Cinacalcet for the Treatment of Calciphylaxis

Maria R. Robinson, MD; Joshua J. Augustine, MD; Neil J. Korman, MD, PhD; Departments of Dermatology (Drs Robinson and Korman) and Medicine, Division of Nephrology and Hypertension (Dr Augustine), University Hospitals Case Medical Center, Cleveland, Ohio

Calciphylaxis is characterized by cutaneous ischemia and necrosis and is associated with a very high mortality rate. It usually affects patients who are undergoing dialysis or who have received a kidney transplant. There is no optimal treatment, but parathyroidectomy has shown some benefit. We report herein a case of a patient with calciphylaxis and secondary hyperparathyroidism who was successfully treated with cinacalcet hydrochloride, a calcimimetic.

REPORT OF A CASE

A 62-year-old man was admitted to the hospital for gastrointestinal bleeding and was found to have an elevated international normalized ratio. The patient had a medical history of chronic nephrolithiasis from long-standing Crohn disease that required an ileostomy and end-stage renal disease that had resulted in a kidney transplant 2 years prior to presentation. During his hospitalization, the dermatology department was consulted because the patient had painful bilateral thigh ulcers, which had developed 4 months prior to admission.

On initial examination, the patient had a 3.0 × 4.0-cm ulcer with eschar and surrounding induration and violaceous discoloration on his right thigh. On his left thigh, there was a 2.5-cm × 4.0-mm linear hemorrhagic crust. In addition, he had violaceous discoloration in a livedo reticularis pattern over his lower extremities bilaterally.

Laboratory evaluation on admission included the following findings: his calcium level was 7.9 mg/dL (2.0 mmol/L); phosphorus level, 5.5 mg/dL (1.8 mmol/L); albumin level, 3.3 g/dL; urea nitrogen level, 39 mg/dL (13.9 mmol/L); creatinine level, 4.0 mg/dL (305.0 mmol/L); intact parathyroid hormone level, 1080 pg/mL (reference range, 7-53 pg/mL); 25-hydroxyvitamin D level, 10.0 ng/mL (25.0 nmol/L) (reference range, 20-57 ng/mL [49.9-142.3 ng/mL]); and 1,25-dihydroxyvitamin D level, 11.1 pg/mL (28.9 pmol/L) (reference range, 15.9-55.6 pg/mL [41.3-144.6 pmol/L]).

The patient was treated with silver sulfadiazine cream twice a day with aggressive wound care for the ulcers, vitamin D therapy, and phosphorus binders. The patient’s hypocalcemia and hyperphosphatemia improved with therapy. Although his persistently elevated parathyroid hormone level improved, there was no improvement in his wounds. Parathyroid imaging was negative for parathyroid adenoma. His elevated international normalized ratio was corrected with vitamin K supplementation, and he was discharged from the hospital.

One month later, his wounds had increased in size, with the right thigh ulcer increasing to 5 × 9 cm and the left thigh ulcer to 3 × 6 cm (Figure 1). On his posterior calves bilaterally, there were tender, erythematous, and indurated plaques ranging in size from 1 to 3 cm.

Figure 1. Large ulcer on the left thigh with eschar and surrounding erythema and induration before treatment with cinacalcet hydrochloride.
Calciphylaxis is characterized by progressive vascular calcium deposition and cutaneous ischemia and necrosis and usually affects patients with end-stage renal disease who are undergoing hemodialysis or have received a kidney transplant. Although there is no optimal treatment for calciphylaxis, there have been several reports of beneficial treatment using different modalities. These include low-dose tissue plasminogen activator, parathyroidectomy, hyperbaric oxygen, wound debridement, intravenous sodium thiosulfate, low-molecular-weight heparin, increased frequency of hemodialysis, and using a zero-calcium dialysate.

Our patient presented with clinical and histopathologic evidence of calciphylaxis. He also had secondary hyperparathyroidism induced by his end-stage renal disease. His parathyroid hormone levels were as high as 1080 pg/mL. He was considered to be a high-risk surgical candidate for parathyroidectomy, and continued wound care did not halt the progression of disease.

