Surgical Interventions for Patients With Vitiligo: A Systematic Review and Meta-analysis | Dermatology | JAMA Dermatology | JAMA Network
[Skip to Navigation]
Sign In
Figure 1.  Flow Diagram Showing Identification of Eligible Studies
Flow Diagram Showing Identification of Eligible Studies
Figure 2.  Summary of Treatment Response Following Surgical Interventions for Vitiligo
Summary of Treatment Response Following Surgical Interventions for Vitiligo

CES indicates cultured epidermal cell suspension; NCES, noncultured epidermal cell suspension; and NCFS, noncultured follicular cell suspension.

Table 1.  Summary of Findings for Surgical Interventions for Vitiligo
Summary of Findings for Surgical Interventions for Vitiligo
Table 2.  Common Adverse Events of Surgical Interventions
Common Adverse Events of Surgical Interventions
1.
Rodrigues  M, Ezzedine  K, Hamzavi  I, Pandya  AG, Harris  JE; Vitiligo Working Group.  New discoveries in the pathogenesis and classification of vitiligo.   J Am Acad Dermatol. 2017;77(1):1-13. doi:10.1016/j.jaad.2016.10.048 PubMedGoogle ScholarCrossref
2.
Bae  JM, Lee  SC, Kim  TH,  et al.  Factors affecting quality of life in patients with vitiligo: a nationwide study.   Br J Dermatol. 2018;178(1):238-244. doi:10.1111/bjd.15560 PubMedGoogle ScholarCrossref
3.
Ezzedine  K, Whitton  M, Pinart  M.  Interventions for vitiligo.   JAMA. 2016;316(16):1708-1709. doi:10.1001/jama.2016.12399 PubMedGoogle ScholarCrossref
4.
Bae  JM, Jung  HM, Hong  BY,  et al.  Phototherapy for vitiligo: a systematic review and meta-analysis.   JAMA Dermatol. 2017;153(7):666-674. doi:10.1001/jamadermatol.2017.0002 PubMedGoogle ScholarCrossref
5.
Lee  JH, Kwon  HS, Jung  HM,  et al.  Treatment outcomes of topical calcineurin inhibitor therapy for patients with vitiligo: a systematic review and meta-analysis.   JAMA Dermatol. 2019;155(8):929-938. doi:10.1001/jamadermatol.2019.0696 PubMedGoogle ScholarCrossref
6.
Holla  AP, Parsad  D.  Vitiligo surgery: its evolution as a definite treatment in the stable vitiligo.   G Ital Dermatol Venereol. 2010;145(1):79-88.PubMedGoogle Scholar
7.
Khunger  N, Kathuria  SD, Ramesh  V.  Tissue grafts in vitiligo surgery—past, present, and future.   Indian J Dermatol. 2009;54(2):150-158. doi:10.4103/0019-5154.53196 PubMedGoogle ScholarCrossref
8.
National Institute for Health Research. Treatment outcomes of surgical treatments for vitiligo: systematic review and meta-analysis. CRD42020186777. Accessed April 18, 2020. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=186777
9.
Boersma  BR, Westerhof  W, Bos  JD.  Repigmentation in vitiligo vulgaris by autologous minigrafting: results in nineteen patients.   J Am Acad Dermatol. 1995;33(6):990-995. doi:10.1016/0190-9622(95)90292-9 PubMedGoogle ScholarCrossref
10.
Gupta  S, Jain  VK, Saraswat  PK.  Suction blister epidermal grafting versus punch skin grafting in recalcitrant and stable vitiligo.   Dermatol Surg. 1999;25(12):955-958. doi:10.1046/j.1524-4725.1999.99069.x PubMedGoogle ScholarCrossref
11.
Malakar  S, Dhar  S.  Treatment of stable and recalcitrant vitiligo by autologous miniature punch grafting: a prospective study of 1,000 patients.   Dermatology. 1999;198(2):133-139. doi:10.1159/000018089 PubMedGoogle ScholarCrossref
12.
Sarkar  R, Mehta  SD, Kanwar  AJ.  Repigmentation after autologous miniature punch grafting in segmental vitiligo in North Indian patients.   J Dermatol. 2001;28(10):540-546. doi:10.1111/j.1346-8138.2001.tb00027.x PubMedGoogle ScholarCrossref
13.
Hallaji  Z, Daneshpazhooh  M, Rezai-Khiabanloo  S.  Successful treatment of vitiligo with punch graft followed by outdoor topical psoralen plus ultraviolet a radiation.   Arch Iranian Med. 2003;6(2):86-90.Google Scholar
14.
Ghorpade  A.  Use of tissue glue for punch grafting in vitiligo—a preliminary report.   Indian J Dermatol Venereol Leprol. 2004;70(3):159-161.PubMedGoogle Scholar
15.
Khandpur  S, Sharma  VK, Manchanda  Y.  Comparison of minipunch grafting versus split-skin grafting in chronic stable vitiligo.   Dermatol Surg. 2005;31(4):436-441. doi:10.1097/00042728-200504000-00010 PubMedGoogle ScholarCrossref
16.
Masood  Q, Majid  I, Hassan  I, Khan  D.  Miniature punch grafting in recalcitrant vitiligo.   JK Pract. 2005;12(2):81-82.Google Scholar
17.
Fongers  A, Wolkerstorfer  A, Nieuweboer-Krobotova  L, Krawczyk  P, Tóth  GG, van der Veen  JP.  Long-term results of 2-mm punch grafting in patients with vitiligo vulgaris and segmental vitiligo: effect of disease activity.   Br J Dermatol. 2009;161(5):1105-1111. doi:10.1111/j.1365-2133.2009.09367.x PubMedGoogle ScholarCrossref
18.
Feetham  HJ, Chan  JL, Pandya  AG.  Characterization of clinical response in patients with vitiligo undergoing autologous epidermal punch grafting.   Dermatol Surg. 2012;38(1):14-19. doi:10.1111/j.1524-4725.2011.02171.x PubMedGoogle ScholarCrossref
19.
Linthorst Homan  MW, Spuls  PI, Nieuweboer-Krobotova  L,  et al.  A randomized comparison of excimer laser versus narrow-band ultraviolet B phototherapy after punch grafting in stable vitiligo patients.   J Eur Acad Dermatol Venereol. 2012;26(6):690-695. doi:10.1111/j.1468-3083.2011.04147.x PubMedGoogle ScholarCrossref
20.
Sharma  S, Garg  VK, Sarkar  R, Relhan  V.  Comparative study of flip-top transplantation and punch grafting in stable vitiligo.   Dermatol Surg. 2013;39(9):1376-1384. doi:10.1111/dsu.12263 PubMedGoogle ScholarCrossref
21.
Kumar  R, Singh  SK, Gupta  AK, Patel  PK, Chhachhi  H, Patel  RK.  Comparative study of efficacy of non-cultured melanocyte transfer technique and punch grafting technique in the management of stable vitiligo.   J Evolution Med Dent Sci. 2015;4(102):16754-16758. doi:10.14260/jemds/2015/2509 Google ScholarCrossref
22.
Mohamed Mohamed  EE, Younes  AK, Osmand  A, Mohamed  R, Makki  M, Younis  M.  Punch graft versus follicular hair transplantation in the treatment of stable vitiligo.   J Cosmet Laser Ther. 2017;19(5):290-293. doi:10.1080/14764172.2017.1303170 PubMedGoogle ScholarCrossref
23.
Bae  JM, Lee  JH, Kwon  HS, Kim  J, Kim  DS.  Motorized 0.8-mm micropunch grafting for refractory vitiligo: a retrospective study of 230 cases.   J Am Acad Dermatol. 2018;79(4):720-727.e1. doi:10.1016/j.jaad.2018.06.016 PubMedGoogle ScholarCrossref
24.
Ezz-Eldawla  R, Abu El-Hamd  M, Saied  SM, Hassanien  SH.  A comparative study between suction blistering graft, mini punch graft, and hair follicle transplant in treatment of patients with stable vitiligo.   J Dermatolog Treat. 2019;30(5):492-497. doi:10.1080/09546634.2018.1528329 PubMedGoogle ScholarCrossref
25.
Zhao  T, Ye  Z, Gao  T, Li  S, Li  C.  Mini-punch grafting for the treatment of refractory and stable vitiligo.   J Invest Dermatol. 2019;139(5):S97. doi:10.1016/j.jid.2019.03.638 Google ScholarCrossref
26.
Anbar  T, Abd El Raheem  T, Bassiouny  DA,  et al.  Value of silicone gel in prevention of cobblestoning following punch minigrafting in vitiligo.   J Dermatolog Treat. Published online April 13, 2020. PubMedGoogle Scholar
27.
Kim  DS, Ju  HJ, Lee  HN,  et al.  Skin seeding technique with 0.5-mm micropunch grafting for vitiligo irrespective of the epidermal-dermal orientation: animal and clinical studies.   J Dermatol. 2020;47(7):749-754. doi:10.1111/1346-8138.15390 PubMedGoogle ScholarCrossref
28.
Agrawal  K, Agrawal  A.  Vitiligo: repigmentation with dermabrasion and thin split-thickness skin graft.   Dermatol Surg. 1995;21(4):295-300. doi:10.1111/j.1524-4725.1995.tb00176.x PubMedGoogle ScholarCrossref
29.
Kahn  AM, Cohen  MJ.  Repigmentation in vitiligo patients: melanocyte transfer via ultra-thin grafts.   Dermatol Surg. 1998;24(3):365-367. doi:10.1111/j.1524-4725.1998.tb04168.x PubMedGoogle ScholarCrossref
30.
Al-Mutairi  N, Manchanda  Y, Al-Doukhi  A, Al-Haddad  A.  Long-term results of split-skin grafting in combination with excimer laser for stable vitiligo.   Dermatol Surg. 2010;36(4):499-505. doi:10.1111/j.1524-4725.2010.01477.x PubMedGoogle ScholarCrossref
31.
Majid  I, Imran  S.  Ultrathin split-thickness skin grafting followed by narrowband UVB therapy for stable vitiligo: an effective and cosmetically satisfying treatment option.   Indian J Dermatol Venereol Leprol. 2012;78(2):159-164. doi:10.4103/0378-6323.93632 PubMedGoogle ScholarCrossref
32.
Sheth  VM, Currimbhoy  SD, Feetham  HJ,  et al.  Efficacy of narrowband ultraviolet B versus excimer radiation in repigmenting vitiligo after minigrafting on the distal arms.   J Am Acad Dermatol. 2012;67(2):318-320. doi:10.1016/j.jaad.2012.02.045 PubMedGoogle ScholarCrossref
33.
Majid  I.  Ultra-thin skin grafting in resistant stable vitiligo: factors affecting the treatment outcome.   Pigment Cell Melanoma Res. 2014;27(5):988.Google Scholar
34.
Sankara  RK, Rao  DS, Ramachandra  BV, Srinivasulu  G, Lakshmi  NB.  A study of split thickness skin graft technique in stable acral vitiligo.   J Evolution Med Dental Sci. 2016;5(30):1581-1585. doi:10.14260/jemds/2016/372 Google ScholarCrossref
35.
Majid  I, Imran  S.  Ultrathin skin grafting in resistant stable vitiligo: a follow-up study of 8 years in 370 patients.   Dermatol Surg. 2017;43(2):218-225. doi:10.1097/DSS.0000000000000969 PubMedGoogle ScholarCrossref
36.
Hatchome  N, Kato  T, Tagami  H.  Therapeutic success of epidermal grafting in generalized vitiligo is limited by the Koebner phenomenon.   J Am Acad Dermatol. 1990;22(1):87-91. doi:10.1016/0190-9622(90)70013-8 PubMedGoogle ScholarCrossref
37.
Hann  SK, Im  S, Bong  HW, Park  YK.  Treatment of stable vitiligo with autologous epidermal grafting and PUVA.   J Am Acad Dermatol. 1995;32(6):943-948. doi:10.1016/0190-9622(95)91329-7 PubMedGoogle ScholarCrossref
38.
Na  GY.  Autologous suction blister grafting for the treatment of vitiligo.   Ann Dermatol. 1996;8(1):19-24. doi:10.5021/ad.1996.8.1.19 Google ScholarCrossref
39.
Suga  Y, Butt  KI, Takimoto  R, Fujioka  N, Yamada  H, Ogawa  H.  Successful treatment of vitiligo with PUVA-pigmented autologous epidermal grafting.   Int J Dermatol. 1996;35(7):518-522. doi:10.1111/j.1365-4362.1996.tb01673.x PubMedGoogle ScholarCrossref
40.
Kim  HY, Kang  KY.  Epidermal grafts for treatment of stable and progressive vitiligo.   J Am Acad Dermatol. 1999;40(3):412-417. doi:10.1016/S0190-9622(99)70490-1 PubMedGoogle ScholarCrossref
41.
Lim  JT.  Repigmentation of vitiligo with autologous blister-induced epidermal grafts.   Ann Acad Med Singap. 1999;28(6):824-828.PubMedGoogle Scholar
42.
Gupta  S, Kumar  B.  Epidermal grafting for vitiligo in adolescents.   Pediatr Dermatol. 2002;19(2):159-162. doi:10.1046/j.1525-1470.2002.00035.x PubMedGoogle ScholarCrossref
43.
Gupta  S, Kumar  B.  Epidermal grafting in vitiligo: influence of age, site of lesion, and type of disease on outcome.   J Am Acad Dermatol. 2003;49(1):99-104. doi:10.1067/mjd.2003.415 PubMedGoogle ScholarCrossref
44.
Kim  SE, Kim  JR, Kim  TH.  The comparative study of the epidermal graft by suction blister between simple and complicated cases of vitiligo.   Korean J Dermatol. 2003;41(6):716-721.Google Scholar
45.
Cho  WI, Kim  JE, Seo  SJ, Hong  CK.  The effect of autologous epidermal grafting in the treatment of intractable vitiligo.   Korean J Dermatol. 2005;43(4):455-461.Google Scholar
46.
Gupta  S, Goel  A, Kanwar  AJ, Kumar  B.  Autologous melanocyte transfer via epidermal grafts for lip vitiligo.   Int J Dermatol. 2006;45(6):747-750. doi:10.1111/j.1365-4632.2006.02694.x PubMedGoogle ScholarCrossref
47.
Hasegawa  T, Suga  Y, Ikejima  A,  et al.  Suction blister grafting with CO(2) laser resurfacing of the graft recipient site for vitiligo.   J Dermatol. 2007;34(7):490-492. doi:10.1111/j.1346-8138.2007.00317.x PubMedGoogle ScholarCrossref
48.
Babu  A, Thappa  DM, Jaisankar  TJ.  Punch grafting versus suction blister epidermal grafting in the treatment of stable lip vitiligo.   Dermatol Surg. 2008;34(2):166-178. doi:10.1097/00042728-200802000-00005 PubMedGoogle ScholarCrossref
49.
Jin  Y, Xu  A, Wang  P, Song  X, Liu  X.  Long-term follow-up and correlated factors of vitiligo following autologous epidermal transplantation.   Cutis. 2011;87(3):137-141.PubMedGoogle Scholar
50.
Li  J, Fu  WW, Zheng  ZZ, Zhang  QQ, Xu  Y, Fang  L.  Suction blister epidermal grafting using a modified suction method in the treatment of stable vitiligo: a retrospective study.   Dermatol Surg. 2011;37(7):999-1006. doi:10.1111/j.1524-4725.2011.01966.x PubMedGoogle ScholarCrossref
51.
Budania  A, Parsad  D, Kanwar  AJ, Dogra  S.  Comparison between autologous noncultured epidermal cell suspension and suction blister epidermal grafting in stable vitiligo: a randomized study.   Br J Dermatol. 2012;167(6):1295-1301. doi:10.1111/bjd.12007 PubMedGoogle ScholarCrossref
52.
Maleki  M, Banihashemi  M, Sanjari  V.  Efficacy of suction blister epidermal graft without phototherapy for locally stable and resistant vitiligo.   Indian J Dermatol. 2012;57(4):282-284. doi:10.4103/0019-5154.97669 PubMedGoogle ScholarCrossref
