drome had multiple retinal hamartomas, cortical dysplasia, a subependymal giant cell astrocytoma, and renal angiomyolipomas. He was found to have a TSC2 (OMIM 191092) mutation. On dermatological examination, he had angiofibromas, 2 ungal fibromas, 2 shagreen patches, multiple hypomelanotic macules of the limbs and trunk, and dental enamel pits. Bier spots were noted on the upper limbs.

Patient 4. A young patient having TSC with angiofibromas and epilepsy had cortical dysplasia and renal angiomyolipomas. On dermatological examination at age 18 years, he manifested angiofibromas, dental enamel pits, and hypomelanotic macules, as well as pale macules of the limbs, especially on the forearms, which were noted to be Bier spots.

Discussion In this series, 4 of 29 patients with TSC (14%) had nevus anemicus or Bier spots. Nevus anemicus has been reported in patients with type 1 neurofibromatosis, phakomatosis pigmentovascularis, and port-wine stains. Bier spots are a common insignificant finding. These vascular manifestations could be minor cutaneous markers of TSC, occurring in a subgroup of patients with the disease. Compared with the aesthetically disfiguring facial angiofibromas, these minor skin signs may go unnoticed and are usually of no concern to the patient. Future research is needed to determine if these signs are significant within the context of TSC.

Chloé Sachs
Dan Lipsker, MD, PhD

Author Affiliations: Faculté de Médecine, Université de Strasbourg, Strasbourg, France (Sachs, Lipsker); Clinique Dermatologique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France (Sachs, Lipsker).

Accepted for Publication: August 29, 2015.

Corresponding Author: Dan Lipsker, MD, PhD, Clinique Dermatologique, Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, F-67091 Strasbourg CEDEX, France (dan.lipsker@chru-strasbourg.fr).

Published Online: November 18, 2015. doi:10.1001/jamadermatol.2015.3999.

Analysis of Online Ratings of Dermatologists

Online physician rating sites (PRSs) allow patients to recommend, grade, and publicly comment on physician performance. In 2015, PRSs experienced up to 6.4 million hits. Despite increases in the popularity of PRSs, little information exists regarding the online ratings of dermatologists. We investigated the patterns of ratings of dermatologists on commonly used PRSs to better understand the information available to patients online. We hypothesized that the mean online ratings for dermatologists are high, consistent with ratings reported in the literature for other subspecialties.

Methods One hundred dermatologists were randomly selected from August 2 to 28, 2015, from a public list of 11,848 members of the American Academy of Dermatology. Institutional review board approval was not obtained because no patients were involved, data were obtained from public sources, and data are presented in aggregate. Five popular websites were searched for physician ratings: ZocDoc.com, Yelp.com, RateMDs.com, Vitals.com, and Healthgrades.com. Mean overall ratings (all websites used a 5-star scale), total number of ratings, and the number of negative comments were recorded for each dermatologist per website. A repeated-measures design was used to determine if mean 5-star ratings were consistent across different websites, and unpaired 2-sided t tests were used to analyze whether sex or subspecialty training had effects on ratings. The numbers of negative written comments were compared using a χ² test (critical value, 7.82; α = .05) to determine if certain websites had significantly fewer negative comments than other websites. Data analysis was conducted from August 19 to October 10, 2015.
Table 1. Ratings for Dermatologists on Physician Rating Sites

<table>
<thead>
<tr>
<th>Physician Rating Site</th>
<th>Dermatologists Rated, No.</th>
<th>Total Ratings, No.</th>
<th>Mean Ratings per Dermatologist, No.</th>
<th>Mean Overall Rating*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthgrades</td>
<td>87</td>
<td>924</td>
<td>10.6</td>
<td>4.00</td>
</tr>
<tr>
<td>Vitals</td>
<td>81</td>
<td>1172</td>
<td>14.5</td>
<td>4.04</td>
</tr>
<tr>
<td>RateMDs</td>
<td>42</td>
<td>296</td>
<td>7.1</td>
<td>3.98</td>
</tr>
<tr>
<td>Yelp</td>
<td>19</td>
<td>121</td>
<td>6.4</td>
<td>3.60</td>
</tr>
<tr>
<td>ZocDoc</td>
<td>12</td>
<td>1231</td>
<td>102.6</td>
<td>4.58</td>
</tr>
</tbody>
</table>

* All 5 websites used a 5-star rating system.

