Association of Rosacea With Risk for Glioma in a Danish Nationwide Cohort Study | Dermatology | JAMA Dermatology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 34.239.150.57. Please contact the publisher to request reinstatement.
1.
Two  AM, Wu  W, Gallo  RL, Hata  TR.  Rosacea, part I: introduction, categorization, histology, pathogenesis, and risk factors.  J Am Acad Dermatol. 2015;72(5):749-758.PubMedGoogle ScholarCrossref
2.
Scharschmidt  TC, Yost  JM, Truong  SV, Steinhoff  M, Wang  KC, Berger  TG.  Neurogenic rosacea: a distinct clinical subtype requiring a modified approach to treatment.  Arch Dermatol. 2011;147(1):123-126.PubMedGoogle ScholarCrossref
3.
Afonso  AA, Sobrin  L, Monroy  DC, Selzer  M, Lokeshwar  B, Pflugfelder  SC.  Tear fluid gelatinase B activity correlates with IL-1α concentration and fluorescein clearance in ocular rosacea.  Invest Ophthalmol Vis Sci. 1999;40(11):2506-2512.PubMedGoogle Scholar
4.
Spoendlin  J, Voegel  JJ, Jick  SS, Meier  CR.  Migraine, triptans, and the risk of developing rosacea: a population-based study within the United Kingdom.  J Am Acad Dermatol. 2013;69(3):399-406.PubMedGoogle ScholarCrossref
5.
Two  AM, Wu  W, Gallo  RL, Hata  TR.  Rosacea, part II: topical and systemic therapies in the treatment of rosacea.  J Am Acad Dermatol. 2015;72(5):761-770.PubMedGoogle ScholarCrossref
6.
Könnecke  H, Bechmann  I.  The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas.  Clin Dev Immunol. 2013;2013:914104.PubMedGoogle ScholarCrossref
7.
Hagemann  C, Anacker  J, Ernestus  RI, Vince  GH.  A complete compilation of matrix metalloproteinase expression in human malignant gliomas.  World J Clin Oncol. 2012;3(5):67-79.PubMedGoogle ScholarCrossref
8.
Forsyth  PA, Wong  H, Laing  TD,  et al.  Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas.  Br J Cancer. 1999;79(11-12):1828-1835.PubMedGoogle ScholarCrossref
9.
VanMeter  TE, Rooprai  HK, Kibble  MM, Fillmore  HL, Broaddus  WC, Pilkington  GJ.  The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis.  J Neurooncol. 2001;53(2):213-235.PubMedGoogle ScholarCrossref
10.
Ricard  D, Idbaih  A, Ducray  F, Lahutte  M, Hoang-Xuan  K, Delattre  JY.  Primary brain tumours in adults.  Lancet. 2012;379(9830):1984-1996.PubMedGoogle ScholarCrossref
11.
Li  WQ, Zhang  M, Danby  FW, Han  J, Qureshi  AA.  Personal history of rosacea and risk of incident cancer among women in the US.  Br J Cancer. 2015;113(3):520-523.PubMedGoogle ScholarCrossref
12.
Schmidt  M, Pedersen  L, Sørensen  HT.  The Danish civil registration system as a tool in epidemiology.  Eur J Epidemiol. 2014;29(8):541-549.PubMedGoogle ScholarCrossref
13.
Baadsgaard  M, Quitzau  J.  Danish registers on personal income and transfer payments.  Scand J Public Health. 2011;39(7)(suppl):103-105.PubMedGoogle ScholarCrossref
14.
Andersen  TF, Madsen  M, Jørgensen  J, Mellemkjoer  L, Olsen  JH.  The Danish National Hospital Register: a valuable source of data for modern health sciences.  Dan Med Bull. 1999;46(3):263-268.PubMedGoogle Scholar
15.
Gaist  D, Sørensen  HT, Hallas  J.  The Danish prescription registries.  Dan Med Bull. 1997;44(4):445-448.PubMedGoogle Scholar
16.
von Elm  E, Altman  DG, Egger  M, Pocock  SJ, Gøtzsche  PC, Vandenbroucke  JP; STROBE Initiative.  The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.  Epidemiology. 2007;18(6):800-804.PubMedGoogle ScholarCrossref
17.
Andersson  C, Vaag  A, Selmer  C,  et al.  Risk of cancer in patients using glucose-lowering agents: a nationwide cohort study of 3.6 million people.  BMJ Open. 2012;2(3):e000433.PubMedGoogle ScholarCrossref
18.
Inskip  PD, Linet  MS, Heineman  EF.  Etiology of brain tumors in adults.  Epidemiol Rev. 1995;17(2):382-414.PubMedGoogle Scholar
19.
Al-Dabagh  A, Davis  SA, McMichael  AJ, Feldman  SR.  Rosacea in skin of color: not a rare diagnosis.  Dermatol Online J. 2014;20(10):13030/qt1mv9r0ss.PubMedGoogle Scholar
20.
Tamargo  RJ, Bok  RA, Brem  H.  Angiogenesis inhibition by minocycline.  Cancer Res. 1991;51(2):672-675.PubMedGoogle Scholar
21.
Sotomayor  EA, Teicher  BA, Schwartz  GN,  et al.  Minocycline in combination with chemotherapy or radiation therapy in vitro and in vivo.  Cancer Chemother Pharmacol. 1992;30(5):377-384.PubMedGoogle ScholarCrossref
22.
Sadowski  T, Steinmeyer  J.  Effects of tetracyclines on the production of matrix metalloproteinases and plasminogen activators as well as of their natural inhibitors, tissue inhibitor of metalloproteinases-1 and plasminogen activator inhibitor-1.  Inflamm Res. 2001;50(3):175-182.PubMedGoogle ScholarCrossref
23.
Frazier  JL, Wang  PP, Case  D,  et al.  Local delivery of minocycline and systemic BCNU have synergistic activity in the treatment of intracranial glioma.  J Neurooncol. 2003;64(3):203-209.PubMedGoogle ScholarCrossref
24.
Musumeci  G, Magro  G, Cardile  V,  et al.  Characterization of matrix metalloproteinase-2 and -9, ADAM-10 and N-cadherin expression in human glioblastoma multiforme.  Cell Tissue Res. 2015;362(1):45-60.PubMedGoogle ScholarCrossref
25.
Yan  W, Zhang  W, Sun  L,  et al.  Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme.  Brain Res. 2011;1411:108-115.PubMedGoogle Scholar
26.
Kähäri  VM, Saarialho-Kere  U.  Matrix metalloproteinases in skin.  Exp Dermatol. 1997;6(5):199-213.PubMedGoogle ScholarCrossref
27.
Buhl  T, Sulk  M, Nowak  P,  et al.  Molecular and morphological characterization of inflammatory infiltrate in rosacea reveals activation of Th1/Th17 pathways.  J Invest Dermatol. 2015;135(9):2198-2208.PubMedGoogle ScholarCrossref
28.
Wainwright  DA, Sengupta  S, Han  Y, Ulasov  IV, Lesniak  MS.  The presence of IL-17A and T helper 17 cells in experimental mouse brain tumors and human glioma.  PLoS One. 2010;5(10):e15390.PubMedGoogle ScholarCrossref
29.
Liang  H, Yi  L, Wang  X, Zhou  C, Xu  L.  Interleukin-17 facilitates the immune suppressor capacity of high-grade glioma-derived CD4 (+) CD25 (+) Foxp3 (+) T cells via releasing transforming growth factor beta.  Scand J Immunol. 2014;80(2):144-150.PubMedGoogle ScholarCrossref
30.
Chang  AL, Raber  I, Xu  J,  et al.  Assessment of the genetic basis of rosacea by genome-wide association study.  J Invest Dermatol. 2015;135(6):1548-1555.PubMedGoogle ScholarCrossref
31.
Brown  AM, Wright  KL, Ting  JP.  Human major histocompatibility complex class II–associated invariant chain gene promoter: functional analysis and in vivo protein/DNA interactions of constitutive and IFN-gamma-induced expression.  J Biol Chem. 1993;268(35):26328-26333.PubMedGoogle Scholar
32.
Basta  PV, Sherman  PA, Ting  JP.  Detailed delineation of an interferon-gamma-responsive element important in human HLA-DRA gene expression in a glioblastoma multiform line.  Proc Natl Acad Sci U S A. 1988;85(22):8618-8622.PubMedGoogle ScholarCrossref
Original Investigation
May 2016