Parathyroidectomy prolongs survival in some patients with calciphylaxis, but its role is still controversial. Parathyroidectomy both lowers parathyroid hormone levels and helps restore normal calcium and phosphorous homeostasis, helping to reduce known risk factors for calciphylaxis. Because this patient was a high-risk surgical candidate, medical treatment with cinacalcet, a calcimimetic that has lowered parathyroid levels in patients receiving hemodialysis, was started. The patient received a daily dose of 30 mg of cinacalcet hydrochloride.

Several weeks after the initiation of therapy with cinacalcet, the patient reported less pain associated with the ulcers, and his parathyroid hormone level continued to decline (Table). On physical examination, the right thigh wound showed dramatic improvement with re-epithelialization of the ulcer, and the left thigh wound also began to heal. Five months after he began treatment with cinacalcet, both ulcers continued to heal and the patient noted symptomatic improvement (Figure 2). During this time, the patient did not develop new ulcers.

During this time, the patient did develop 4 smaller 1- to 3-cm ulcers over his lower extremities. Three of these wounds healed, and the fourth did not become larger. After 5 months of treatment, the dosage of cinacalcet hydrochloride was increased to 60 mg/d, and his parathyroid hormone level continued to decline. His last measured value was 147 pg/mL (Table).

The prevalence of calciphylaxis has been estimated to be approximately 4% in patients who are undergoing hemodialysis, and mortality estimates are as high as 87%. Prognosis has been shown to vary with lesion distribution, with survival rates ranging from 25% for proximal lesions and 75% for distal lesions. The pathogenesis of calciphylaxis (also referred to as uremic small-artery disease with medial calcification and intimal hyperplasia, uremic small-vessel disease, uremic gangrene syndrome, and calcific uremic arteriolopathy) is incompletely understood. Several risk factors have been identified, including secondary hyperparathyroidism, increased serum phosphate and calcium phosphate product, female sex, diabetes mellitus, and protein C deficiency.

Parathyroid hormone, the main regulator of calcium homeostasis, is affected by calcium, phosphorous, and 1,25-dihydroxyvitamin D₃ levels. In patients with renal failure, there is an impaired ability to clear phosphorous and an impaired synthesis of 1,25-dihydroxyvitamin D₃, which result in hyperphosphatemia and decreased calcium absorption. These elements contribute to the development of secondary hyperparathyroidism, which is common in patients undergoing hemodialysis. In addition, a deficiency in vitamin D can exc-
erbate secondary hyperparathyroidism. The medical treat-
mant of secondary hyperparathyroidism includes control
of hyperphosphatemia and therapy with calcitriol.11
Levs of parathyroid hormone are not uniformly elevated
in patients with calciphylaxis, and some physicians have
recommended parathyroidectomy only for patients with
intractable secondary hyperparathyroidism uncontro-
rolled by medical means.12,13

To treat the patient’s secondary hyperparathyroid-
ism with very high levels of parathyroid hormone, therapy
with cinacalcet, a class II calcimimetic that targets the
calcium-sensing receptor of the parathyroid gland chief
cells, was started. Cinacalcet induces conformational
change in the calcium receptor, thereby increasing its sen-
sitivity to stimulating calcium.14 Cinacalcet has been shown
both to lower parathyroid hormone levels and to im-
prove calcium-phosphorous homeostasis in patients re-
ceiving hemodialysis in randomized, double-blind, pla-
cebo-controlled trials.15 It is indicated for both the
treatment of secondary hyperparathyroidism in pa-
ents receiving hemodialysis and the treatment of hy-
percalcemia in patients with parathyroid carcinoma.

Cinacalcet is generally well tolerated, and nausea and
vomiting are the most frequent adverse events identi-
fied. Hypocalcemia also occurs in approximately 5% of
patients receiving cinacalcet (vs <1% in placebo group;
P<.001).13 Hypocalcemia is rarely associated with symp-
toms and is treated by changing dosages of calcium-
containing phosphate-binding agents or vitamin D ste-
rols.15 Calcium levels should be closely monitored during
therapy with cinacalcet.

Results in our patient demonstrated that cinacalcet may
be a promising new approach to medically treat patients
with calciphylaxis and secondary hyperparathyroidism.
In addition to lowering the parathyroid hormone level,
levels of calcium and phosphorus are also stabilized,
which helps to correct potential risk factors that may be
involved in the pathogenesis of calciphylaxis.

