Viral Disease Transmitted by Laser-Generated Plume (Aerosol) | Infectious Diseases | JAMA Dermatology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Bellina  JHStjernholm  RLKurpel  JE Analysis of plume emissions after papovavirus irradiation with the carbon dioxide laser.  J Reprod Med. 1982;27268- 270Google Scholar
Mullarky  MBNorris  CWGoldberg  ID The efficacy of the CO2 laser in the sterilization of skin seeded with bacteria: survival at the skin surface and in the plume emission.  Laryngoscope. 1985;95186- 187Google ScholarCrossref
Walker  NPJMatthews  JNewson  SWB Possible hazards from irradiation with the carbon dioxide laser.  Lasers Surg Med. 1986;684- 86Google ScholarCrossref
Byrne  POSisson  PROliver  PDInghan  HR Carbon dioxide laser irradiation of bacterial targets in vitro.  J Hosp Infect. 1987;9265- 273Google ScholarCrossref
Garden  JMO'Banion  MKShelnitz  LS  et al.  Papillomavirus in the vapor of carbon dioxide laser–treated verrucae.  JAMA. 1988;2591199- 1202Google ScholarCrossref
Sawchuk  WSWeber  PJLowy  DRDzubow  LM Infectious papillomavirus in the vapor of warts treated with carbon dioxide laser or electrocoagulation: detection and protection.  J Am Acad Dermatol. 1989;2141- 49Google ScholarCrossref
Andre  POrth  GEvenou  PGuillaume  JCAvril  MF Risk of papillomavirus infection in carbon dioxide laser treatment of genital lesions.  J Am Acad Dermatol. 1990;22131- 132Google ScholarCrossref
Ferenczy  ABergeron  CRichart  RM Human papillomavirus DNA in CO2 laser–generated plume of smoke and its consequences to the surgeon.  Obstet Gynecol. 1990;75114- 118Google Scholar
Matchette  LSVegella  TJFaaland  RW Viable bacteriophage in CO2 laser plume: aerodynamic size distribution.  Lasers Surg Med. 1993;1318- 22Google ScholarCrossref
Starr  JCKilmer  SLWheeland  RG Analysis of the carbon dioxide laser plume for simian immunodeficiency virus.  J Dermatol Surg Oncol. 1992;18297- 300Google ScholarCrossref
Baggish  MSPoiesz  BJJoret  DWilliamson  PRefai  A Presence of human immunodeficiency virus DNA in laser smoke.  Lasers Surg Med. 1991;11197- 203Google ScholarCrossref
Lobraico  RVSchifano  MJBrader  KR A retrospective study on the hazards of the carbon dioxide laser plume.  J Laser Appl. 1988;16- 8Google ScholarCrossref
Lobraico  RVSchifano  MJBrader  KR Acquired HPV lesions compared in laser and nonlaser users.  J Gynecol Surg. 1989;577- 85Google ScholarCrossref
Gloster  HMY  JrRoenigk  RK Risk of acquiring human papillomavirus from the plume produced by the carbon dioxide laser in the treatment of warts.  J Am Acad Dermatol. 1995;32436- 441Google ScholarCrossref
Ito  Y A tumor producing factor extracted by phenol from papillomatous tissue (Shope) of cottontail rabbits.  Virology. 1960;12596- 601Google ScholarCrossref
Ito  YEvans  CA Induction of tumors in domestic rabbits with nucleic acid preparations from partially purified Shope papilloma virus and from extracts of the papillomas of domestic and cottontail rabbits.  J Exp Med. 1961;114485- 500Google ScholarCrossref
Lowy  DRDvoretzky  IShober  RLaw  M-FEngel  LHowley  PM In vitro tumorigenic transformation by a defined subgenomic fragment of bovine papillomavirus DNA.  Nature. 1980;28772- 74Google ScholarCrossref
Ziegler  BLThomas  CAMeier  TMüller  RFliedner  TMWeber  L Generation of infectious retrovirus aerosol through medical laser irradiation.  Lasers Surg Med. 1998;2237- 41Google ScholarCrossref
Sundberg  JPJunge  RELancaster  WD Immunoperoxidase localization of papillomaviruses in hyperplastic and neoplastic epithelial lesions of animals.  Am J Vet Res. 1984;451441- 1446Google Scholar
O'Banion  MKReichmann  MESundberg  JP Cloning and characterization of an equine cutaneous papillomavirus.  Virology. 1986;152100- 109Google ScholarCrossref
Jenson  ABRosenthal  JDOlson  CPass  FLancaster  WDShah  K Immunological relatedness of papillomaviruses from different species.  J Natl Cancer Inst. 1980;64495- 500Google Scholar
Abramson  ALDiLorenzo  TPSteinberg  BM Is papillomavirus detectable in the plume of laser-treated laryngeal papilloma?  Arch Otolaryngol Head Neck Surg. 1990;116604- 607Google ScholarCrossref
Southern  EM Detection of specific sequences among DNA fragments separated by gel electrophoresis.  J Mol Biol. 1975;98503- 517Google ScholarCrossref
Feinberg  APVogelstin  B A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.  Anal Biochem. 1983;1326- 13Google ScholarCrossref
Olson  COlson  ROHubbard–Van Stelle  S Variations of response of cattle to experimentally induced viral papillomatosis.  J Am Vet Med Assoc. 1992;20156- 62Google Scholar
Lancaster  WDOlson  C Demonstration of two distinct clones of bovine papillomavirus.  Virology. 1978;89372- 379Google ScholarCrossref
Lancaster  WD Physical maps of bovine papillomavirus type 1 and type 2 genomes.  J Virol. 1979;32684- 687Google Scholar
Kokosa  JMEugene  J Chemical composition of laser-tissue interaction smoke plume.  J Laser Appl. 1989;159- 63Google ScholarCrossref
Tomita  YMihashi  SNagata  K  et al.  Mutagenicity of smoke condensates induced by CO2-laser irradiation and electrocauterization.  Mutat Res. 1981;89145- 149Google ScholarCrossref
Nezhat  CWiner  WKNezhat  FNezhat  CForrest  DReeves  WG Smoke from laser surgery: is there a health hazard?  Lasers Surg Med. 1987;7376- 382Google ScholarCrossref
Mihashi  SUeda  SHirano  MTomita  YHirohata  T Some problems about condensates induced by CO2 laser irradiation.  Paper presented at: Fourth International Society for Laser Surgery November 1981 Tokyo, Japan
Baggish  MSElbakry  M The effects of laser smoke on the lungs of rats.  Am J Obstet Gynecol. 1987;1561260- 1265Google ScholarCrossref
Wenig  BLStenson  KMWenig  BMTracey  D Effects of plume produced by the Nd:YAG laser and electrocautery on the respiratory system.  Lasers Surg Med. 1993;13242- 245Google ScholarCrossref
Mihashi  SJako  GJIncze  JStrong  MSVaughan  CW Laser surgery in otolaryngology: interaction of CO2 laser and soft tissue.  Ann N Y Acad Sci. 1976;267263- 294Google ScholarCrossref
Oosterhuis  JWVerschueren  RCJEibergen  ROldhoff  J The viability of cells in waste products of CO2 laser evaporation of cloudman mouse melanomas.  Cancer. 1982;4961- 67Google ScholarCrossref
Voorhies  RMLavyne  MHStrait  TAShapiro  WR Does the CO2 laser spread viable brain-tumor cells outside the surgical field?  J Neurosurg. 1984;60819- 820Google ScholarCrossref
Hoye  RCKetcham  ASRiggle  GC The air-born dissemination of viable tumor by high-energy neodymium laser.  Life Sci. 1967;6119- 125Google ScholarCrossref
Capizzi  PJClay  RPBattey  MJ Microbiologic activity in laser resurfacing plume and debris.  Lasers Surg Med. 1998;23172- 174Google ScholarCrossref
Hughes  PSHHughes  AP Absence of human papillomavirus DNA in the plume of erbium:YAG laser–treated warts.  J Am Acad Dermatol. 1998;38426- 428Google ScholarCrossref
Taravella  MJWeinberg  ABlackburn  PMay  M Do intact particles survive excimer laser ablation?  Arch Ophthalmol. 1997;1151028- 1030Google ScholarCrossref
Ferenczy  ABraun  LShah  KV Human papillomavirus (HPV) in condylomatous lesions of the cervix: a comparative ultrastructural and immunohistochemical study.  Am J Surg Pathol. 1981;5661- 670Google ScholarCrossref
Hallmo  PNaess  O Laryngeal papillomatosis with human papillomavirus DNA contracted by a laser surgeon.  Eur Arch Otorhinolaryngol. 1991;248425- 427Google ScholarCrossref
Garden  JM The hazards of laser plume: a mid-year committee report.  Am Soc Laser Med Surg. 1989;16Google Scholar
October 2002