53.
Rao  A, Gupta  S, Dinda  AK,  et al.  Study of clinical, biochemical and immunological factors determining stability of disease in patients with generalized vitiligo undergoing melanocyte transplantation.   Br J Dermatol. 2012;166(6):1230-1236. doi:10.1111/j.1365-2133.2012.10886.x PubMedGoogle ScholarCrossref
54.
Lu  N, Xu  A, Wu  X.  Follow-up study of vitiligo patients treated with autologous epidermal sheet transplants.   J Dermatolog Treat. 2014;25(3):200-204. doi:10.3109/09546634.2012.671912 PubMedGoogle ScholarCrossref
55.
Ashique  KT, Kaliyadan  F.  Long-term follow-up and donor site changes evaluation in suction blister epidermal grafting done for stable vitiligo: a retrospective study.   Indian J Dermatol. 2015;60(4):369-372. doi:10.4103/0019-5154.160482 PubMedGoogle ScholarCrossref
56.
Bao  H, Hong  W, Fu  L, Wei  X, Qian  G, Xu  A.  Blister roof grafting, cultured melanocytes transplantation and non-cultured epidermal cell suspension transplantation in treating stable vitiligo: a mutual self-control study.   J Dermatolog Treat. 2015;26(6):571-574. doi:10.3109/09546634.2015.1034068 PubMedGoogle ScholarCrossref
57.
Ebrahimi  A, Radmanesh  M, Kavoussi  H.  Recipient site preparation for epidermal graft in stable vitiligo by a special fraise.   An Bras Dermatol. 2015;90(1):55-60. doi:10.1590/abd1806-4841.20153205 PubMedGoogle ScholarCrossref
58.
Shin  D, Oh  SH, Hann  SK.  Vitiligo involving the nipple and areola: a good indication for epidermal grafting.   Dermatol Surg. 2016;42(4):565-568. doi:10.1097/DSS.0000000000000666 PubMedGoogle ScholarCrossref
59.
Ravi  SS, Chittoory  SS.  Suction blister grafting—still a useful modality for treatment of resistant and stable vitiligo.   J Evolution Med Dental Sci. 2017;6(80):5668-5673. doi:10.14260/jemds/2017/1229 Google ScholarCrossref
60.
Iwanowski  T, Szlązak  P, Rustowska  A, Sokołowska-Wojdyło  M.  Efficacy of suction blister epidermal grafting with concomitant phototherapy in vitiligo treatment.   Postepy Dermatol Alergol. 2018;35(6):592-598. doi:10.5114/pdia.2017.71257 PubMedGoogle ScholarCrossref
61.
Kar  BR, Raj  C.  Suction blister epidermal grafting for vitiligo involving angles of lip: experience of 112 patients.   J Cutan Aesthet Surg. 2018;11(1):13-19. doi:10.4103/JCAS.JCAS_111_15 PubMedGoogle ScholarCrossref
62.
Khan  R, Sharma  A, Bhushan  A, Basnet  B, Sharma  VK, Gupta  S.  Relationship between α-melanocyte stimulating hormone levels and therapeutic outcome of melanocyte transplantation and phototherapy in non-segmental patients with vitiligo: a prospective study.   Australas J Dermatol. 2018;59(4):e315-e318. doi:10.1111/ajd.12769 PubMedGoogle ScholarCrossref
63.
van Geel  N, Ongenae  K, De Mil  M, Haeghen  YV, Vervaet  C, Naeyaert  JM.  Double-blind placebo-controlled study of autologous transplanted epidermal cell suspensions for repigmenting vitiligo.   Arch Dermatol. 2004;140(10):1203-1208. doi:10.1001/archderm.140.10.1203 PubMedGoogle ScholarCrossref
64.
Pandya  V, Parmar  KS, Shah  BJ, Bilimoria  FE.  A study of autologous melanocyte transfer in treatment of stable vitiligo.   Indian J Dermatol Venereol Leprol. 2005;71(6):393-397. doi:10.4103/0378-6323.18942 PubMedGoogle ScholarCrossref
65.
van Geel  N, Ongenae  K, Vander Haeghen  Y, Vervaet  C, Naeyaert  JM.  Subjective and objective evaluation of noncultured epidermal cellular grafting for repigmenting vitiligo.   Dermatology. 2006;213(1):23-29. doi:10.1159/000092833 PubMedGoogle ScholarCrossref
66.
Mulekar  SV, Al Issa  A, Al Eisa  A.  Treatment of vitiligo on difficult-to-treat sites using autologous noncultured cellular grafting.   Dermatol Surg. 2009;35(1):66-71.PubMedGoogle Scholar
67.
Malhotra  SK, Puri  KJPS, Singh  S.  Non-cultured epidermal cell suspension-a simpler solution for a complex disease vitiligo.   Pigment Cell Melanoma Res. 2010;23(3):462.Google Scholar
68.
Holla  AP, Kumar  R, Parsad  D, Kanwar  AJ, Mehta  SD.  Role of wound bed nutrition in non cultured epidermal suspension transplantation in vitiligo.   Pigment Cell Melanoma Res. 2011;24(4):835.Google Scholar
69.
Paul  M.  Autologous non-cultured basal cell-enriched epidermal cell suspension transplantation in vitiligo: Indian experience.   J Cutan Aesthet Surg. 2011;4(1):23-28. doi:10.4103/0974-2077.79183 PubMedGoogle ScholarCrossref
70.
Sahni  K, Parsad  D, Kanwar  AJ.  Noncultured epidermal suspension transplantation for the treatment of stable vitiligo in children and adolescents.   Clin Exp Dermatol. 2011;36(6):607-612. doi:10.1111/j.1365-2230.2011.04065.x PubMedGoogle ScholarCrossref
71.
Sahni  K, Parsad  D, Kanwar  AJ, Mehta  SD.  Autologous noncultured melanocyte transplantation for stable vitiligo: can suspending autologous melanocytes in the patients’ own serum improve repigmentation and patient satisfaction?   Dermatol Surg. 2011;37(2):176-182. doi:10.1111/j.1524-4725.2010.01847.x PubMedGoogle ScholarCrossref
72.
Gimenez-Azcarate  A, Bernad  I, Irarrazaval  I, Lera  M, Redondo  P.  Double-blind, randomized, intraindividually controlled clinical trial to evaluate the efficacy of autologous melanocyte cell transplant using amniotic membrane as a scaffold in the treatment of stable vitiligo.   J Am Acad Dermatol. 2013;68(4):AB189.Google Scholar
73.
Holla  AP.  Short-duration cold trypsinization as a novel method in noncultured epidermal suspension transplantation in stable vitiligo.   Br J Dermatol. 2013;169:67-68.Google ScholarCrossref
74.
Holla  AP, Sahni  K, Kumar  R, Parsad  D, Kanwar  A, Mehta  SD.  Acral vitiligo and lesions over joints treated with non-cultured epidermal cell suspension transplantation.   Clin Exp Dermatol. 2013;38(4):332-337. doi:10.1111/ced.12040 PubMedGoogle ScholarCrossref
75.
Singh  C, Parsad  D, Kanwar  AJ, Dogra  S, Kumar  R.  Comparison between autologous noncultured extracted hair follicle outer root sheath cell suspension and autologous noncultured epidermal cell suspension in the treatment of stable vitiligo: a randomized study.   Br J Dermatol. 2013;169(2):287-293. doi:10.1111/bjd.12325 PubMedGoogle ScholarCrossref
76.
Bassiouny  D, El-Zawahry  BM, Esmat  S,  et al  Effect of procedural-related variables on melanocytekeratinocye suspension transplantation in stable vitiligo: a clinical and immunohistochemical study.   Pigment Cell Melanoma Res. 2014;27(5):903.Google Scholar
77.
Budania  A, Khunger  N.  Non cultured epidermal cell suspension for stable vitiligo from lab to dermatologists clinic: an oversimplification or a real possibility.   Pigment Cell Melanoma Res. 2014;27(5):985-986.Google Scholar
78.
Holla  AP.  Combined cell suspension transplantation in stable vitiligo.   Br J Dermatol. 2014;171:69.Google ScholarCrossref
79.
Razmi  MT, Parsad  D, Kumaran  SM.  Transplantation of autologous noncultured extracted hair follicle outer root sheath cell and autologus noncultured epidermal cell suspension in combination as a novel method in vitiligo surgery.   Pigment Cell Melanoma Res. 2014;27(5):903-904.Google Scholar
80.
Holla  AP.  Recombinant protease for cell separation as a safer alternate to trypsin in noncultured epidermal suspension transplantation in stable vitiligo.   Br J Dermatol. 2015;173:105-106.Google Scholar
81.
Verma  G, Varkhande  SR, Kar  HK, Rani  R.  Evaluation of repigmentation with cultured melanocyte transplantation (CMT) compared with non-cultured epidermal cell transplantation in vitiligo at 12th week reveals better repigmentation with CMT.   J Invest Dermatol. 2015;135(10):2533-2535. doi:10.1038/jid.2015.178 PubMedGoogle ScholarCrossref
82.
Bassiouny  D, ElZawahry  B, Esmat  S,  et al  Autologous melanocyte-keratinocyte suspension in NSV: is supplementation of the suspension medium beneficial.   Pigment Cell Melanoma Res. 2017;30(5):e3-.Google Scholar
83.
El-Zawahry  BM, Esmat  S, Bassiouny  D,  et al.  Effect of procedural-related variables on melanocyte-keratinocyte suspension transplantation in nonsegmental stable vitiligo: a clinical and immunocytochemical study.   Dermatol Surg. 2017;43(2):226-235. doi:10.1097/DSS.0000000000000962 PubMedGoogle ScholarCrossref
84.
Kachhawa  D, Rao  P, Kalla  G.  Simplified non-cultured non-trypsinised epidermal cell graft technique followed by psoralen and ultraviolet a light therapy for stable vitiligo.   J Cutan Aesthet Surg. 2017;10(2):81-85. doi:10.4103/JCAS.JCAS_119_16 PubMedGoogle ScholarCrossref
85.
Liu  Z, Li  W, Zeng  A,  et al  Is suction blister epidermal grafting a simple and reliable way to screen patients with large area vitiligo for ReCell treatment?   J Invest Dermatol. 2017;137(10):S197. doi:10.1016/j.jid.2017.07.124 Google ScholarCrossref
86.
Mutalik  S, Shah  S, Sidwadkar  V, Khoja  M.  Efficacy of cyclosporine after autologous noncultured melanocyte transplantation in localized stable vitiligo—a pilot, open label, comparative study.   Dermatol Surg. 2017;43(11):1339-1347. doi:10.1097/DSS.0000000000001190 PubMedGoogle ScholarCrossref
87.
Razmi T  M, Kumar  R, Rani  S, Kumaran  SM, Tanwar  S, Parsad  D.  Combination of follicular and epidermal cell suspension as a novel surgical approach in difficult-to-treat vitiligo: a randomized clinical trial.   JAMA Dermatol. 2018;154(3):301-308. doi:10.1001/jamadermatol.2017.5795 PubMedGoogle ScholarCrossref
88.
Altalhab  S, AlJasser  MI, Mulekar  SV,  et al.  Six-year follow-up of vitiligo patients successfully treated with autologous non-cultured melanocyte-keratinocyte transplantation.   J Eur Acad Dermatol Venereol. 2019;33(6):1172-1176. doi:10.1111/jdv.15411 PubMedGoogle ScholarCrossref
89.
Awasti  S, Vinay  K, Thakur  V,  et al.  Comparison of efficacy of cold trypsinization versus warm trypsinization in preparation of autologous non-cultured epidermal cell suspension for treatment of stable vitiligo.   J Eur Acad Dermatol Venereol. 2019;33(6):e237-e239. doi:10.1111/jdv.15502 PubMedGoogle ScholarCrossref
90.
Chuah  SY, Thng  STG.  The role of in vivo reflectance confocal microscopy in assessing the stability of vitiligo vulgaris prior to cellular grafting.   Skin Res Technol. 2019;25(2):245-247. doi:10.1111/srt.12638 PubMedGoogle ScholarCrossref
91.
Garg  S, Dosapaty  N, Arora  AK.  Laser ablation of the recipient area with platelet-rich plasma-enriched epidermal suspension transplant in vitiligo surgery: a pilot study.   Dermatol Surg. 2019;45(1):83-89. doi:10.1097/DSS.0000000000001641 PubMedGoogle ScholarCrossref
92.
Gupta  S, Relhan  V, Garg  VK, Sahoo  B.  Autologous noncultured melanocyte-keratinocyte transplantation in stable vitiligo: a randomized comparative study of recipient site preparation by two techniques.   Indian J Dermatol Venereol Leprol. 2019;85(1):32-38.PubMedGoogle ScholarCrossref
93.
Hamza  AM, Hussein  TM, Shakshouk  HAR.  Noncultured extracted hair follicle outer root sheath cell suspension versus noncultured epidermal cell suspension in the treatment of stable vitiligo.   J Cutan Aesthet Surg. 2019;12(2):105-111. doi:10.4103/JCAS.JCAS_136_18 PubMedGoogle ScholarCrossref
94.
Liu  B, Chen  HH, Liu  ZH,  et al.  The clinical efficacy of treatment using the autologous non-cultured epidermal cell suspension technique for stable vitiligo in 41 patients.   J Dermatolog Treat. 2021;32(1):90-94. doi:10.1080/09546634.2019.1619657 PubMedGoogle ScholarCrossref
95.
Mrigpuri  S, Razmi T  M, Sendhil Kumaran  M, Vinay  K, Srivastava  N, Parsad  D.  Four compartment method as an efficacious and simplified technique for autologous non-cultured epidermal cell suspension preparation in vitiligo surgery: a randomized, active-controlled study.   J Eur Acad Dermatol Venereol. 2019;33(1):185-190. doi:10.1111/jdv.15234 PubMedGoogle ScholarCrossref
96.
Parambath  N, Sharma  VK, Parihar  AS, Sahni  K, Gupta  S.  Use of platelet-rich plasma to suspend noncultured epidermal cell suspension improves repigmentation after autologous transplantation in stable vitiligo: a double-blind randomized controlled trial.   Int J Dermatol. 2019;58(4):472-476. doi:10.1111/ijd.14286 PubMedGoogle ScholarCrossref
97.
Tawfik  YM, Abd Elazim  NE, Abdel-Motaleb  AA, Mohammed  RAA, Tohamy  AMA.  The effect of NB-UVB on noncultured melanocyte and keratinocyte transplantation in treatment of generalized vitiligo using two different donor-to-recipient ratios.   J Cosmet Dermatol. 2019;18(2):638-646. doi:10.1111/jocd.12759 PubMedGoogle ScholarCrossref
98.
Thakur  V, Kumar  S, Kumaran  MS, Kaushik  H, Srivastava  N, Parsad  D.  Efficacy of transplantation of combination of noncultured dermal and epidermal cell suspension vs epidermal cell suspension alone in vitiligo: a randomized clinical trial.   JAMA Dermatol. 2019;155(2):204-210. doi:10.1001/jamadermatol.2018.4919 PubMedGoogle ScholarCrossref
99.
