-1708. doi:10.1056/NEJM199606273342604 PubMedGoogle ScholarCrossref
95.
van de Hoef  TP, Meuwissen  M, Escaned  J,  et al.  Fractional flow reserve as a surrogate for inducible myocardial ischaemia.   Nat Rev Cardiol. 2013;10(8):439-452. doi:10.1038/nrcardio.2013.86 PubMedGoogle ScholarCrossref
96.
Soares  A, Brown  DL.  The fallacies of fractional flow reserve.   Int J Cardiol. 2020;302:34-35. doi:10.1016/j.ijcard.2019.12.040 PubMedGoogle ScholarCrossref
97.
Neumann FJ, Sousa-Uva M, Ahlsson A, et al; ESC Scientific Document Group. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87-165. doi:10.1093/eurheartj/ehy394Crossref
98.
Mohdnazri  SR, Keeble  TR, Sharp  AS.  Fractional flow reserve: does a cut-off value add value?   Interv Cardiol. 2016;11(1):17-26. doi:10.15420/icr.2016:7:2 PubMedGoogle ScholarCrossref
99.
Johnson  NP, Tóth  GG, Lai  D,  et al.  Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes.   J Am Coll Cardiol. 2014;64(16):1641-1654. doi:10.1016/j.jacc.2014.07.973 PubMedGoogle ScholarCrossref
100.
Siontis  GC, Mavridis  D, Greenwood  JP,  et al.  Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials.   BMJ. 2018;360:k504. doi:10.1136/bmj.k504 PubMedGoogle ScholarCrossref
101.
Pandya  A, Yu  YJ, Ge  Y,  et al.  Evidence-based cardiovascular magnetic resonance cost-effectiveness calculator for the detection of significant coronary artery disease.   J Cardiovasc Magn Reson. 2022;24(1):1. doi:10.1186/s12968-021-00833-1 PubMedGoogle ScholarCrossref
102.
Ge  Y, Pandya  A, Steel  K,  et al.  Cost-effectiveness analysis of stress cardiovascular magnetic resonance imaging for stable chest pain syndromes.   JACC Cardiovasc Imaging. 2020;13(7):1505-1517. doi:10.1016/j.jcmg.2020.02.029 PubMedGoogle ScholarCrossref
103.
Ge Y, Steel K, Antiochos P, et al. Stress CMR in patients with obesity: insights from the Stress CMR Perfusion Imaging in the United States (SPINS) registry. Eur Heart J Cardiovasc Imaging. 2021;22(5):518-527. doi:10.1093/ehjci/jeaa281Crossref
104.
Greenwood  JP, Walker  S.  Stress CMR imaging for stable chest pain syndromes: underused and undervalued?   JACC Cardiovasc Imaging. 2020;13(7):1518-1520. doi:10.1016/j.jcmg.2020.04.006 PubMedGoogle ScholarCrossref
105.
Schwitter  J.  The SPINS trial: building evidence and a consequence?   J Am Coll Cardiol. 2019;74(14):1756-1759. doi:10.1016/j.jacc.2019.07.075 PubMedGoogle ScholarCrossref
106.
Gargiulo  P, Dellegrottaglie  S, Bruzzese  D,  et al.  The prognostic value of normal stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a meta-analysis.   Circ Cardiovasc Imaging. 2013;6(4):574-582. doi:10.1161/CIRCIMAGING.113.000035 PubMedGoogle ScholarCrossref
107.
Lipinski  MJ, McVey  CM, Berger  JS, Kramer  CM, Salerno  M.  Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis.   J Am Coll Cardiol. 2013;62(9):826-838. doi:10.1016/j.jacc.2013.03.080 PubMedGoogle ScholarCrossref
108.
Jukema  R, Maaniitty  T, van Diemen  P,  et al.  Warranty period of coronary computed tomography angiography and [15O]H2O positron emission tomography in symptomatic patients.   Eur Heart J Cardiovasc Imaging. 2023;24(3):304-311. doi:10.1093/ehjci/jeac258 PubMedGoogle ScholarCrossref
109.