Accepted for Publication: May 25, 2006.

Correspondence: Neil J. Korman, MD, PhD, Depart-
ment of Dermatology, University Hospitals Case Medi-
cal Center, 11100 Euclid Ave, Cleveland, OH 44106 (neil 
korman@uhhs.com).

Author Contributions: Study concept and design: Korn-
am. Acquisition of data: Robinson. Analysis and inter-
pretation of data: Robinson, Augustine, and Korman. Draft-
ing of the manuscript: Robinson. Critical revision of the
manuscript for important intellectual content: Augustine and Korman. Study supervision: Augustine and Korman.

Financial Disclosure: None reported.

REFERENCES

1. Sewell LD, Weening RH, Davis MD, Davis MD, McEvoy MT, Pittelkow MR. Low-
dose tissue plasminogen activator for calciphylaxis. Arch Dermatol. 2004;140:
1045-1046.

cification and intimal hyperplasia (so-called calciphylaxis): a complication of chronic
33:954-962.

tomy promotes wound healing and prolongs survival in patients with calciphyl-

4. Arch-Ferrer JE, Beeken SW, Rue LW, Bland KI, Dieithelm AG. Therapy for cal-

5. Vassa N, Twardowski ZJ, Campbell J. Hyperbaric oxygen therapy in calciphylaxis-

6. Podmowiv T, Werrett C, Burns KD. Hyperbaric oxygen in the treatment of cal-


8. Cicone JS, Petronis JB, Embert DA, Spector DA. Successful treatment of calci-
phylaxis with intravenous sodium thiosulfate. Am J Kidney Dis. 2004;43:1104-
1108.

9. Coates T, Kirkland GS, Dymock RB, et al. Cutaneous necrosis from calcific ure-

10. Russell R, Brookshire MA, Zekonis M, Moe SM. Distal calcific uremic arterio-
lopahy in a hemodialysis patient responds to lowering of Ca × P product and


12. Chan YL, Mahony JF, Turner JJ, Posen S. The vascular lesions associated with

13. Roe SM, Graham LD, Brock WB, Barker DE. Calciphylaxis: early recognition and

14. Fine A, Zacharias J. Calciphylaxis is usually non-ulcerating: risk factors, out-

15. Block GA, Martin KJ, de Francisco AL, et al. Cinacalcet for secondary hyperpara-
1525.

16. Angelis M, Wong LL, Myers SA, Wong LM. Calciphylaxis in patients on hemo-


18. Mehta RL, Scott G, Stianda JD, Francis CW. Skin necrosis associated with ac-
rquired protein C deficiency in patients with renal failure and calciphylaxis. Am J

19. Salem MM. Hyperparathyroidism in the hemodialysis population: a survey of 612

20. Owda A, Elhwairis H, Narr A, Tovory H, Osama S. Secondary hyperparathy-
roidism in chronic hemodialysis patients: prevalence and race. Ren Fail. 2003;


22. Don BR, Chin AI. A strategy for the treatment of calcific uremic arteriolopathy (calci-
phylaxis) employing a combination of therapies. Clin Nephrol. 2003;59:
463-470.

23. Nemeth EF, Heaton WH, Miller M, et al. Pharmacodynamics of the type II calci-

Submissions

Clinicians, residents, and fellows are invited to submit cases of challenges in management and therapeutics to this section. Cases should follow the established pattern. Manuscripts should be prepared double-spaced with right margins nonjustified. Pages should be numbered consecutively with the title page separated from the text (see Instructions for Authors for information about preparation of the title page). Clinical photographs, photomicrographs, and illustrations must be sharply focused and submitted as separate JPEG files with each file numbered with the figure number. Material must be accompanied by the required copyright transfer statement (see authorship form [http://archderm.ama-assn.org/misc/auinst_crit.pdf]). Preliminary inquiries regarding submissions for this feature may be submitted to George J. Hruza, MD (ghruza@aol.com). Manuscripts should be submitted via our online manuscript submission and review system (http://manuscripts.archdermatol.com).