Tovar-Garza  A, Hinojosa  JA, Hynan  LS, Pandya  AG.  Noncultured epidermal suspension grafting using suction blisters as donor tissue for vitiligo.   J Am Acad Dermatol. 2019;80(4):1152-1154. doi:10.1016/j.jaad.2018.10.041 PubMedGoogle ScholarCrossref
100.
Vachiramon  V, Triyangkulsri  K, Saengwimol  D, Chanprapaph  K.  Outcome of repeated use of donor site for noncultured epidermal cellular grafting in stable vitiligo: a retrospective study.   Biomed Res Int. 2019;2019:7623607. doi:10.1155/2019/7623607 PubMedGoogle Scholar
101.
Anbar  TS, El-Ammawi  TS, Mohammed  SS, Abdel-Rahman  AT.  Noncultured epidermal suspensions obtained from partial-thickness epidermal cuts and suction blister roofs for vitiligo treatment: a prospective comparative study.   J Cosmet Dermatol. Published online January 30, 2020. doi:10.1111/jocd.13312 PubMedGoogle Scholar
102.
Esmat  S, Bassiouny  D, Saleh  MA,  et al.  Studying the effect of adding growth factors to the autologous melanocyte keratinocyte suspension in segmental vitiligo.   Dermatol Ther. 2020;33(3):e13368. doi:10.1111/dth.13368 PubMedGoogle Scholar
103.
Kumar  S, Vinay  K, Parsad  D,  et al.  Comparison of recipient-site preparation by electrofulguration-assisted manual dermabrasion versus conventional manual dermabrasion in non-cultured epidermal cell suspension procedure for stable vitiligo: an open-label comparison study.   J Eur Acad Dermatol Venereol. 2020;34(7):e337-e339. doi:10.1111/jdv.16313 PubMedGoogle ScholarCrossref
104.
Rasheed  HM, Esmat  SM, Hegazy  RA,  et al.  Effect of different methods of trypsinization on cell viability and clinical outcome in vitiligo patients undergoing noncultured epidermal cellular suspension.   Dermatol Surg. 2020;46(10):1307-1314. doi:10.1097/DSS.0000000000002329 PubMedGoogle ScholarCrossref
105.
Mohanty  S, Kumar  A, Dhawan  J, Sreenivas  V, Gupta  S.  Noncultured extracted hair follicle outer root sheath cell suspension for transplantation in vitiligo.   Br J Dermatol. 2011;164(6):1241-1246. doi:10.1111/j.1365-2133.2011.10234.x PubMedGoogle ScholarCrossref
106.
Vinay  K, Dogra  S, Parsad  D,  et al.  Clinical and treatment characteristics determining therapeutic outcome in patients undergoing autologous non-cultured outer root sheath hair follicle cell suspension for treatment of stable vitiligo.   J Eur Acad Dermatol Venereol. 2015;29(1):31-37. doi:10.1111/jdv.12426 PubMedGoogle ScholarCrossref
107.
Shah  AN, Marfatia  RK, Saikia  SS.  A study of noncultured extracted hair follicle outer root sheath cell suspension for transplantation in vitiligo.   Int J Trichology. 2016;8(2):67-72. doi:10.4103/0974-7753.188042 PubMedGoogle ScholarCrossref
108.
Kumar  P, Bhari  N, Tembhre  MK,  et al.  Study of efficacy and safety of noncultured, extracted follicular outer root sheath cell suspension transplantation in the management of stable vitiligo.   Int J Dermatol. 2018;57(2):245-249. doi:10.1111/ijd.13759 PubMedGoogle ScholarCrossref
109.
Shi  HX, Zhang  RZ, Xu  B,  et al.  Experimental study and clinical observations of autologous hair follicle cell transplants to treat stable vitiligo.   Indian J Dermatol Venereol Leprol. 2020;86(2):124-133. doi:10.4103/ijdvl.IJDVL_261_18 PubMedGoogle ScholarCrossref
110.
Thakur  DS, Kumar  S, Kumaran  MS, Srivastava  N, Parsad  D.  Comparison of follicular unit extraction vs. plucking of hair follicles as technique of harvesting hair follicles in non-cultured hair follicular cell suspension in vitiligo.   J Eur Acad Dermatol Venereol. 2020;34(1):e34-e36. doi:10.1111/jdv.15888 PubMedGoogle ScholarCrossref
111.
Löntz  W, Olsson  MJ, Moellmann  G, Lerner  AB.  Pigment cell transplantation for treatment of vitiligo: a progress report.   J Am Acad Dermatol. 1994;30(4):591-597. doi:10.1016/S0190-9622(94)70067-2 PubMedGoogle ScholarCrossref
112.
Olsson  MJ, Juhlin  L.  Transplantation of melanocytes in vitiligo.   Br J Dermatol. 1995;132(4):587-591. doi:10.1111/j.1365-2133.1995.tb08715.x PubMedGoogle ScholarCrossref
113.
Chen  YF, Chang  JS, Yang  PY, Hung  CM, Huang  MH, Hu  DN.  Transplant of cultured autologous pure melanocytes after laser-abrasion for the treatment of segmental vitiligo.   J Dermatol. 2000;27(7):434-439. doi:10.1111/j.1346-8138.2000.tb02201.x PubMedGoogle ScholarCrossref
114.
Guerra  L, Capurro  S, Melchi  F,  et al.  Treatment of “stable” vitiligo by Timedsurgery and transplantation of cultured epidermal autografts.   Arch Dermatol. 2000;136(11):1380-1389. doi:10.1001/archderm.136.11.1380 PubMedGoogle ScholarCrossref
115.
Chen  YF, Yang  PY, Hu  DN, Kuo  FS, Hung  CS, Hung  CM.  Treatment of vitiligo by transplantation of cultured pure melanocyte suspension: analysis of 120 cases.   J Am Acad Dermatol. 2004;51(1):68-74. doi:10.1016/j.jaad.2003.12.013 PubMedGoogle ScholarCrossref
116.
Hong  WS, Hu  DN, Qian  GP, McCormick  SA, Xu  AE.  Ratio of size of recipient and donor areas in treatment of vitiligo by autologous cultured melanocyte transplantation.   Br J Dermatol. 2011;165(3):520-525. doi:10.1111/j.1365-2133.2011.10398.x PubMedGoogle Scholar
117.
Ghosh  D, Kuchroo  P, Viswanathan  C,  et al.  Efficacy and safety of autologous cultured melanocytes delivered on poly (DL-lactic acid) film: a prospective, open-label, randomized, multicenter study.   Dermatol Surg. 2012;38(12):1981-1990. doi:10.1111/dsu.12000 PubMedGoogle ScholarCrossref
118.
Wei  XD, Fu  LF, Hong  WS, Qian  GP, Xu  AE.  Transplantation of autologous melanocytes for the treatment of vitiligo in children: a retrospective analysis of 124 cases.   J Dermatol. 2012;39:221-222.Google Scholar
119.
Zhou  MN, Zhang  ZQ, Wu  JL,  et al.  Dermal mesenchymal stem cells (DMSCs) inhibit skin-homing CD8+ T cell activity, a determining factor of vitiligo patients’ autologous melanocytes transplantation efficiency.   PLoS One. 2013;8(4):e60254. doi:10.1371/journal.pone.0060254 PubMedGoogle Scholar
120.
Li  J, Xu  J, Fu  W, Wu  W, Chen  S, Uyama  T.  Confocal laser scanning microscope is a valuable method to evaluate effectiveness of autologous cultured epidermal sheet for the treatment of stable vitiligo.   J Dermatol. 2014;41:102.Google ScholarCrossref
121.
Zhang  DM, Hong  WS, Fu  LF, Wei  XD, Xu  AE.  A randomized controlled study of the effects of different modalities of narrow-band ultraviolet B therapy on the outcome of cultured autologous melanocytes transplantation in treating vitiligo.   Dermatol Surg. 2014;40(4):420-426. doi:10.1111/dsu.12444 PubMedGoogle ScholarCrossref
122.
Wu  XG, Hong  WS, Xu  A.  GM-CSF: a possible prognostic serum biomarker of vitiligo patients’ considered for transplantation treatment with cultured autologous melanocytes: a pilot study.   J Eur Acad Dermatol Venereol. 2016;30(8):1409-1411. doi:10.1111/jdv.13256 PubMedGoogle ScholarCrossref
123.
Wu  KJ, Tang  LY, Li  J,  et al.  Modified technique of cultured epithelial cells transplantation on facial segmental vitiligo.   J Craniofac Surg. 2017;28(6):1462-1467. doi:10.1097/SCS.0000000000003834 PubMedGoogle ScholarCrossref
124.
Zhu  MC, Ma  HY, Zhan  Z, Liu  CG, Luo  W, Zhao  G.  Detection of auto antibodies and transplantation of cultured autologous melanocytes for the treatment of vitiligo.   Exp Ther Med. 2017;13(1):23-28. doi:10.3892/etm.2016.3949 PubMedGoogle ScholarCrossref
125.
Lin  J, Chen  S, Li  J,  et al.  The treatment of acral vitiligo with autologous cultured epidermal grafts.   J Invest Dermatol. 2018;138(5):S212. doi:10.1016/j.jid.2018.03.1264 PubMedGoogle ScholarCrossref
126.
Slim  K, Nini  E, Forestier  D, Kwiatkowski  F, Panis  Y, Chipponi  J.  Methodological index for non-randomized studies (minors): development and validation of a new instrument.   ANZ J Surg. 2003;73(9):712-716. doi:10.1046/j.1445-2197.2003.02748.x PubMedGoogle ScholarCrossref
127.
Mulekar  SV, Isedeh  P.  Surgical interventions for vitiligo: an evidence-based review.   Br J Dermatol. 2013;169(suppl 3):57-66. doi:10.1111/bjd.12532 PubMedGoogle ScholarCrossref
128.
Sonthalia  S, Kachhawa  D. Jodhpur Technique. StatPearls Publishing LLC; 2020.
129.
Awad  SS.  Repigmentation of poliosis after epithelial grafting for vitiligo.   Dermatol Surg. 2013;39(3, pt 1):406-411. doi:10.1111/dsu.12082 PubMedGoogle ScholarCrossref
130.
Krishnan  A, Kar  S.  Smashed skin grafting or smash grafting—a novel method of vitiligo surgery.   Int J Dermatol. 2012;51(10):1242-1247. doi:10.1111/j.1365-4632.2012.05513.x PubMedGoogle ScholarCrossref
131.
Kiistala  U.  Suction blister device for separation of viable epidermis from dermis.   J Invest Dermatol. 1968;50(2):129-137. doi:10.1038/jid.1968.15 PubMedGoogle ScholarCrossref
132.
Falabella  R.  Epidermal grafting: an original technique and its application in achromic and granulating areas.   Arch Dermatol. 1971;104(6):592-600. doi:10.1001/archderm.1971.04000240016002 PubMedGoogle ScholarCrossref
133.
Nanda  S, Relhan  V, Grover  C, Reddy  BS.  Suction blister epidermal grafting for management of eyelid vitiligo: special considerations.   Dermatol Surg. 2006;32(3):387-391. doi:10.1111/j.1524-4725.2006.32078.x PubMedGoogle Scholar
134.
Bae  JM, Kim  J, Kim  DS.  Skin seeding technique using 0.8-mm motorized punch for refractory vitiligo.   Pigment Cell Melanoma Res. 2017;30(5):e130-e131.Google Scholar
135.
Gauthier  Y, Surleve-Bazeille  JE.  Autologous grafting with noncultured melanocytes: a simplified method for treatment of depigmented lesions.   J Am Acad Dermatol. 1992;26(2, pt 1):191-194. doi:10.1016/0190-9622(92)70024-A PubMedGoogle ScholarCrossref
136.
Mulekar  SV.  Stable vitiligo treated by a combination of low-dose oral pulse betamethasone and autologous, noncultured melanocyte-keratinocyte cell transplantation.   Dermatol Surg. 2006;32(4):536-541.PubMedGoogle Scholar
137.
Chen  YF, Yang  PY, Hung  CM, Hu  DN.  Transplantation of autologous cultured melanocytes for treatment of large segmental vitiligo.   J Am Acad Dermatol. 2001;44(3):543-545. doi:10.1067/mjd.2001.110658 PubMedGoogle ScholarCrossref
138.
Shih  IM, Herlyn  M.  Role of growth factors and their receptors in the development and progression of melanoma.   J Invest Dermatol. 1993;100(2)(suppl):196S-203S. doi:10.1038/jid.1993.76 PubMedGoogle ScholarCrossref
139.
Hamzavi  I, Jain  H, McLean  D, Shapiro  J, Zeng  H, Lui  H.  Parametric modeling of narrowband UV-B phototherapy for vitiligo using a novel quantitative tool: the Vitiligo Area Scoring Index.   Arch Dermatol. 2004;140(6):677-683. doi:10.1001/archderm.140.6.677 PubMedGoogle ScholarCrossref
140.
Taïeb  A, Picardo  M; VETF Members.  The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force.   Pigment Cell Res. 2007;20(1):27-35. doi:10.1111/j.1600-0749.2006.00355.x PubMedGoogle ScholarCrossref
141.
Ezzedine  K, Lim  HW, Suzuki  T,  et al; Vitiligo Global Issue Consensus Conference Panelists.  Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference.   Pigment Cell Melanoma Res. 2012;25(3):E1-E13. doi:10.1111/j.1755-148X.2012.00997.x PubMedGoogle ScholarCrossref
142.
Njoo  MD, Das  PK, Bos  JD, Westerhof  W.  Association of the Köbner phenomenon with disease activity and therapeutic responsiveness in vitiligo vulgaris.   Arch Dermatol. 1999;135(4):407-413. doi:10.1001/archderm.135.4.407 PubMedGoogle ScholarCrossref
143.
Batchelor  JM, Tan  W, Tour  S, Yong  A, Montgomery  AA, Thomas  KS.  Validation of the Vitiligo Noticeability Scale: a patient-reported outcome measure of vitiligo treatment success.   Br J Dermatol. 2016;174(2):386-394. doi:10.1111/bjd.14208 PubMedGoogle ScholarCrossref
144.
Eleftheriadou  V, Thomas  K, van Geel  N,  et al; Vitiligo Global Issues Consensus Group.  Developing core outcome set for vitiligo clinical trials: international e-Delphi consensus.   Pigment Cell Melanoma Res. 2015;28(3):363-369. doi:10.1111/pcmr.12354 PubMedGoogle ScholarCrossref
145.
Bae  JM, Ju  HJ, Lee  RW,  et al.  Micropunch grafting as an adjuvant for noncultured melanocyte-keratinocyte transplantation for refractory vitiligo.   J Am Acad Dermatol. 2020;82(6):1548-1550. doi:10.1016/j.jaad.2020.03.003 PubMedGoogle ScholarCrossref
146.
Eleftheriadou  V, Hamzavi  I, Pandya  AG,  et al.  International Initiative for Outcomes (INFO) for vitiligo: workshops with patients with vitiligo on repigmentation.   Br J Dermatol. 2019;180(3):574-579. doi:10.1111/bjd.17013 PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    1 Comment for this article
    EXPAND ALL
    Surgical interventions for patients with vitiligo: A too simplified meta-analysis of a complex subject
    Somesh Gupta, MD | Department of Dermatology & Venereology All India Institute of Medical Sciences, New Delhi, India
    The authors evaluated the treatment outcome of each type of surgical modality. The meta-regression was performed to investigate selective variables such as the type of surgical intervention, age, vitiligo subtype, and body site.(1)