Table 2. Percentage of Negative Comments Reported for Each Physician Rating Site*

<table>
<thead>
<tr>
<th>Physician Rating Site</th>
<th>Profile Comments, No.</th>
<th>Negative Comments, %</th>
<th>χ²</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitals</td>
<td>58</td>
<td>34.0</td>
<td>1.98</td>
<td>.13</td>
</tr>
<tr>
<td>RateMDs</td>
<td>42</td>
<td>25.0</td>
<td>0.11</td>
<td>.99</td>
</tr>
<tr>
<td>Yelp</td>
<td>19</td>
<td>39.1</td>
<td>7.73</td>
<td>.13</td>
</tr>
<tr>
<td>ZocDoc</td>
<td>12</td>
<td>8.8</td>
<td>12.02</td>
<td>.007</td>
</tr>
</tbody>
</table>

* Data not included for Healthgrades as the website does not allow written comments.

Results | Of the 100 dermatologists included, 55 were men (55%) and 25 were subspecialists (pediatric dermatology, dermatopathology, Mohs surgery). Individual dermatologists appeared on approximately 2 websites (mean, 2.41). Across all websites, the mean ratings for dermatologists were high, at more than 3.5 stars (Table 1). No significant differences were found between the ratings on the 3 PRSs with the most profiles of dermatologists (N = 37; P = .33). The results of t tests confirmed that neither sex (P = .32) nor specialty training (P = .89) had significant effects on mean ratings. Four of the 5 websites offer the option for users to write comments. Only 1 website (ZocDoc.com) had significantly fewer negative comments than the other websites (χ² = 12.02; P = .007) (Table 2).

Discussion | Patients are increasingly using social media to make health care decisions. A 2014 study found that 61% of patients used PRSs before choosing a physician, and 20% used online reviews to evaluate their current physician. While many PRSs exist, their structure and purpose differ. Only 1 website discourages physicians from soliciting reviews for fear of creating bias; this website has the lowest number of reviews and the lowest mean ratings per physician. In contrast, websites that offer features to increase patient reviews (email notifications or postcards) had the highest volume of reviews and the highest mean overall ratings. More important, ratings for the same dermatologist were consistently high across these top-used websites. We may conclude that when the total number of reviews for a physician is low, one outlier may have a disproportionately large effect on overall rating, creating apparent bias. Interestingly, the website with the most ratings per dermatologist (Table 1) had significantly fewer negative comments (Table 2). Prompting patients to provide reviews may encourage all patients to participate, not just those who had an extremely good or bad experience, thereby creating more transparent communication between patients and physicians.

The data presented are limited by the subjective quality of patient reviews. Therefore, it is not possible to draw correlations between ratings and actual quality of care. However, the data we gathered from PRSs are easy for patients to access when making decisions about health care. Overall, we confirmed our hypothesis that, as with other subspecialties, online ratings of dermatologists are consistently high. Furthermore, we conclude that, while a range of reviews is helpful to improve practice, websites that prompt more patient feedback are less susceptible to outlier bias. Therefore, we encourage dermatologists to familiarize themselves with the various features of PRSs to better use this social media resource to reach their patient population and improve patient satisfaction.

Christie Riemer, BS
Monica Doctor, MA
Robert P. Dellavalle, MD, PhD, MSPH

Author Affiliations: Michigan State University College of Human Medicine, Grand Rapids (Riemer); University of Central Florida College of Medicine, Orlando (Doctor); Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora (Dellavalle); Dermatology Service, US Department of Veterans Affairs, Eastern Colorado Health Care System, Denver (Dellavalle); Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora (Dellavalle).

