not formally reviewed by the Brigham and Women's Hospital institutional review board per policy.

Results | A total of 652 patients completed surveys during the initiative; 41 (71%) of 631 were women and the mean age was 56 years. Of 639 patients, 571 (89%) were return patients to the practice, and 468 (73%) of 639 patients were seen by female dermatologists.

Overall, patients reported high levels of satisfaction across multiple domains related to the presence of medical scribes (Table). Most patients agreed or strongly agreed that the presence of a scribe improved the patient–doctor experience, was a comfortable part of the encounter, and was something they would support during their dermatology visit. In addition, female patients more strongly agreed with supporting the presence of scribes than their male counterparts. Analyses by patient age, visit type, and physician gender revealed no significant differences.

When asked to report preferences regarding scribe gender, most individuals overall (59%) reported no preference, whereas 39% preferred a female scribe (Figure). Female patients and patients seeing female dermatologists expressed the highest percentages of preference for a female scribe.

Discussion | In an era of increasing administrative burden placed on physicians, medical scribes provide an important clinical adjunct for enhancing clinical care and reducing physician burnout in dermatology. One of the major concerns of scribe implementation by physicians is whether scribes would negatively impact the patient encounter. Our study suggests that patients are comfortable with and supportive of scribes, and most patients feel that the scribes actually enhanced the patient–doctor experience. Our department chose to work with only female scribes during implementation of this service. This may have impacted the female (vs male) preference we observed across our patient population.

Conclusions | Scribes were well received by patients of both sexes and all ages. Taken together with prior findings of the enhanced impact on clinical productivity and dermatologist satisfaction, patients’ strong support of the scribe experience provides valuable affirmation for this strategy of clinical care enhancement.

Vinod E. Nambudiri, MD, MBA
Alice J. Watson, MD, MPH
Mitchell H. Rubenstein, MD
Thomas S. Kupper, MD
Fei-Shiuann Clarissa Yang, MD

Author Contributions: Drs Nambudiri and Yang had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: All authors.
Acquisition, analysis, or interpretation of data: Nambudiri, Rubenstein, Yang.
Drafting of the manuscript: Nambudiri.
Critical revision of the manuscript for important intellectual content: Watson, Rubenstein, Kupper, Yang.
Statistical analysis: Nambudiri.
Obtained funding: Kupper.
Administrative, technical, or material support: Nambudiri, Rubenstein.
Study supervision: Nambudiri, Watson, Yang.

Conflict of Interest Disclosures: None reported.

Additional Contributions: We thank Johanna Mc Ardle, BA, and Liset Chacin, BS, both at Brigham and Women’s Hospital, for their help in the coordination of the scribe surveys. They were not compensated.


Comparison of Melanocyte Density Counts in Topical Imiquimod-Treated Skin Surrounding Lentigo Maligna vs Control Biopsy Specimens

Lentigo maligna (LM) is the most common subtype of melanoma in situ, usually occurring in the head and neck regions. Several treatment approaches include wide local excisions, staged excisions (confirmation of negative histologic margins prior to surgical reconstruction), radiotherapy, or topical imiquimod 5% cream. The distinction between the surgical border of LM and surrounding background melanocytic hyperplasia common to chronically sun-exposed skin can be ambiguous. Of all the histologic features of LM, only melanocyte density counts (MDC) are statistically significant in making a distinction between LM and background melanocytic hyperplasia. In 1 study, the mean (SD) MDC for the negative control group was 25.6 (9.3) compared with 82.7 (29.3) cells per 400 × magnification for LM. The average margin requirement for LM removal is reportedly 7.2 mm. When used in the neoadjuvant setting, topical imiquimod 5% cream enables the removal of most LM tumors with 2-mm margins. Gautschi et al reported that the risk for local recurrence after topical imiquimod treatment correlates with the total number of melanocytes per millimeter in the original biopsy specimen. We sought to evaluate MDCs in imiquimod-treated LM and negative control biopsy specimens to determine if there was a measurable difference in melanocyte density.

Methods | The institutional review board of the University of Utah School of Medicine approved this prospective study of 52 cases of LM treated with off-label neoadjuvant topical imiquimod 5% cream 5 days per week for 8 weeks followed
Figure. Effect of Topical 5% Imiquimod Cream on Melanocyte Density Counts

LM indicates lentigo maligna. The data shown is the melanocyte density count (MDC) per 400 × magnification in 52 participants with LM treated with neoadjuvant topical imiquimod 5% cream compared with negative controls. A total of 44 of 52 cases showed a decrease in MDC after 5% topical imiquimod treatment compared with the control biopsy specimens.
Results | A total of 52 specimens were assessed. (13 women and 39 men; mean age, 67 years). The median (SD) MDC from the negative controls was 20.0 (6.2) (range, 9.0-36.7). The median (SD) MDC from the postimiquimod treatment sites was 14.4 (5.4) (range, 0.5-26.6). Using the 2-tailed paired t test, the results showed statistical significance (P < .001) (Figure Table). Of 52 participants, 44 (85%) showed decreased MDCs compared with the negative control group. Residual LM was observed in the central areas of 9 (17%) specimens, whereas 43 (83%) had no residual LM. One specimen had an averaged count of 0.5 MDC per 400 × magnification on all 4 quadrants of the specimen compared with a 32.4 MDC on the negative control specimen (0.02:1). Positive controls to verify Mart-1 and SOX10 immunostaining were used in all cases.

Discussion | Neoadjuvant topical imiquimod 5% cream applied 5 times weekly for 8 weeks was associated with decreased MDCs in LM treatment sites compared with the MDCs of negative control sites. The decreased melanocytic hyperplasia in imiquimod-treated sites reduced ambiguity in making a distinction between the border of the excised LM and background melanocytic hyperplasia.

Shadai Flores, MSI
Nathan J. Luby
Glen M. Bowen, MD

Author Affiliations: University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, Utah.

Corresponding Author: Glen M. Bowen, MD, University of Utah School of Medicine, Huntsman Cancer Institute, 30 N 1900 E, 4A 330 School of Medicine, Salt Lake City, UT 84132 (glen.bowen@hci.utah.edu).

Accepted for Publication: November 15, 2017.

Published Online: February 16, 2018. doi:10.1001/jamadermatol.2017.5632

Author Contributions: Dr Bowen and Ms Flores had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Bowen.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: All authors.

Administrative, technical, or material support: Luby.

Study supervision: Bowen.

Conflict of Interest Disclosures: None reported.

Meeting Presentation: This study was presented at the 2018 American Academy of Dermatology Annual Meeting; February 16, 2018; San Diego, California.

Additional Contributions: We thank Kenneth Boucher, PhD, of the Huntsman Cancer Institute, who provided expertise with regard to statistical analysis. He was not compensated.


OBSERVATION

Anhydramnios in Patients With Pemphigoid Gestationis

Pemphigoid gestationis (PG) is a rare pregnancy-associated bullos dermatosis caused by antibodies against collagen XVII (BP180), which is predominantly expressed in skin but also in amniotic epithelia, placenta, and amniotic fluid. We report 2 cases of PG associated with maternal anhydramnios (com-