    For comparing the outcome of different surgical procedures, the authors considered vitiligo as a single disease. However, the umbrella term ‘vitiligo’ can be applied to all forms of vitiligo except segmental vitiligo.(2) This holds truer for response to surgical treatments.(3) It is appropriate to compare the results for segmental and non-segmental vitiligo separately.(4) A study reported 53% versus 91% of patients with non-segmental and segmental vitiligo,
    respectively had >75% repigmentation with transplantation.(3)

    Other potential confounders are disease duration, stability duration, body surface area involvement, size of the treated patch, and concurrent medical therapies. Patients with extensive vitiligo and longer disease duration are less responsive to surgical therapies.(4,5) A study on non-segmental vitiligo patients showed a linear correlation of the duration of stability with percentage repigmentation.(6) The stability duration in non-segmental vitiligo is the single most important factor determining the outcome and any meta-analysis not considering this factor for comparison of surgical modalities may be misleading.

    In general, cell-based treatments (due to donor-to-recipient expansion) are chosen in patients with larger residual patches of vitiligo, and tissue grafting (limited by the donor area availability) for smaller residual patches. Smaller residual patches are likely to repigment completely; thus the higher success rates reported with tissue grafts in the current meta-analysis may be a biased projection. A previous meta-analysis reported that the mean area treated with cultured epithelium was 161.5 cm2, split-thickness skin grafts 69.3 cm2, cultured melanocytes 34.7 cm2, non-cultured epidermal cell suspension 31.6 cm2, mini punch grafts 21 cm2, and with suction blister graft 4 cm2.(4) The data for many of these variables is difficult to retrieve, however, authors should mention this in the study limitations.

    -Rashi Pangti, MD; Somesh Gupta, MD

    References:
    1. Ju HJ, Bae JM, Lee RW, et al. Surgical interventions for patients with vitiligo: a systematic review and meta-analysis. JAMA Dermatol. 2021;157(3):307-316.
    2. Ezzedine K, Lim HW, Suzuki T, et al.; Vitiligo Global Issue Consensus Conference Panelists. Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012;25(3):E1-13.
    3. Gupta S, Kumar B. Epidermal grafting in vitiligo: influence of age, site of lesion, and type of disease outcome. J Am Acad Dermatol. 2003;49(1):99-104.
    4. Gupta S, Narang T, Olsson MJ, Ortonne JP. Surgical management of vitiligo and other leukodermas: evidence-based practice guidelines. In: Gupta S, Olsson MJ, Kanwar AJ, Ortonne JP, eds. Surgical management of vitiligo. 1st ed. Blackwell Publishing Ltd; 2007:69-79.
    5. Olsson MJ, Juhlin L. Long-term follow-up of leucoderma patients treated with transplants of autologous cultured melanocytes, ultrathin epidermal sheets and basal cell layer suspension. Br J Dermatol. 2002;147(5):893-904.
    6. Rao A, Gupta S, Dinda AK, et al. Study of clinical, biochemical and immunological factors determining stability of disease in patients with generalized vitiligo undergoing melanocyte transplantation. Br J Dermatol. 2012;166(6):1230-6.
    CONFLICT OF INTEREST: None Reported
    READ MORE
    Original Investigation
    February 17, 2021

    Surgical Interventions for Patients With Vitiligo: A Systematic Review and Meta-analysis

    Author Affiliations
    • 1Department of Dermatology, St Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul
    • 2Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigharh, India
    • 3Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
    • 4Vitiligo Unit, Multicultural Dermatology Center, Henry Ford Hospital, Detroit, Michigan
    • 5Epidemiology in Dermatology and Evaluation of Therapeutics, Département Infectieux/Immuno/Vaccin, Paris-Est University, Paris Est Créteil University, Créteil, France
    • 6Department of Dermatology, Mondor Hospital, Assistance Publique–Hôpitaux de Paris, Paris Est Créteil University, Créteil, France
    JAMA Dermatol. 2021;157(3):307-316. doi:10.1001/jamadermatol.2020.5756
    Key Points

    Question  What are the treatment outcomes and adverse effects of surgical interventions for patients with vitiligo?

    Findings  In this systematic review and meta-analysis that included 117 unique studies and 8776 unique patients, the rates of repigmentation above 90% and above 50% after a single session of all surgical interventions were 52.69% and 81.01%, respectively.

    Meaning  These findings suggest that surgical intervention can be an effective and safe option for managing refractory stable vitiligo; selection of appropriate patients in terms of disease stability and suitable surgical procedure is important.

    Abstract

    Importance  Surgical interventions are a key part of the therapeutic arsenal, especially in refractory and stable vitiligo. Comparison of treatment outcomes between the different surgical procedures and their respective adverse effects has not been adequately studied.

    Objective  To investigate the reported treatment response following different surgical modalities in patients with vitiligo.

    Data Sources  A comprehensive search of the MEDLINE, Embase, Web of Science, and Cochrane Library databases from the date of database inception to April 18, 2020, was conducted. The key search terms used were vitiligo, surgery, autologous, transplantation, punch, suction blister, and graft.

    Study Selection  Of 1365 studies initially identified, the full texts of 358 articles were assessed for eligibility. A total of 117 studies were identified in which punch grafting (n = 19), thin skin grafting (n = 10), suction blister grafting (n = 29), noncultured epidermal cell suspension (n = 45), follicular cell suspension (n = 9), and cultured epidermal cell suspension (n = 17) were used.

    Data Extraction and Synthesis  Three reviewers independently extracted data on study design, patients, intervention characteristics, and outcomes. Random effects meta-analyses using generic inverse-variance weighting were performed.

    Main Outcomes and Measures  The primary outcomes were the rates of greater than 90%, 75%, and 50% repigmentation response. These rates were calculated by dividing the number of participants in an individual study who showed the corresponding repigmentation by the total number of participants who completed the study. The secondary outcomes were the factors associated with treatment response to the surgical intervention.

    Results  Among the 117 unique studies and 8776 unique patients included in the analysis, rate of repigmentation of greater than 90% for surgical interventions was 52.69% (95% CI, 46.87%-58.50%) and 45.76% (95% CI, 30.67%-60.85%) for punch grafting, 72.08% (95% CI, 54.26%-89.89%) for thin skin grafting, 61.68% (95% CI, 47.44%-75.92%) for suction blister grafting, 47.51% (95% CI, 37.00%-58.03%) for noncultured epidermal cell suspension, 36.24% (95% CI, 18.92%-53.57%) for noncultured follicular cell suspension, and 56.82% (95% CI, 48.93%-64.71%) for cultured epidermal cell suspension. The rate of repigmentation of greater than 50% after any surgical intervention was 81.01% (95% CI, 78.18%-83.84%). In meta-regression analyses, the treatment response was associated with patient age (estimated slope, −1.1418), subtype of vitiligo (estimated slope, 0.3047), and anatomical sites (estimated slope, −0.4050).

    Conclusions and Relevance  The findings of this systematic review and meta-analysis suggest that surgical intervention can be an effective option for refractory stable vitiligo. An appropriate procedure should be recommended based on patient age, site and size of the lesion, and costs.

    Introduction

    Vitiligo is a skin disease characterized by the chronic loss of functional melanocytes. The disease deeply affects quality of life in these individuals, and treatment options remain limited.1,2 Medical treatments in vitiligo include phototherapy, topical corticosteroids, topical calcineurin inhibitors, and combination therapies. However, recent systematic reviews3-5 have shown that these treatments provide only partial repigmentation in most treated individuals. Surgical interventions are an alternative therapeutic option in patients with stable vitiligo that is resistant to conventional medical approaches.6

    Since thin split-thickness skin grafting was first reported to successfully repigment vitiliginous patches in 1947, various surgical methods have been developed for the treatment of vitiligo, including transplant and grafting techniques.7 However, the efficacy and safety of these surgical interventions has not recently been investigated systematically. In the present study, we performed a systematic review and meta-analysis of all relevant prospective and retrospective studies to estimate the treatment responses following each type of surgical intervention for vitiligo.

    Methods
    Protocol and Registration

    This systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline and reviewed and approved by the institutional review board of St Vincent’s Hospital, Seoul, Korea. The study was registered with PROSPERO, an international database of prospectively registered systematic reviews.8

    Databases

    We performed a comprehensive search using predefined search terms (eTable 1 in the Supplement) in the MEDLINE, Embase, Web of Science, and Cochrane Library databases from inception to April 18, 2020. The main search terms were autologous, melanocyte, surgery, suspension, transplantation, transplant, graft, grafting, blister, punch, thin, split thickness, and vitiligo. All prospective and retrospective studies were included with no language restriction, and the reference lists in relevant review articles were scanned manually as well. All articles identified by this search were screened independently by 3 reviewers for study eligibility and data extraction (H.J.J., R.W.L., and S.H.K.).

    Study Selection

    Study selection was based on the following inclusion criteria: (1) prospective and retrospective studies; (2) participants of all age groups with a diagnosis of vitiligo; (3) at least 1 surgical intervention group; (4) at least 10 participants in each treatment arm, regardless of the dropout rate; (5) outcomes measured based on all vitiligo lesions on the patient’s whole body or each target patch; and (6) outcomes measured according to the percentage of repigmentation. Exclusion criteria consisted of the following: (1) not a clinical study; (2) outcomes measured according to criteria other than percentage of repigmentation; (3) other intervention or combination with other intervention; (4) more than a single session of surgery; and (5) the inability to contact the corresponding authors.

    Three reviewers (H.J.J., R.W.L., and S.H.K.) independently identified relevant articles by searching titles and abstracts. If the abstract did not provide enough information to determine inclusion or exclusion of the study, the reviewers performed a full-text evaluation to determine eligibility. The reviewers compared the results, and discrepancies were resolved through discussion.

    Data Extraction and Outcome Measures

    For the meta-analysis, the 3 independent reviewers extracted the following predefined variables: authors, country, year of publication, study type, numbers of treated patients or lesions, treatment protocols, and outcome. We performed data extraction in duplicate, and any discrepancies were resolved by consensus.

    Treatment Response Following Surgical Interventions and Safety Profiles

    The outcome of repigmentation was evaluated as greater than 90%, greater than 75%, and greater than 50%. The treatment response rates were calculated as the number of participants or lesions who achieved the corresponding degree of repigmentation divided by the total number of participants or lesions who completed the individual study. Patients with unstable vitiligo, piebaldism, or other types of leukoderma were excluded from the analysis, whenever possible. We investigated all reported adverse events for each surgical intervention in the included studies.

    Meta-regression of Age, Vitiligo Subtype, and Body Sites

    Meta-regression was performed to investigate factors associated with the achievement of greater than 90% repigmentation. Selective moderating variables, such as the type of surgical intervention, age, vitiligo subtype, and the body site were investigated for that purpose. We collected the mean age of patients, proportion of segmental vitiligo, and proportion of treated lesions on the acral and joint areas in the enrolled participants for each study, whenever this was possible.

    Statistical Analysis

    The rates of the corresponding treatment responses of the included studies were pooled by generic inverse variance weighting and were combined using a random-effects model. In each subgroup analysis, heterogeneity was assessed using the Cochran Q test and I2 value. Influence of variables on the outcome were analyzed using meta-regression. Publication bias was evaluated using the contoured funnel plot (eFigure 1 in the Supplement). Statistical analyses were conducted using R software, version 3.6.1 (R Foundation for Statistical Computing) with the metagen and metafor packages. Two-sided P < .05 indicated significance.

    Results
    Search Results

    We initially identified 1365 records through database searching; 656 duplicates were removed and 351 were deleted after reviewing the titles and abstracts (Figure 1). A total of 358 full-text articles were assessed for eligibility, of which 241 were excluded for the following reasons: (1) not a clinical study (n = 23); (2) less than 10 participants included (n = 61); (3) abstract only or not enough information about the methods (n = 31); (4) outcomes measured according to criteria other than percentage of repigmentation (n = 61); (5) not a single-session surgery (n = 16); (6) other intervention used with surgery (n = 7); (7) duplicated studies (n = 14); and (8) the inability to reach corresponding authors at least twice by email (n = 28). The remaining 117 studies fulfilled the inclusion criteria and were included in the final analysis.

    Characteristics of Included Studies

    We analyzed a total of 117 unique studies with 8776 unique patients (eTable 1 in the Supplement), including 19 studies9-27 with 1631 patients in the punch grafting group, 10 studies15,20,28-35 with 718 patients in the thin skin grafting group, 29 studies10,24,36-62 with 2652 patients in the suction blister grafting group, 45 studies21,51,56,63-104 with 2209 patients in the noncultured epidermal cell suspension (NCES) group, 9 studies75,87,93,105-110 with 185 patients in the noncultured follicular cell suspension (NCFS) group, and 17 studies56,81,111-125 with 1381 patients in the cultured epidermal cell suspension (CES) group; 11 studies included more than 1 procedure type. The median follow-up duration was 7 (range, 2-108) months. The Methodological Index for Non-randomized Studies126 criteria scoring was used to assess the methodological quality for included studies (eTable 2 in the Supplement).