Viral Disease Transmitted by Laser-Generated Plume (Aerosol)

Author Affiliations

From the Departments of Dermatology (Drs Garden and Bakus) and Biomedical Engineering (Dr Garden), Northwestern University, the Divisions of Dermatology and Plastic Surgery, The Children's Memorial Hospital, (Dr Garden) Chicago, Ill; the Department of Medicine, University of Rochester, Rochester, NY (Dr O'Banion); and the Department of Veterinary Science, University of Wisconsin, Madison (Dr Olson).

Arch Dermatol. 2002;138(10):1303-1307. doi:10.1001/archderm.138.10.1303

Objective  To evaluate the possibility of disease transmission through liberated plume from virally infected tissue that is exposed to the carbon dioxide laser.

Design  Bovine papillomavirus–induced cutaneous fibropapillomas were exposed to the carbon dioxide laser. Laser settings were within the range of clinically used settings. The laser plume (aerosol) was suctioned and collected and then reinoculated onto the skin of calves.

Setting  University laboratory research center.

Main Outcome Measures  Laser plume viral content and postinoculation tumor growth were analyzed and documented.

Results  Collected laser plume contained papillomavirus DNA in all tested laser settings. The viral DNA was most likely encapsulated. Tumors developed at laser plume–inoculated sites for all laser parameter settings. Histological and biochemical analyses revealed that these tumors were infected with the same virus type as present in the laser plume.

Conclusions  Laser plume has been shown, for the first time to our knowledge, to actually transmit disease. Strict care must be maintained by the laser practitioner to minimize potential health risks, especially when treating viral-induced lesions or patients with viral disease.