Association of Rosacea With Risk for Glioma in a Danish Nationwide Cohort Study

Author Affiliations
  • 1National Allergy Research Centre, Herlev and Gentofte University Hospital, University of Copenhagen, Hellerup, Denmark
  • 2Department of Dermato-Allergology, Herlev and Gentofte University Hospital, University of Copenhagen, Hellerup, Denmark
  • 3Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
  • 4The Danish Heart Foundation, Copenhagen, Denmark
  • 5National Institute of Public Health, University of Southern Denmark, Copenhagen
JAMA Dermatol. 2016;152(5):541-545. doi:10.1001/jamadermatol.2015.5549
Abstract

Importance  Rosacea, a common facial skin disorder, has a poorly understood pathogenesis in which increased matrix metalloproteinase activity might play an important role. Glioma accounts for 80% of all primary malignant tumors in the central nervous system, and these tumors also show upregulation of certain matrix metalloproteinases.

Objective  To investigate the association between rosacea and the risk for glioma.

Design, Setting, and Participants  Nationwide cohort study of the Danish population from individual-level linkage of administrative registers. All Danish citizens 18 years or older from January 1, 1997, to December 31, 2011, were eligible for inclusion. A total of 5 484 910 individuals were eligible for analysis; of these, 68 372 had rosacea and 5 416 538 constituted the reference population. Data were analyzed from July 14 to August 10, 2015.

Main Outcomes and Measures  The outcome of interest was a diagnosis of glioma. Incidence rates per 10 000 person-years were calculated, and incidence rate ratios adjusted for age, sex, and socioeconomic status were estimated by Poisson regression distribution models.

Results  Of the 5 484 910 individuals in the study population, 21 118 individuals developed glioma during the study period, including 20 934 of the 5 416 538 individuals in the reference population (50.4% women; mean [SD] age, 40.8 [19.7] years) and 184 of the 68 372 patients with rosacea (67.3% women; mean [SD] age, 42.2 [16.5] years). The incidence rate (95% CI) of glioma was 3.34 (3.30-3.39) in the reference population and 4.99 (4.32-5.76) in patients with rosacea. The adjusted incidence rate ratio (95% CI) of glioma in patients with rosacea was 1.36 (1.18-1.58) in our primary analysis. When analyses were limited to patients with a primary diagnosis of rosacea by a hospital dermatologist (n = 5964), the adjusted incidence rate ratio was 1.82 (1.16-2.86).

Conclusions and Relevance  Rosacea was associated with a significantly increased risk for glioma in a nationwide cohort. This association may be mediated, in part, by mechanisms dependent on matrix metalloproteinases. Increased focus on neurologic symptoms in patients with rosacea may be warranted.

×