    Treatment Response Following Surgical Intervention and Meta-regression

    Overall, the rate of repigmentation achieved by patients after 1 session of any surgical intervention included greater than 90% in 52.69% (95% CI, 46.87%-58.50%) in 106 studies with 6586 patients (I2 = 97.2%) (eFigure 2 in the Supplement); greater than 75% in 64.72% (95% CI, 59.52%-69.92%) in 100 studies with 3400 patients (I2 = 95.7%); and greater than 50% in 81.01% (95% CI, 78.18%-83.84%) in 92 studies with 5462 patients (I2 = 90.7%). Quiz Ref IDAccording to the surgical intervention type, greater than 90% repigmentation was achieved in 72.08% (95% CI, 54.26%-89.89%) of patients undergoing thin skin grafting (670 patients in 8 studies20,28-33,35), 61.68% (95% CI, 47.44%-75.92%) of patients undergoing suction blister grafting (2349 patients in 21 studies36-42,46-52,54-56,58-61), 56.82% (95% CI, 48.93%-64.71%) of patients undergoing CES (1138 patients in 14 studies56,111-123), 47.51% (95% CI, 37.00%-58.03%) of patients undergoing NCES (907 patients in 29 studies51,56,63-66,69-71,75-77,79,82,83,85,87,89,91,93-98,100-103), 45.76% (95% CI, 30.67%-60.85%) of patients undergoing punch grafting (1354 patients in 11 studies9,11-14,16,17,19,20,23,26), and 36.24% (95% CI, 18.92%-53.57%) of patients undergoing NCFS (160 patients in 8 studies75,87,93,105-107,109,110) after 1 session of each surgery (eFigure 2 in the Supplement and Table 1). In our meta-regression analysis, for greater than 90% repigmentation, the estimate of the slopes for mean age of patients was −1.1418 (P = .02); for the proportion of segmental vitiligo, 0.3047 (P = .01); and for the proportion of treated lesions on the acral and joint areas, −0.4050 (P = .002) (Figure 2).

    Safety of Each Surgical Intervention

    The occurrence of adverse events was reported in 56 studies. Quiz Ref IDCommon adverse events included pain, hyperpigmentation at the recipient site, and hypopigmentation at the donor site regardless of the type of the procedure. In punch grafting, cobblestone appearance, milia, and color mismatch were the most common and critical adverse events.9-13,15-18,20,22-24,26,27 In suction blister grafting, perigraft halo, variegated appearance, and color mismatch were frequently reported.10,24,36-38,40,43,45,46,48-50,54,55,57,60 Thin skin grafting was associated with graft contracture, overhanging margin, wrinkles over the graft surface, and perigraft halo.15,20,28-31,33-35 In cellular grafting techniques, pain, discomfort, and burning sensation were more commonly reported when compared with tissue grafting,84,104 which was likely owing to multiple injections of local anesthetic performed over a large area in the former. Mottled pigmentation, marginal halo, and scarring were also reported in all the evaluated surgical interventions. Koebner phenomenon at the donor site or disease progression was reported in several studies as well,9,13,36,37,40,49,54,65,96,114,115 indicating a need for carefully assessing disease stability before performing surgery (Table 2).

    Discussion

    Surgical interventions are essential for the management of refractory stable vitiligo, which can be classified into tissue grafting and cellular grafting according to the nature of the grafts. Tissue grafting, including thin skin grafting, suction blister grafting, and punch grafting, has been traditionally performed for a long time, whereas cellular grafting has made a great advance in recent years. For many reasons, including ease of use and safety, NCES has greatly contributed to the reduced costs of surgical interventions for vitiligo, globally. A systematic review on surgical interventions for vitiligo was published in 2013,127 and the present study further includes all the articles published since then and derives the response rate for each surgical method.

    In the present study, we systematically reviewed the treatment response following different types of surgical interventions for vitiligo, including punch grafting (19 studies), thin skin grafting (10 studies), suction blister grafting (29 studies), NCES (45 studies), NCFS (9 studies), and CES (17 studies). Quiz Ref IDIn meta-analysis, regardless of the type of intervention, 52.69% of the patients achieved greater than 90% repigmentation after a single surgical procedure. However, when evaluating this specific outcome according to the type of intervention, the highest response rate (for >90% repigmentation) was achieved in patients undergoing thin skin grafting (72.08%), followed by suction blister grafting (61.68%), CES (56.82%), NCES (47.51%), punch grafting (45.76%), and NCFS (36.24%).

    The oldest reported surgical procedure performed in patients with vitiligo, thin skin grafting, encompasses all methods of transplanting ultrathin or thin skin grafts measuring 0.125 to 0.275 mm harvested using a manual or electronic dermatome.128 Various modifications have been added to the initially published method such as Thiersch,129 smash,130 and flit-top20 grafting. However, this technique is difficult to use on a large surface area and requires experienced skill to harvest the graft with a constant thickness.

    Because thin skin grafting commonly leads to uneven pigmentation and scarring of the donor site, a surgical method to precisely harvest the epidermal graft has been attempted.131Quiz Ref ID Suction blister grafting, first described by Falabella132 in 1971, has decreased the risk of scarring of the donor site by raising subepidermal blisters with clear noninflammatory transudate and low suction pressures maintained for sufficient periods. It is safe and effective for vitiligo on junctional areas or curved areas such as lips or eyelids.133 Several studies46,58,61 reported that 87% to 90% of the lip vitiligo and 85.7% of vitiligo on the nipple and areolar showed complete repigmentation after suction blister grafting at 6 to 24 months.

    Punch grafting is another well-established surgical method in vitiligo. Several motorized punch grafting devices have been put on the market in recent years, making this method more convenient and cost-effective with increased favorable outcomes.23 Moreover, repeated procedures can be easily performed in an outpatient setting. Despite the low overall treatment response following punch grafting shown in our meta-analysis, recent studies describe motorized micropunch grafting has a greatly increased response rate and reduced cobblestone appearance.23,134

    Transplant of NCES is the most commonly performed cellular grafting technique for vitiligo. The procedure can treat large areas covering a ratio of donor to recipient of as much as 1:10. However, processing of the grafts is time-consuming, and the procedure itself is lengthy. In our study, greater than 90% repigmentation was achieved in 47.51%, and greater than 75% repigmentation was achieved in 63.42% after 1 session of NCES, which is slightly less than the previously reported success rate.63 Of note, treatment outcome in NCES is strongly related to the experience and skill of the surgeon and proper processing of the cell suspension. The initially reported method135 has undergone several modifications over time to improve repigmentation rates. For example, the use of hyaluronic acid instead of the patient’s serum was added to increase the viscosity and facilitate adherence of the cell suspension grafts.65 Furthermore, oral pulse betamethasone therapy started as early as 2 months after initial NCES procedure has been shown to enhance repigmentation in patients who underwent additional transplant.136

    The hair follicle is an attractive reservoir, given its high density of melanocytes and melanocyte stem cells; however, NCFS was shown to be inferior to other surgical interventions in our study. Singh et al75 reported that greater than 90% repigmentation was observed in 83% of the NCES group and 65% of the NCFS group. The success rate of cellular grafting can be optimized as demonstrated in another randomized controlled study87 in which the combination of NCES and NCFS improved repigmentation rates compared with NCES alone (76% vs 57%).

    Cultured epidermal cell suspension has been performed to expand the amount of autologous cell suspensions, allowing for wider graft areas. Cultured melanocytes at a density of 70 000 to 100 000 melanocytes/cm2 are transplanted to an area covering as much as 500 cm2. Hong et al116 reported that CES could provide the highest donor-to-recipient ratio to 1:60. However, melanocyte culture is time-consuming and costly and requires a laboratory specialized in cell culture and a highly stimulatory media.111 Basic fibroblast growth factor is an effective and safe media commonly used,137 but long-term safety of melanoma risk remains to be addressed.138

    Quiz Ref IDIn our meta-regression analyses, successful outcome (>90% repigmentation) was associated with younger age, segmental vitiligo, and nonacral area (P < .05 for all). Therefore, selection of appropriate candidates would be a critical factor when considering the surgical intervention of vitiligo.

    Phototherapy may also play an adjuvant role in surgical interventions for vitiligo by stimulating melanocyte spreading, inhibiting T lymphocytes, and suppressing the various cytokines to create a favorable environment for the transplanted melanocytes. Several studies reported narrow-band UV-B phototherapy before and after CES-accelerated repigmentation121 and adjuvant narrow-band UV-B phototherapy after NCES-enhanced repigmentation.97 In our study, subgroup analysis according to adjuvant phototherapy showed no significant difference in repigmentation rates. The large heterogeneity of these studies may limit the interpretation of the results; thus, randomized clinical trials to estimate the effect of adjuvant phototherapy are necessary.

    The assessment of disease stability is critical when selecting appropriate candidates for surgical interventions in patients with vitiligo. Evaluation with digital photographs during a 12-month period in addition to a scoring system such as the Vitiligo Area Scoring Index139 or the Vitiligo European Task Force140 assessment score is recommended.141 However, many studies were performed before the publication of these recommendations, and a great heterogeneity of definition of the length of stability was observed ranging from 3 to 12 months. The most commonly used scoring system, the Vitiligo Disease Activity Score,142 could also lead to recall bias. As a result, Koebner phenomenon at the donor site after surgery was commonly reported. This reflects how the adequate assessment of disease stability would be essential when considering surgical options; therefore, test grafting or patient-reported Vitiligo Noticeability Scale scores143 could be useful options because they are quick, simple, and readily interpreted in the outpatient clinic.28

    Long-term treatment outcomes are also an important aspect for patients deciding to undergo surgical treatments. Patients expect not only repigmentation but also maintenance of gained repigmentation, expectations that were validated by international e-Delphi consensus.144 However, vitiligo often recurs after successful repigmentation, and prospective studies reporting the long-term outcome in surgical interventions are lacking. Fongers et al17 reported that at least 65% repigmentation was maintained in 51% and 89% of the patients with vitiligo vulgaris and segmental vitiligo, respectively, after several sessions of punch grafting (mean follow-up, 5.2 years). Al-Mutairi et al30 reported that the thin skin grafting with adjuvant excimer laser treatment led to long-lasting repigmentation for as long as 4 years. Jin et al49 observed that repigmentation significantly decreased over time, especially starting from 2 years after epidermal grafting. Altalhab et al88 reported that 103 of 553 patients who underwent a single session of melanocyte-keratinocyte transplant (18.6%) showed a relapse after 6-year follow-up; focal and segmental vitiligo showed a significantly lower recurrence rate.

    Each surgical intervention for vitiligo has advantages and disadvantages. Therefore, the appropriate procedure should be recommended based on the patient’s age, economic status, the location and extent of vitiligo, and the facilities available at the clinic. Because complete repigmentation is rarely achieved after 1 session, multiple sessions are necessary to improve treatment outcome and patient satisfaction. Lesions of large areas can first be treated by cellular grafting, followed by tissue grafting for smaller remaining areas.145

    Limitations

    Our systematic review has limitations. First, there was considerable heterogeneity in study designs, demographic information, and protocols regarding preoperative and postoperative procedures. In particular, we observed a great heterogeneity of definition of outcome measures because the studies were published before the international consensus was reached. Repigmentation has currently reached consensus to use percentage of repigmentation quartiles, including 0 to 25%, 26% to 50%, 51% to 79%, and 80% to 100%.146 Second, limited evidence was available from randomized clinical trials or systematic reviews. Last, because the outcome of surgical interventions largely depends on the skill and experience of the clinician, actual outcomes may vary among the studies.

    Conclusions

    The findings of this systematic review and meta-analysis confirm that surgical interventions are essential for the management of refractory stable vitiligo. Maximizing treatment outcomes requires the selection of appropriate patients in terms of disease stability and suitable surgical technique. In the future, we should categorize patients for the surgical procedure that is performed. Consensus among physicians should also be reached on preoperative evaluations and postoperative assessments.

    Back to top
    Article Information

    Accepted for Publication: December 19, 2020.

    Published Online: February 17, 2021. doi:10.1001/jamadermatol.2020.5756

    Corresponding Author: Khaled Ezzedine, MD, PhD, Department of Dermatology, Mondor Hospital, Assistance Publique–Hôpitaux de Paris, Paris Est Créteil University, F-94000 Créteil, France (khaled.ezzedine@aphp.fr).

    Author Contributions: Drs Ju and Bae contributed equally to this study. Drs Ju and Bae had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

    Concept and design: Bae, Kim, Parsad, Shourick.

    Acquisition, analysis, or interpretation of data: Ju, Bae, Lee, Kim, Pourang, Hamzavi, Ezzedine.

    Drafting of the manuscript: Ju, Lee, Kim.

    Critical revision of the manuscript for important intellectual content: Bae, Lee, Parsad, Pourang, Hamzavi, Shourick, Ezzedine.

    Statistical analysis: Ju, Bae.

    Administrative, technical, or material support: Ju, Bae, Lee, Pourang.

    Supervision: Bae, Parsad, Hamzavi, Ezzedine.

    Conflict of Interest Disclosures: Dr Hamzavi reported receiving personal fees from Avita and Arcutis Biotherapeutics and grants from Pfizer, Inc, Incyte Corp, and iTN Worldwide during the conduct of the study. No other disclosures were reported.

    Funding/Support: This study was supported by grant NRF-2020R1I1A1A01074967 from the National Research Foundation of Korea (NRF), funded by the Ministry of Education.