Accepted for Publication: October 19, 2015.

Corresponding Author: Robert P. Dellavalle, MD, PhD, MSPH, Dermatology Service, US Department of Veterans Affairs, Eastern Colorado Health Care System, 1055 Clermont St, PO Box 165, Denver, CO 80220.


Author Contributions: Dr Dellavalle and Ms Riemer had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Riemer, Doctor.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Riemer, Doctor.

Administrative, technical, or material support: Riemer, Doctor.

Study supervision: Dellavalle.

Conflict of Interest Disclosures: None reported.

Additional Contributions: Abigail R. Ness, MA, and Brian Fox, PhD, Department of Psychology, University of Missouri, Kansas City, provided statistical analysis. They were not compensated for their contributions.


Copyright 2016 American Medical Association. All rights reserved.
Use of Health Care Resources and Costs After Patient Nonattendance in Dermatology

Patient nonattendance occurs when patients miss appointments without notifying their health care professionals in advance. In dermatology, nonattendance rates range from 7.8% to 31.0% of scheduled appointments. The consequences of nonattendance range from compromised care to wasted appointment slots, decreased efficiency, and diluted residency training. We seek to define the effect of nonattendance on subsequent use of health care resources and health care spending in dermatology.

Methods | The study included patients within the Partners Healthcare System who were seen at the dermatology office of Brigham and Women's Hospital in Boston or in an associated suburban satellite clinic and who missed at least 1 dermatology appointment from February 1, 2009, through July 30, 2010. Of the 2289 patients who met these criteria, 250 randomly selected urban patients and all 237 suburban patients were included. Patients with a primary care physician outside Partners Healthcare System (128 patients) and those younger than 18 years at the time of the appointment (6 patients) were excluded. Patients with a history of nonmelanoma skin cancer (adjusted odds ratio, 2.28; 95% CI, 1.05-4.94) and having a history of nonmelanoma skin cancer (adjusted odds ratio, 3.97; 95% CI, 1.53-10.31) were associated with nonattendance. Costs were concentrated in a small proportion of these patients, with the top 10% (n=35) responsible for 60.9% of costs (Figure).

Overall, 47 of 353 patients (13.3%) failed to attend a dermatology appointment. Most of these patients (245 [69.4%]) had subsequent use of dermatology services after nonattendance. Costs were concentrated in a small proportion of these patients, with the top 10% (n=35) responsible for 60.9% of costs (Figure). The overall dermatologic spending was divided among inpatient costs (31.6%), emergency department costs (5.0%), attended outpatient appointments (51.0%), missed outpatient appointments (7.0%), and biopsies (4.4%). A multivariable analysis identified that missing a return visit (adjusted odds ratio, 3.69; 95% CI, 1.27-13.46) and having a history of nonmelanoma skin cancer (adjusted odds ratio, 3.97; 95% CI, 1.53-10.31) were associated with high rates of use (Table).

Results | Overall, 47 of 353 patients (13.3%) failed to attend a dermatology appointment. Most of these patients (245 [69.4%]) had subsequent use of dermatology services after nonattendance. Costs were concentrated in a small proportion of these patients, with the top 10% (n=35) responsible for 60.9% of costs (Figure). The overall dermatologic spending was divided among inpatient costs (31.6%), emergency department costs (5.0%), attended outpatient appointments (51.0%), missed outpatient appointments (7.0%), and biopsies (4.4%). A multivariable analysis identified that missing a return visit (adjusted odds ratio, 3.69; 95% CI, 1.27-13.46) and having a history of nonmelanoma skin cancer (adjusted odds ratio, 3.97; 95% CI, 1.53-10.31) were associated with high rates of use (Table).