Xu  J, Cai  F, Geng  C, Wang  Z, Tang  X.  Diagnostic performance of CMR, SPECT, and PET imaging for the identification of coronary artery disease: a meta-analysis.   Front Cardiovasc Med. 2021;8:621389. doi:10.3389/fcvm.2021.621389 PubMedGoogle ScholarCrossref
110.
Pontone  G, Guaricci  AI, Palmer  SC,  et al.  Diagnostic performance of non-invasive imaging for stable coronary artery disease: a meta-analysis.   Int J Cardiol. 2020;300:276-281. doi:10.1016/j.ijcard.2019.10.046 PubMedGoogle ScholarCrossref
111.
Knuuti  J, Ballo  H, Juarez-Orozco  LE,  et al.  The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability.   Eur Heart J. 2018;39(35):3322-3330. doi:10.1093/eurheartj/ehy267 PubMedGoogle ScholarCrossref
112.
Jeremias  A, Kirtane  AJ, Stone  GW.  A test in context: fractional flow reserve: accuracy, prognostic implications, and limitations.   J Am Coll Cardiol. 2017;69(22):2748-2758. doi:10.1016/j.jacc.2017.04.019 PubMedGoogle ScholarCrossref
113.
Manisty  C, Ripley  DP, Herrey  AS,  et al.  Splenic switch-off: a tool to assess stress adequacy in adenosine perfusion cardiac MR imaging.   Radiology. 2015;276(3):732-740. doi:10.1148/radiol.2015142059 PubMedGoogle ScholarCrossref
114.
Kotecha  T, Monteagudo  JM, Martinez-Naharro  A,  et al.  Quantitative cardiovascular magnetic resonance myocardial perfusion mapping to assess hyperaemic response to adenosine stress.   Eur Heart J Cardiovasc Imaging. 2021;22(3):273-281. doi:10.1093/ehjci/jeaa252 PubMedGoogle ScholarCrossref
115.
Burrage  MK, Shanmuganathan  M, Masi  A,  et al.  Cardiovascular magnetic resonance stress and rest T1-mapping using regadenoson for detection of ischemic heart disease compared to healthy controls.   Int J Cardiol. 2021;333:239-245. doi:10.1016/j.ijcard.2021.03.010 PubMedGoogle ScholarCrossref
116.
Cerqueira  MD, Nguyen  P, Staehr  P, Underwood  SR, Iskandrian  AE; ADVANCE-MPI Trial Investigators.  Effects of age, gender, obesity, and diabetes on the efficacy and safety of the selective A2A agonist regadenoson versus adenosine in myocardial perfusion imaging integrated ADVANCE-MPI trial results.   JACC Cardiovasc Imaging. 2008;1(3):307-316. doi:10.1016/j.jcmg.2008.02.003 PubMedGoogle ScholarCrossref
117.
Steen  H, Montenbruck  M, Kelle  S,  et al.  Fast-strain encoded cardiac magnetic resonance during vasodilator perfusion stress testing.   Front Cardiovasc Med. 2021;8:765961. doi:10.3389/fcvm.2021.765961 PubMedGoogle ScholarCrossref
118.
Zhou  R, Huang  W, Yang  Y,  et al.  Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging.   J Cardiovasc Magn Reson. 2018;20(1):6. doi:10.1186/s12968-018-0427-1 PubMedGoogle ScholarCrossref
119.
Foley  JRJ, Richmond  C, Fent  GJ,  et al.  Rapid cardiovascular magnetic resonance for ischemic heart disease investigation (RAPID-IHD).   JACC Cardiovasc Imaging. 2020;13(7):1632-1634. doi:10.1016/j.jcmg.2020.01.029 PubMedGoogle ScholarCrossref
×