    Role of the Funder/Sponsor: The sponsor had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

    References
    1.
    Rodrigues  M, Ezzedine  K, Hamzavi  I, Pandya  AG, Harris  JE; Vitiligo Working Group.  New discoveries in the pathogenesis and classification of vitiligo.   J Am Acad Dermatol. 2017;77(1):1-13. doi:10.1016/j.jaad.2016.10.048 PubMedGoogle ScholarCrossref
    2.
    Bae  JM, Lee  SC, Kim  TH,  et al.  Factors affecting quality of life in patients with vitiligo: a nationwide study.   Br J Dermatol. 2018;178(1):238-244. doi:10.1111/bjd.15560 PubMedGoogle ScholarCrossref
    3.
    Ezzedine  K, Whitton  M, Pinart  M.  Interventions for vitiligo.   JAMA. 2016;316(16):1708-1709. doi:10.1001/jama.2016.12399 PubMedGoogle ScholarCrossref
    4.
    Bae  JM, Jung  HM, Hong  BY,  et al.  Phototherapy for vitiligo: a systematic review and meta-analysis.   JAMA Dermatol. 2017;153(7):666-674. doi:10.1001/jamadermatol.2017.0002 PubMedGoogle ScholarCrossref
    5.
    Lee  JH, Kwon  HS, Jung  HM,  et al.  Treatment outcomes of topical calcineurin inhibitor therapy for patients with vitiligo: a systematic review and meta-analysis.   JAMA Dermatol. 2019;155(8):929-938. doi:10.1001/jamadermatol.2019.0696 PubMedGoogle ScholarCrossref
    6.
    Holla  AP, Parsad  D.  Vitiligo surgery: its evolution as a definite treatment in the stable vitiligo.   G Ital Dermatol Venereol. 2010;145(1):79-88.PubMedGoogle Scholar
    7.
    Khunger  N, Kathuria  SD, Ramesh  V.  Tissue grafts in vitiligo surgery—past, present, and future.   Indian J Dermatol. 2009;54(2):150-158. doi:10.4103/0019-5154.53196 PubMedGoogle ScholarCrossref
    8.
    National Institute for Health Research. Treatment outcomes of surgical treatments for vitiligo: systematic review and meta-analysis. CRD42020186777. Accessed April 18, 2020. https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=186777
    9.
    Boersma  BR, Westerhof  W, Bos  JD.  Repigmentation in vitiligo vulgaris by autologous minigrafting: results in nineteen patients.   J Am Acad Dermatol. 1995;33(6):990-995. doi:10.1016/0190-9622(95)90292-9 PubMedGoogle ScholarCrossref
    10.
    Gupta  S, Jain  VK, Saraswat  PK.  Suction blister epidermal grafting versus punch skin grafting in recalcitrant and stable vitiligo.   Dermatol Surg. 1999;25(12):955-958. doi:10.1046/j.1524-4725.1999.99069.x PubMedGoogle ScholarCrossref
    11.
    Malakar  S, Dhar  S.  Treatment of stable and recalcitrant vitiligo by autologous miniature punch grafting: a prospective study of 1,000 patients.   Dermatology. 1999;198(2):133-139. doi:10.1159/000018089 PubMedGoogle ScholarCrossref
    12.
    Sarkar  R, Mehta  SD, Kanwar  AJ.  Repigmentation after autologous miniature punch grafting in segmental vitiligo in North Indian patients.   J Dermatol. 2001;28(10):540-546. doi:10.1111/j.1346-8138.2001.tb00027.x PubMedGoogle ScholarCrossref
    13.
    Hallaji  Z, Daneshpazhooh  M, Rezai-Khiabanloo  S.  Successful treatment of vitiligo with punch graft followed by outdoor topical psoralen plus ultraviolet a radiation.   Arch Iranian Med. 2003;6(2):86-90.Google Scholar
    14.
    Ghorpade  A.  Use of tissue glue for punch grafting in vitiligo—a preliminary report.   Indian J Dermatol Venereol Leprol. 2004;70(3):159-161.PubMedGoogle Scholar
    15.
    Khandpur  S, Sharma  VK, Manchanda  Y.  Comparison of minipunch grafting versus split-skin grafting in chronic stable vitiligo.   Dermatol Surg. 2005;31(4):436-441. doi:10.1097/00042728-200504000-00010 PubMedGoogle ScholarCrossref
    16.
    Masood  Q, Majid  I, Hassan  I, Khan  D.  Miniature punch grafting in recalcitrant vitiligo.   JK Pract. 2005;12(2):81-82.Google Scholar
    17.
    Fongers  A, Wolkerstorfer  A, Nieuweboer-Krobotova  L, Krawczyk  P, Tóth  GG, van der Veen  JP.  Long-term results of 2-mm punch grafting in patients with vitiligo vulgaris and segmental vitiligo: effect of disease activity.   Br J Dermatol. 2009;161(5):1105-1111. doi:10.1111/j.1365-2133.2009.09367.x PubMedGoogle ScholarCrossref
    18.
    Feetham  HJ, Chan  JL, Pandya  AG.  Characterization of clinical response in patients with vitiligo undergoing autologous epidermal punch grafting.   Dermatol Surg. 2012;38(1):14-19. doi:10.1111/j.1524-4725.2011.02171.x PubMedGoogle ScholarCrossref
    19.
    Linthorst Homan  MW, Spuls  PI, Nieuweboer-Krobotova  L,  et al.  A randomized comparison of excimer laser versus narrow-band ultraviolet B phototherapy after punch grafting in stable vitiligo patients.   J Eur Acad Dermatol Venereol. 2012;26(6):690-695. doi:10.1111/j.1468-3083.2011.04147.x PubMedGoogle ScholarCrossref
    20.
    Sharma  S, Garg  VK, Sarkar  R, Relhan  V.  Comparative study of flip-top transplantation and punch grafting in stable vitiligo.   Dermatol Surg. 2013;39(9):1376-1384. doi:10.1111/dsu.12263 PubMedGoogle ScholarCrossref
    21.
    Kumar  R, Singh  SK, Gupta  AK, Patel  PK, Chhachhi  H, Patel  RK.  Comparative study of efficacy of non-cultured melanocyte transfer technique and punch grafting technique in the management of stable vitiligo.   J Evolution Med Dent Sci. 2015;4(102):16754-16758. doi:10.14260/jemds/2015/2509 Google ScholarCrossref
    22.
    Mohamed Mohamed  EE, Younes  AK, Osmand  A, Mohamed  R, Makki  M, Younis  M.  Punch graft versus follicular hair transplantation in the treatment of stable vitiligo.   J Cosmet Laser Ther. 2017;19(5):290-293. doi:10.1080/14764172.2017.1303170 PubMedGoogle ScholarCrossref
    23.
    Bae  JM, Lee  JH, Kwon  HS, Kim  J, Kim  DS.  Motorized 0.8-mm micropunch grafting for refractory vitiligo: a retrospective study of 230 cases.   J Am Acad Dermatol. 2018;79(4):720-727.e1. doi:10.1016/j.jaad.2018.06.016 PubMedGoogle ScholarCrossref
    24.
    Ezz-Eldawla  R, Abu El-Hamd  M, Saied  SM, Hassanien  SH.  A comparative study between suction blistering graft, mini punch graft, and hair follicle transplant in treatment of patients with stable vitiligo.   J Dermatolog Treat. 2019;30(5):492-497. doi:10.1080/09546634.2018.1528329 PubMedGoogle ScholarCrossref
    25.
    Zhao  T, Ye  Z, Gao  T, Li  S, Li  C.  Mini-punch grafting for the treatment of refractory and stable vitiligo.   J Invest Dermatol. 2019;139(5):S97. doi:10.1016/j.jid.2019.03.638 Google ScholarCrossref
    26.
    Anbar  T, Abd El Raheem  T, Bassiouny  DA,  et al.  Value of silicone gel in prevention of cobblestoning following punch minigrafting in vitiligo.   J Dermatolog Treat. Published online April 13, 2020. PubMedGoogle Scholar
    27.
    Kim  DS, Ju  HJ, Lee  HN,  et al.  Skin seeding technique with 0.5-mm micropunch grafting for vitiligo irrespective of the epidermal-dermal orientation: animal and clinical studies.   J Dermatol. 2020;47(7):749-754. doi:10.1111/1346-8138.15390 PubMedGoogle ScholarCrossref
    28.
    Agrawal  K, Agrawal  A.  Vitiligo: repigmentation with dermabrasion and thin split-thickness skin graft.   Dermatol Surg. 1995;21(4):295-300. doi:10.1111/j.1524-4725.1995.tb00176.x PubMedGoogle ScholarCrossref
    29.
    Kahn  AM, Cohen  MJ.  Repigmentation in vitiligo patients: melanocyte transfer via ultra-thin grafts.   Dermatol Surg. 1998;24(3):365-367. doi:10.1111/j.1524-4725.1998.tb04168.x PubMedGoogle ScholarCrossref
    30.
    Al-Mutairi  N, Manchanda  Y, Al-Doukhi  A, Al-Haddad  A.  Long-term results of split-skin grafting in combination with excimer laser for stable vitiligo.   Dermatol Surg. 2010;36(4):499-505. doi:10.1111/j.1524-4725.2010.01477.x PubMedGoogle ScholarCrossref
    31.
    Majid  I, Imran  S.  Ultrathin split-thickness skin grafting followed by narrowband UVB therapy for stable vitiligo: an effective and cosmetically satisfying treatment option.   Indian J Dermatol Venereol Leprol. 2012;78(2):159-164. doi:10.4103/0378-6323.93632 PubMedGoogle ScholarCrossref
    32.
    Sheth  VM, Currimbhoy  SD, Feetham  HJ,  et al.  Efficacy of narrowband ultraviolet B versus excimer radiation in repigmenting vitiligo after minigrafting on the distal arms.   J Am Acad Dermatol. 2012;67(2):318-320. doi:10.1016/j.jaad.2012.02.045 PubMedGoogle ScholarCrossref
    33.
    Majid  I.  Ultra-thin skin grafting in resistant stable vitiligo: factors affecting the treatment outcome.   Pigment Cell Melanoma Res. 2014;27(5):988.Google Scholar
    34.
    Sankara  RK, Rao  DS, Ramachandra  BV, Srinivasulu  G, Lakshmi  NB.  A study of split thickness skin graft technique in stable acral vitiligo.   J Evolution Med Dental Sci. 2016;5(30):1581-1585. doi:10.14260/jemds/2016/372 Google ScholarCrossref
    35.
    Majid  I, Imran  S.  Ultrathin skin grafting in resistant stable vitiligo: a follow-up study of 8 years in 370 patients.   Dermatol Surg. 2017;43(2):218-225. doi:10.1097/DSS.0000000000000969 PubMedGoogle ScholarCrossref
    36.
    Hatchome  N, Kato  T, Tagami  H.  Therapeutic success of epidermal grafting in generalized vitiligo is limited by the Koebner phenomenon.   J Am Acad Dermatol. 1990;22(1):87-91. doi:10.1016/0190-9622(90)70013-8 PubMedGoogle ScholarCrossref
    37.
    Hann  SK, Im  S, Bong  HW, Park  YK.  Treatment of stable vitiligo with autologous epidermal grafting and PUVA.   J Am Acad Dermatol. 1995;32(6):943-948. doi:10.1016/0190-9622(95)91329-7 PubMedGoogle ScholarCrossref
    38.
    Na  GY.  Autologous suction blister grafting for the treatment of vitiligo.   Ann Dermatol. 1996;8(1):19-24. doi:10.5021/ad.1996.8.1.19 Google ScholarCrossref
    39.
    Suga  Y, Butt  KI, Takimoto  R, Fujioka  N, Yamada  H, Ogawa  H.  Successful treatment of vitiligo with PUVA-pigmented autologous epidermal grafting.   Int J Dermatol. 1996;35(7):518-522. doi:10.1111/j.1365-4362.1996.tb01673.x PubMedGoogle ScholarCrossref
    40.
    Kim  HY, Kang  KY.  Epidermal grafts for treatment of stable and progressive vitiligo.   J Am Acad Dermatol. 1999;40(3):412-417. doi:10.1016/S0190-9622(99)70490-1 PubMedGoogle ScholarCrossref
    41.
    Lim  JT.  Repigmentation of vitiligo with autologous blister-induced epidermal grafts.   Ann Acad Med Singap. 1999;28(6):824-828.PubMedGoogle Scholar
    42.
    Gupta  S, Kumar  B.  Epidermal grafting for vitiligo in adolescents.   Pediatr Dermatol. 2002;19(2):159-162. doi:10.1046/j.1525-1470.2002.00035.x PubMedGoogle ScholarCrossref
    43.
    Gupta  S, Kumar  B.  Epidermal grafting in vitiligo: influence of age, site of lesion, and type of disease on outcome.   J Am Acad Dermatol. 2003;49(1):99-104. doi:10.1067/mjd.2003.415 PubMedGoogle ScholarCrossref
    44.
    Kim  SE, Kim  JR, Kim  TH.  The comparative study of the epidermal graft by suction blister between simple and complicated cases of vitiligo.   Korean J Dermatol. 2003;41(6):716-721.Google Scholar
    45.
    Cho  WI, Kim  JE, Seo  SJ, Hong  CK.  The effect of autologous epidermal grafting in the treatment of intractable vitiligo.   Korean J Dermatol. 2005;43(4):455-461.Google Scholar
    46.
    Gupta  S, Goel  A, Kanwar  AJ, Kumar  B.  Autologous melanocyte transfer via epidermal grafts for lip vitiligo.   Int J Dermatol. 2006;45(6):747-750. doi:10.1111/j.1365-4632.2006.02694.x PubMedGoogle ScholarCrossref
    47.
    Hasegawa  T, Suga  Y, Ikejima  A,  et al.  Suction blister grafting with CO(2) laser resurfacing of the graft recipient site for vitiligo.   J Dermatol. 2007;34(7):490-492. doi:10.1111/j.1346-8138.2007.00317.x PubMedGoogle ScholarCrossref
    48.
    Babu  A, Thappa  DM, Jaisankar  TJ.  Punch grafting versus suction blister epidermal grafting in the treatment of stable lip vitiligo.   Dermatol Surg. 2008;34(2):166-178. doi:10.1097/00042728-200802000-00005 PubMedGoogle ScholarCrossref
    49.
    Jin  Y, Xu  A, Wang  P, Song  X, Liu  X.  Long-term follow-up and correlated factors of vitiligo following autologous epidermal transplantation.   Cutis. 2011;87(3):137-141.PubMedGoogle Scholar
    50.
    Li  J, Fu  WW, Zheng  ZZ, Zhang  QQ, Xu  Y, Fang  L.  Suction blister epidermal grafting using a modified suction method in the treatment of stable vitiligo: a retrospective study.   Dermatol Surg. 2011;37(7):999-1006. doi:10.1111/j.1524-4725.2011.01966.x PubMedGoogle ScholarCrossref
    51.
    Budania  A, Parsad  D, Kanwar  AJ, Dogra  S.  Comparison between autologous noncultured epidermal cell suspension and suction blister epidermal grafting in stable vitiligo: a randomized study.   Br J Dermatol. 2012;167(6):1295-1301. doi:10.1111/bjd.12007 PubMedGoogle ScholarCrossref
    52.
    Maleki  M, Banihashemi  M, Sanjari  V.  Efficacy of suction blister epidermal graft without phototherapy for locally stable and resistant vitiligo.   Indian J Dermatol. 2012;57(4):282-284. doi:10.4103/0019-5154.97669 PubMedGoogle ScholarCrossref
    53.
    Rao  A, Gupta  S, Dinda  AK,  et al.  Study of clinical, biochemical and immunological factors determining stability of disease in patients with generalized vitiligo undergoing melanocyte transplantation.   Br J Dermatol. 2012;166(6):1230-1236. doi:10.1111/j.1365-2133.2012.10886.x PubMedGoogle ScholarCrossref
    54.
    Lu  N, Xu  A, Wu  X.  Follow-up study of vitiligo patients treated with autologous epidermal sheet transplants.   J Dermatolog Treat. 2014;25(3):200-204. doi:10.3109/09546634.2012.671912 PubMedGoogle ScholarCrossref
    55.
    Ashique  KT, Kaliyadan  F.  Long-term follow-up and donor site changes evaluation in suction blister epidermal grafting done for stable vitiligo: a retrospective study.   Indian J Dermatol. 2015;60(4):369-372. doi:10.4103/0019-5154.160482 PubMedGoogle ScholarCrossref
    56.
    Bao  H, Hong  W, Fu  L, Wei  X, Qian  G, Xu  A.  Blister roof grafting, cultured melanocytes transplantation and non-cultured epidermal cell suspension transplantation in treating stable vitiligo: a mutual self-control study.   J Dermatolog Treat. 2015;26(6):571-574. doi:10.3109/09546634.2015.1034068 PubMedGoogle ScholarCrossref
    57.
    Ebrahimi  A, Radmanesh  M, Kavoussi  H.  Recipient site preparation for epidermal graft in stable vitiligo by a special fraise.   An Bras Dermatol. 2015;90(1):55-60. doi:10.1590/abd1806-4841.20153205 PubMedGoogle ScholarCrossref
    58.
    Shin  D, Oh  SH, Hann  SK.  Vitiligo involving the nipple and areola: a good indication for epidermal grafting.   Dermatol Surg. 2016;42(4):565-568. doi:10.1097/DSS.0000000000000666 PubMedGoogle ScholarCrossref
    59.
    Ravi  SS, Chittoory  SS.  Suction blister grafting—still a useful modality for treatment of resistant and stable vitiligo.   J Evolution Med Dental Sci. 2017;6(80):5668-5673. doi:10.14260/jemds/2017/1229 Google ScholarCrossref
    60.
    Iwanowski  T, Szlązak  P, Rustowska  A, Sokołowska-Wojdyło  M.  Efficacy of suction blister epidermal grafting with concomitant phototherapy in vitiligo treatment.   Postepy Dermatol Alergol. 2018;35(6):592-598. doi:10.5114/pdia.2017.71257 PubMedGoogle ScholarCrossref
    61.
    Kar  BR, Raj  C.  Suction blister epidermal grafting for vitiligo involving angles of lip: experience of 112 patients.   J Cutan Aesthet Surg. 2018;11(1):13-19. doi:10.4103/JCAS.JCAS_111_15 PubMedGoogle ScholarCrossref
    62.
    Khan  R, Sharma  A, Bhushan  A, Basnet  B, Sharma  VK, Gupta  S.  Relationship between α-melanocyte stimulating hormone levels and therapeutic outcome of melanocyte transplantation and phototherapy in non-segmental patients with vitiligo: a prospective study.   Australas J Dermatol. 2018;59(4):e315-e318. doi:10.1111/ajd.12769 PubMedGoogle ScholarCrossref
    63.
    van Geel  N, Ongenae  K, De Mil  M, Haeghen  YV, Vervaet  C, Naeyaert  JM.  Double-blind placebo-controlled study of autologous transplanted epidermal cell suspensions for repigmenting vitiligo.   Arch Dermatol. 2004;140(10):1203-1208. doi:10.1001/archderm.140.10.1203 PubMedGoogle ScholarCrossref
    64.
    Pandya  V, Parmar  KS, Shah  BJ, Bilimoria  FE.  A study of autologous melanocyte transfer in treatment of stable vitiligo.   Indian J Dermatol Venereol Leprol. 2005;71(6):393-397. doi:10.4103/0378-6323.18942 PubMedGoogle ScholarCrossref
    65.
    van Geel  N, Ongenae  K, Vander Haeghen  Y, Vervaet  C, Naeyaert  JM.  Subjective and objective evaluation of noncultured epidermal cellular grafting for repigmenting vitiligo.   Dermatology. 2006;213(1):23-29. doi:10.1159/000092833 PubMedGoogle ScholarCrossref
    66.
    Mulekar  SV, Al Issa  A, Al Eisa  A.  Treatment of vitiligo on difficult-to-treat sites using autologous noncultured cellular grafting.   Dermatol Surg. 2009;35(1):66-71.PubMedGoogle Scholar
    67.
    Malhotra  SK, Puri  KJPS, Singh  S.  Non-cultured epidermal cell suspension-a simpler solution for a complex disease vitiligo.   Pigment Cell Melanoma Res. 2010;23(3):462.Google Scholar
    68.
    Holla  AP, Kumar  R, Parsad  D, Kanwar  AJ, Mehta  SD.  Role of wound bed nutrition in non cultured epidermal suspension transplantation in vitiligo.   Pigment Cell Melanoma Res. 2011;24(4):835.Google Scholar
    69.
    Paul  M.  Autologous non-cultured basal cell-enriched epidermal cell suspension transplantation in vitiligo: Indian experience.   J Cutan Aesthet Surg. 2011;4(1):23-28. doi:10.4103/0974-2077.79183 PubMedGoogle ScholarCrossref
    70.
    Sahni  K, Parsad  D, Kanwar  AJ.  Noncultured epidermal suspension transplantation for the treatment of stable vitiligo in children and adolescents.   Clin Exp Dermatol. 2011;36(6):607-612. doi:10.1111/j.1365-2230.2011.04065.x PubMedGoogle ScholarCrossref
    71.
    Sahni  K, Parsad  D, Kanwar  AJ, Mehta  SD.  Autologous noncultured melanocyte transplantation for stable vitiligo: can suspending autologous melanocytes in the patients’ own serum improve repigmentation and patient satisfaction?   Dermatol Surg. 2011;37(2):176-182. doi:10.1111/j.1524-4725.2010.01847.x PubMedGoogle ScholarCrossref
    72.
    Gimenez-Azcarate  A, Bernad  I, Irarrazaval  I, Lera  M, Redondo  P.  Double-blind, randomized, intraindividually controlled clinical trial to evaluate the efficacy of autologous melanocyte cell transplant using amniotic membrane as a scaffold in the treatment of stable vitiligo.   J Am Acad Dermatol. 2013;68(4):AB189.Google Scholar
    73.
    Holla  AP.  Short-duration cold trypsinization as a novel method in noncultured epidermal suspension transplantation in stable vitiligo.   Br J Dermatol. 2013;169:67-68.Google ScholarCrossref
    74.
    Holla  AP, Sahni  K, Kumar  R, Parsad  D, Kanwar  A, Mehta  SD.  Acral vitiligo and lesions over joints treated with non-cultured epidermal cell suspension transplantation.   Clin Exp Dermatol. 2013;38(4):332-337. doi:10.1111/ced.12040 PubMedGoogle ScholarCrossref
    75.
    Singh  C, Parsad  D, Kanwar  AJ, Dogra  S, Kumar  R.  Comparison between autologous noncultured extracted hair follicle outer root sheath cell suspension and autologous noncultured epidermal cell suspension in the treatment of stable vitiligo: a randomized study.   Br J Dermatol. 2013;169(2):287-293. doi:10.1111/bjd.12325 PubMedGoogle ScholarCrossref
    76.
    Bassiouny  D, El-Zawahry  BM, Esmat  S,  et al  Effect of procedural-related variables on melanocytekeratinocye suspension transplantation in stable vitiligo: a clinical and immunohistochemical study.   Pigment Cell Melanoma Res. 2014;27(5):903.Google Scholar
    77.
    Budania  A, Khunger  N.  Non cultured epidermal cell suspension for stable vitiligo from lab to dermatologists clinic: an oversimplification or a real possibility.   Pigment Cell Melanoma Res. 2014;27(5):985-986.Google Scholar
    78.
    Holla  AP.  Combined cell suspension transplantation in stable vitiligo.   Br J Dermatol. 2014;171:69.Google ScholarCrossref
    79.
    Razmi  MT, Parsad  D, Kumaran  SM.  Transplantation of autologous noncultured extracted hair follicle outer root sheath cell and autologus noncultured epidermal cell suspension in combination as a novel method in vitiligo surgery.   Pigment Cell Melanoma Res. 2014;27(5):903-904.Google Scholar
    80.
    Holla  AP.  Recombinant protease for cell separation as a safer alternate to trypsin in noncultured epidermal suspension transplantation in stable vitiligo.   Br J Dermatol. 2015;173:105-106.Google Scholar
    81.
    Verma  G, Varkhande  SR, Kar  HK, Rani  R.  Evaluation of repigmentation with cultured melanocyte transplantation (CMT) compared with non-cultured epidermal cell transplantation in vitiligo at 12th week reveals better repigmentation with CMT.   J Invest Dermatol. 2015;135(10):2533-2535. doi:10.1038/jid.2015.178 PubMedGoogle ScholarCrossref
    82.
    Bassiouny  D, ElZawahry  B, Esmat  S,  et al  Autologous melanocyte-keratinocyte suspension in NSV: is supplementation of the suspension medium beneficial.   Pigment Cell Melanoma Res. 2017;30(5):e3-.Google Scholar
    83.
    El-Zawahry  BM, Esmat  S, Bassiouny  D,  et al.  Effect of procedural-related variables on melanocyte-keratinocyte suspension transplantation in nonsegmental stable vitiligo: a clinical and immunocytochemical study.   Dermatol Surg. 2017;43(2):226-235. doi:10.1097/DSS.0000000000000962 PubMedGoogle ScholarCrossref
    84.
    Kachhawa  D, Rao  P, Kalla  G.  Simplified non-cultured non-trypsinised epidermal cell graft technique followed by psoralen and ultraviolet a light therapy for stable vitiligo.   J Cutan Aesthet Surg. 2017;10(2):81-85. doi:10.4103/JCAS.JCAS_119_16 PubMedGoogle ScholarCrossref
    85.
    Liu  Z, Li  W, Zeng  A,  et al  Is suction blister epidermal grafting a simple and reliable way to screen patients with large area vitiligo for ReCell treatment?   J Invest Dermatol. 2017;137(10):S197. doi:10.1016/j.jid.2017.07.124 Google ScholarCrossref
    86.
    Mutalik  S, Shah  S, Sidwadkar  V, Khoja  M.  Efficacy of cyclosporine after autologous noncultured melanocyte transplantation in localized stable vitiligo—a pilot, open label, comparative study.   Dermatol Surg. 2017;43(11):1339-1347. doi:10.1097/DSS.0000000000001190 PubMedGoogle ScholarCrossref
    87.
    Razmi T  M, Kumar  R, Rani  S, Kumaran  SM, Tanwar  S, Parsad  D.  Combination of follicular and epidermal cell suspension as a novel surgical approach in difficult-to-treat vitiligo: a randomized clinical trial.   JAMA Dermatol. 2018;154(3):301-308. doi:10.1001/jamadermatol.2017.5795 PubMedGoogle ScholarCrossref
    88.
    Altalhab  S, AlJasser  MI, Mulekar  SV,  et al.  Six-year follow-up of vitiligo patients successfully treated with autologous non-cultured melanocyte-keratinocyte transplantation.   J Eur Acad Dermatol Venereol. 2019;33(6):1172-1176. doi:10.1111/jdv.15411 PubMedGoogle ScholarCrossref
    89.
    Awasti  S, Vinay  K, Thakur  V,  et al.  Comparison of efficacy of cold trypsinization versus warm trypsinization in preparation of autologous non-cultured epidermal cell suspension for treatment of stable vitiligo.   J Eur Acad Dermatol Venereol. 2019;33(6):e237-e239. doi:10.1111/jdv.15502 PubMedGoogle ScholarCrossref
    90.
    Chuah  SY, Thng  STG.  The role of in vivo reflectance confocal microscopy in assessing the stability of vitiligo vulgaris prior to cellular grafting.   Skin Res Technol. 2019;25(2):245-247. doi:10.1111/srt.12638 PubMedGoogle ScholarCrossref
    91.
    Garg  S, Dosapaty  N, Arora  AK.  Laser ablation of the recipient area with platelet-rich plasma-enriched epidermal suspension transplant in vitiligo surgery: a pilot study.   Dermatol Surg. 2019;45(1):83-89. doi:10.1097/DSS.0000000000001641 PubMedGoogle ScholarCrossref
    92.
    Gupta  S, Relhan  V, Garg  VK, Sahoo  B.  Autologous noncultured melanocyte-keratinocyte transplantation in stable vitiligo: a randomized comparative study of recipient site preparation by two techniques.   Indian J Dermatol Venereol Leprol. 2019;85(1):32-38.PubMedGoogle ScholarCrossref
    93.
    Hamza  AM, Hussein  TM, Shakshouk  HAR.  Noncultured extracted hair follicle outer root sheath cell suspension versus noncultured epidermal cell suspension in the treatment of stable vitiligo.   J Cutan Aesthet Surg. 2019;12(2):105-111. doi:10.4103/JCAS.JCAS_136_18 PubMedGoogle ScholarCrossref
    94.
    Liu  B, Chen  HH, Liu  ZH,  et al.  The clinical efficacy of treatment using the autologous non-cultured epidermal cell suspension technique for stable vitiligo in 41 patients.   J Dermatolog Treat. 2021;32(1):90-94. doi:10.1080/09546634.2019.1619657 PubMedGoogle ScholarCrossref
    95.
    Mrigpuri  S, Razmi T  M, Sendhil Kumaran  M, Vinay  K, Srivastava  N, Parsad  D.  Four compartment method as an efficacious and simplified technique for autologous non-cultured epidermal cell suspension preparation in vitiligo surgery: a randomized, active-controlled study.   J Eur Acad Dermatol Venereol. 2019;33(1):185-190. doi:10.1111/jdv.15234 PubMedGoogle ScholarCrossref
    96.
    Parambath  N, Sharma  VK, Parihar  AS, Sahni  K, Gupta  S.  Use of platelet-rich plasma to suspend noncultured epidermal cell suspension improves repigmentation after autologous transplantation in stable vitiligo: a double-blind randomized controlled trial.   Int J Dermatol. 2019;58(4):472-476. doi:10.1111/ijd.14286 PubMedGoogle ScholarCrossref
    97.
    Tawfik  YM, Abd Elazim  NE, Abdel-Motaleb  AA, Mohammed  RAA, Tohamy  AMA.  The effect of NB-UVB on noncultured melanocyte and keratinocyte transplantation in treatment of generalized vitiligo using two different donor-to-recipient ratios.   J Cosmet Dermatol. 2019;18(2):638-646. doi:10.1111/jocd.12759 PubMedGoogle ScholarCrossref
    98.
    Thakur  V, Kumar  S, Kumaran  MS, Kaushik  H, Srivastava  N, Parsad  D.  Efficacy of transplantation of combination of noncultured dermal and epidermal cell suspension vs epidermal cell suspension alone in vitiligo: a randomized clinical trial.   JAMA Dermatol. 2019;155(2):204-210. doi:10.1001/jamadermatol.2018.4919 PubMedGoogle ScholarCrossref
    99.
    Tovar-Garza  A, Hinojosa  JA, Hynan  LS, Pandya  AG.  Noncultured epidermal suspension grafting using suction blisters as donor tissue for vitiligo.   J Am Acad Dermatol. 2019;80(4):1152-1154. doi:10.1016/j.jaad.2018.10.041 PubMedGoogle ScholarCrossref
    100.
    Vachiramon  V, Triyangkulsri  K, Saengwimol  D, Chanprapaph  K.  Outcome of repeated use of donor site for noncultured epidermal cellular grafting in stable vitiligo: a retrospective study.   Biomed Res Int. 2019;2019:7623607. doi:10.1155/2019/7623607 PubMedGoogle Scholar
    101.
    Anbar  TS, El-Ammawi  TS, Mohammed  SS, Abdel-Rahman  AT.  Noncultured epidermal suspensions obtained from partial-thickness epidermal cuts and suction blister roofs for vitiligo treatment: a prospective comparative study.   J Cosmet Dermatol. Published online January 30, 2020. doi:10.1111/jocd.13312 PubMedGoogle Scholar
    102.
    Esmat  S, Bassiouny  D, Saleh  MA,  et al.  Studying the effect of adding growth factors to the autologous melanocyte keratinocyte suspension in segmental vitiligo.   Dermatol Ther. 2020;33(3):e13368. doi:10.1111/dth.13368 PubMedGoogle Scholar
    103.
    Kumar  S, Vinay  K, Parsad  D,  et al.  Comparison of recipient-site preparation by electrofulguration-assisted manual dermabrasion versus conventional manual dermabrasion in non-cultured epidermal cell suspension procedure for stable vitiligo: an open-label comparison study.   J Eur Acad Dermatol Venereol. 2020;34(7):e337-e339. doi:10.1111/jdv.16313 PubMedGoogle ScholarCrossref
    104.
    Rasheed  HM, Esmat  SM, Hegazy  RA,  et al.  Effect of different methods of trypsinization on cell viability and clinical outcome in vitiligo patients undergoing noncultured epidermal cellular suspension.   Dermatol Surg. 2020;46(10):1307-1314. doi:10.1097/DSS.0000000000002329 PubMedGoogle ScholarCrossref
    105.
    Mohanty  S, Kumar  A, Dhawan  J, Sreenivas  V, Gupta  S.  Noncultured extracted hair follicle outer root sheath cell suspension for transplantation in vitiligo.   Br J Dermatol. 2011;164(6):1241-1246. doi:10.1111/j.1365-2133.2011.10234.x PubMedGoogle ScholarCrossref
    106.
    Vinay  K, Dogra  S, Parsad  D,  et al.  Clinical and treatment characteristics determining therapeutic outcome in patients undergoing autologous non-cultured outer root sheath hair follicle cell suspension for treatment of stable vitiligo.   J Eur Acad Dermatol Venereol. 2015;29(1):31-37. doi:10.1111/jdv.12426 PubMedGoogle ScholarCrossref
    107.
    Shah  AN, Marfatia  RK, Saikia  SS.  A study of noncultured extracted hair follicle outer root sheath cell suspension for transplantation in vitiligo.   Int J Trichology. 2016;8(2):67-72. doi:10.4103/0974-7753.188042 PubMedGoogle ScholarCrossref
    108.
    Kumar  P, Bhari  N, Tembhre  MK,  et al.  Study of efficacy and safety of noncultured, extracted follicular outer root sheath cell suspension transplantation in the management of stable vitiligo.   Int J Dermatol. 2018;57(2):245-249. doi:10.1111/ijd.13759 PubMedGoogle ScholarCrossref
    109.
    Shi  HX, Zhang  RZ, Xu  B,  et al.  Experimental study and clinical observations of autologous hair follicle cell transplants to treat stable vitiligo.   Indian J Dermatol Venereol Leprol. 2020;86(2):124-133. doi:10.4103/ijdvl.IJDVL_261_18 PubMedGoogle ScholarCrossref
    110.
    Thakur  DS, Kumar  S, Kumaran  MS, Srivastava  N, Parsad  D.  Comparison of follicular unit extraction vs. plucking of hair follicles as technique of harvesting hair follicles in non-cultured hair follicular cell suspension in vitiligo.   J Eur Acad Dermatol Venereol. 2020;34(1):e34-e36. doi:10.1111/jdv.15888 PubMedGoogle ScholarCrossref
    111.
    Löntz  W, Olsson  MJ, Moellmann  G, Lerner  AB.  Pigment cell transplantation for treatment of vitiligo: a progress report.   J Am Acad Dermatol. 1994;30(4):591-597. doi:10.1016/S0190-9622(94)70067-2 PubMedGoogle ScholarCrossref
    112.
    Olsson  MJ, Juhlin  L.  Transplantation of melanocytes in vitiligo.   Br J Dermatol. 1995;132(4):587-591. doi:10.1111/j.1365-2133.1995.tb08715.x PubMedGoogle ScholarCrossref
    113.
    Chen  YF, Chang  JS, Yang  PY, Hung  CM, Huang  MH, Hu  DN.  Transplant of cultured autologous pure melanocytes after laser-abrasion for the treatment of segmental vitiligo.   J Dermatol. 2000;27(7):434-439. doi:10.1111/j.1346-8138.2000.tb02201.x PubMedGoogle ScholarCrossref
    114.
    Guerra  L, Capurro  S, Melchi  F,  et al.  Treatment of “stable” vitiligo by Timedsurgery and transplantation of cultured epidermal autografts.   Arch Dermatol. 2000;136(11):1380-1389. doi:10.1001/archderm.136.11.1380 PubMedGoogle ScholarCrossref
    115.
    Chen  YF, Yang  PY, Hu  DN, Kuo  FS, Hung  CS, Hung  CM.  Treatment of vitiligo by transplantation of cultured pure melanocyte suspension: analysis of 120 cases.   J Am Acad Dermatol. 2004;51(1):68-74. doi:10.1016/j.jaad.2003.12.013 PubMedGoogle ScholarCrossref
    116.
    Hong  WS, Hu  DN, Qian  GP, McCormick  SA, Xu  AE.  Ratio of size of recipient and donor areas in treatment of vitiligo by autologous cultured melanocyte transplantation.   Br J Dermatol. 2011;165(3):520-525. doi:10.1111/j.1365-2133.2011.10398.x PubMedGoogle Scholar
    117.
    Ghosh  D, Kuchroo  P, Viswanathan  C,  et al.  Efficacy and safety of autologous cultured melanocytes delivered on poly (DL-lactic acid) film: a prospective, open-label, randomized, multicenter study.   Dermatol Surg. 2012;38(12):1981-1990. doi:10.1111/dsu.12000 PubMedGoogle ScholarCrossref
    118.
    Wei  XD, Fu  LF, Hong  WS, Qian  GP, Xu  AE.  Transplantation of autologous melanocytes for the treatment of vitiligo in children: a retrospective analysis of 124 cases.   J Dermatol. 2012;39:221-222.Google Scholar
    119.
    Zhou  MN, Zhang  ZQ, Wu  JL,  et al.  Dermal mesenchymal stem cells (DMSCs) inhibit skin-homing CD8+ T cell activity, a determining factor of vitiligo patients’ autologous melanocytes transplantation efficiency.   PLoS One. 2013;8(4):e60254. doi:10.1371/journal.pone.0060254 PubMedGoogle Scholar
    120.
    Li  J, Xu  J, Fu  W, Wu  W, Chen  S, Uyama  T.  Confocal laser scanning microscope is a valuable method to evaluate effectiveness of autologous cultured epidermal sheet for the treatment of stable vitiligo.   J Dermatol. 2014;41:102.Google ScholarCrossref
    121.
    Zhang  DM, Hong  WS, Fu  LF, Wei  XD, Xu  AE.  A randomized controlled study of the effects of different modalities of narrow-band ultraviolet B therapy on the outcome of cultured autologous melanocytes transplantation in treating vitiligo.   Dermatol Surg. 2014;40(4):420-426. doi:10.1111/dsu.12444 PubMedGoogle ScholarCrossref
    122.
    Wu  XG, Hong  WS, Xu  A.  GM-CSF: a possible prognostic serum biomarker of vitiligo patients’ considered for transplantation treatment with cultured autologous melanocytes: a pilot study.   J Eur Acad Dermatol Venereol. 2016;30(8):1409-1411. doi:10.1111/jdv.13256 PubMedGoogle ScholarCrossref
    123.
    Wu  KJ, Tang  LY, Li  J,  et al.  Modified technique of cultured epithelial cells transplantation on facial segmental vitiligo.   J Craniofac Surg. 2017;28(6):1462-1467. doi:10.1097/SCS.0000000000003834 PubMedGoogle ScholarCrossref
    124.
    Zhu  MC, Ma  HY, Zhan  Z, Liu  CG, Luo  W, Zhao  G.  Detection of auto antibodies and transplantation of cultured autologous melanocytes for the treatment of vitiligo.   Exp Ther Med. 2017;13(1):23-28. doi:10.3892/etm.2016.3949 PubMedGoogle ScholarCrossref
    125.
    Lin  J, Chen  S, Li  J,  et al.  The treatment of acral vitiligo with autologous cultured epidermal grafts.   J Invest Dermatol. 2018;138(5):S212. doi:10.1016/j.jid.2018.03.1264 PubMedGoogle ScholarCrossref
    126.
    Slim  K, Nini  E, Forestier  D, Kwiatkowski  F, Panis  Y, Chipponi  J.  Methodological index for non-randomized studies (minors): development and validation of a new instrument.   ANZ J Surg. 2003;73(9):712-716. doi:10.1046/j.1445-2197.2003.02748.x PubMedGoogle ScholarCrossref
    127.
    Mulekar  SV, Isedeh  P.  Surgical interventions for vitiligo: an evidence-based review.   Br J Dermatol. 2013;169(suppl 3):57-66. doi:10.1111/bjd.12532 PubMedGoogle ScholarCrossref
    128.
    Sonthalia  S, Kachhawa  D. Jodhpur Technique. StatPearls Publishing LLC; 2020.
    129.
    Awad  SS.  Repigmentation of poliosis after epithelial grafting for vitiligo.   Dermatol Surg. 2013;39(3, pt 1):406-411. doi:10.1111/dsu.12082 PubMedGoogle ScholarCrossref
    130.
    Krishnan  A, Kar  S.  Smashed skin grafting or smash grafting—a novel method of vitiligo surgery.   Int J Dermatol. 2012;51(10):1242-1247. doi:10.1111/j.1365-4632.2012.05513.x PubMedGoogle ScholarCrossref
    131.
    Kiistala  U.  Suction blister device for separation of viable epidermis from dermis.   J Invest Dermatol. 1968;50(2):129-137. doi:10.1038/jid.1968.15 PubMedGoogle ScholarCrossref
    132.
    Falabella  R.  Epidermal grafting: an original technique and its application in achromic and granulating areas.   Arch Dermatol. 1971;104(6):592-600. doi:10.1001/archderm.1971.04000240016002 PubMedGoogle ScholarCrossref
    133.
    Nanda  S, Relhan  V, Grover  C, Reddy  BS.  Suction blister epidermal grafting for management of eyelid vitiligo: special considerations.   Dermatol Surg. 2006;32(3):387-391. doi:10.1111/j.1524-4725.2006.32078.x PubMedGoogle Scholar
    134.
    Bae  JM, Kim  J, Kim  DS.  Skin seeding technique using 0.8-mm motorized punch for refractory vitiligo.   Pigment Cell Melanoma Res. 2017;30(5):e130-e131.Google Scholar
    135.
    Gauthier  Y, Surleve-Bazeille  JE.  Autologous grafting with noncultured melanocytes: a simplified method for treatment of depigmented lesions.   J Am Acad Dermatol. 1992;26(2, pt 1):191-194. doi:10.1016/0190-9622(92)70024-A PubMedGoogle ScholarCrossref
    136.
    Mulekar  SV.  Stable vitiligo treated by a combination of low-dose oral pulse betamethasone and autologous, noncultured melanocyte-keratinocyte cell transplantation.   Dermatol Surg. 2006;32(4):536-541.PubMedGoogle Scholar
    137.
    Chen  YF, Yang  PY, Hung  CM, Hu  DN.  Transplantation of autologous cultured melanocytes for treatment of large segmental vitiligo.   J Am Acad Dermatol. 2001;44(3):543-545. doi:10.1067/mjd.2001.110658 PubMedGoogle ScholarCrossref
    138.
    Shih  IM, Herlyn  M.  Role of growth factors and their receptors in the development and progression of melanoma.   J Invest Dermatol. 1993;100(2)(suppl):196S-203S. doi:10.1038/jid.1993.76 PubMedGoogle ScholarCrossref
    139.
    Hamzavi  I, Jain  H, McLean  D, Shapiro  J, Zeng  H, Lui  H.  Parametric modeling of narrowband UV-B phototherapy for vitiligo using a novel quantitative tool: the Vitiligo Area Scoring Index.   Arch Dermatol. 2004;140(6):677-683. doi:10.1001/archderm.140.6.677 PubMedGoogle ScholarCrossref
    140.
    Taïeb  A, Picardo  M; VETF Members.  The definition and assessment of vitiligo: a consensus report of the Vitiligo European Task Force.   Pigment Cell Res. 2007;20(1):27-35. doi:10.1111/j.1600-0749.2006.00355.x PubMedGoogle ScholarCrossref
    141.
    Ezzedine  K, Lim  HW, Suzuki  T,  et al; Vitiligo Global Issue Consensus Conference Panelists.  Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference.   Pigment Cell Melanoma Res. 2012;25(3):E1-E13. doi:10.1111/j.1755-148X.2012.00997.x PubMedGoogle ScholarCrossref
    142.
    Njoo  MD, Das  PK, Bos  JD, Westerhof  W.  Association of the Köbner phenomenon with disease activity and therapeutic responsiveness in vitiligo vulgaris.   Arch Dermatol. 1999;135(4):407-413. doi:10.1001/archderm.135.4.407 PubMedGoogle ScholarCrossref
    143.
    Batchelor  JM, Tan  W, Tour  S, Yong  A, Montgomery  AA, Thomas  KS.  Validation of the Vitiligo Noticeability Scale: a patient-reported outcome measure of vitiligo treatment success.   Br J Dermatol. 2016;174(2):386-394. doi:10.1111/bjd.14208 PubMedGoogle ScholarCrossref
    144.
    Eleftheriadou  V, Thomas  K, van Geel  N,  et al; Vitiligo Global Issues Consensus Group.  Developing core outcome set for vitiligo clinical trials: international e-Delphi consensus.   Pigment Cell Melanoma Res. 2015;28(3):363-369. doi:10.1111/pcmr.12354 PubMedGoogle ScholarCrossref
    145.
    Bae  JM, Ju  HJ, Lee  RW,  et al.  Micropunch grafting as an adjuvant for noncultured melanocyte-keratinocyte transplantation for refractory vitiligo.   J Am Acad Dermatol. 2020;82(6):1548-1550. doi:10.1016/j.jaad.2020.03.003 PubMedGoogle ScholarCrossref
    146.
    Eleftheriadou  V, Hamzavi  I, Pandya  AG,  et al.  International Initiative for Outcomes (INFO) for vitiligo: workshops with patients with vitiligo on repigmentation.   Br J Dermatol. 2019;180(3):574-579. doi:10.1111/bjd.17013 PubMedGoogle ScholarCrossref
    ×