Evidence for the Association of Human Papillomavirus Infection and Cutaneous Squamous Cell Carcinoma in Immunocompetent Individuals | Dermatology | JAMA Dermatology | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Alani  RMMunger  K Human papillomaviruses and associated malignancies.  J Clin Oncol. 1998;16330- 337PubMedGoogle Scholar
2.
Not Available, Human Papillomaviruses.  Lyon, France International Agency for Research on Cancer1995;IARC Monographs on the Evaluation of Carcinogenic Risks to Humans64
3.
Bosch  FXManos  MMMunoz  N  et al.  Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International Biological Study on Cervical Cancer (IBSCC) Study Group.  J Natl Cancer Inst. 1995;87796- 802PubMedGoogle ScholarCrossref
4.
zur Hausen  H Papillomavirus infections—a major cause of human cancers.  Biochem Biophys Acta. 1996;1288F55- F78PubMedGoogle Scholar
5.
Mork  JLie  AKGlattre  E  et al.  Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck.  N Engl J Med. 2001;3441125- 1131PubMedGoogle ScholarCrossref
6.
Klussmann  JPWeissenborn  SJWieland  U  et al.  Prevalence, distribution, and viral load of human papillomavirus 16 DNA in tonsillar carcinomas.  Cancer. 2001;922875- 2884PubMedGoogle ScholarCrossref
7.
Fuchs  PGPfister  H Papillomaviruses in epidermodysplasia verruciformis. Lacey  Ced. Papillomavirus Reviews: Current Research on Papillomaviruses. Leeds, England Leeds University Press1996;253- 262Google Scholar
8.
de Villiers  ELavergne  DMcLaren  KBenton  EC Prevailing papillomavirus types in non-melanoma carcinomas of the skin in renal allograft recipients.  Int J Cancer. 1997;73356- 361PubMedGoogle ScholarCrossref
9.
Berkhout  RJBouwes Bavinck  JNter Schegget  J Persistence of human papillomavirus DNA in benign and (pre)malignant skin lesions from renal transplant recipients.  J Clin Microbiol. 2000;382087- 2096PubMedGoogle Scholar
10.
de Jong-Tieben  LMBerkhout  RJter Schegget  J  et al.  The prevalence of human papillomavirus DNA in benign keratotic skin lesions of renal transplant recipients with and without a history of skin cancer is equally high.  Transplantation. 2000;6944- 49PubMedGoogle ScholarCrossref
11.
Arends  MJBenton  ECMcLaren  KMHunter  JAABird  CC Renal allograft recipients with high susceptibility to cutaneous malignancy have an increased prevalence of human papillomavirus DNA in skin tumours and a greater risk of anogenital malignancy.  Br J Cancer. 1997;75722- 728PubMedGoogle ScholarCrossref
12.
Burk  RDKadish  AS Treasure hunt for human papillomaviruses in nonmelanoma skin cancers.  J Natl Cancer Inst. 1996;88781- 782PubMedGoogle ScholarCrossref
13.
Shamanin  Vzur Hausen  HLavergne  D  et al.  Human papillomavirus infections in nonmelanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients.  J Natl Cancer Inst. 1996;88802- 811PubMedGoogle ScholarCrossref
14.
Pfister  HTer Schegget  J Role of HPV in cutaneous premalignant and malignant tumors.  Clin Dermatol. 1997;15335- 347PubMedGoogle ScholarCrossref
15.
Harwood  CAMcGregor  JMProby  CMBreuer  J Human papillomavirus and the development of non-melanoma skin cancer.  J Clin Pathol. 1999;52249- 253PubMedGoogle ScholarCrossref
16.
Boxman  ILRussell  AMulder  LHBavinck  JNSchegget  JTGreen  Afor the Nambour Skin Cancer Prevention Study Group, Case-control study in a subtropical Australian population to assess the relation between non-melanoma skin cancer and epidermodysplasia verruciformis human papillomavirus DNA in plucked eyebrow hairs.  Int J Cancer. 2000;86118- 121PubMedGoogle ScholarCrossref
17.
Jackson  SStorey  A E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage.  Oncogene. 2000;19592- 598PubMedGoogle ScholarCrossref
18.
Carter  JJGalloway  DA Humoral immune response to human papillomavirus infection.  Clin Dermatol. 1997;15249- 259PubMedGoogle ScholarCrossref
19.
Baird  P Serological evidence for the association of papillomavirus and cervical neoplasia.  Lancet. 1983;217- 18PubMedGoogle ScholarCrossref
20.
Nonnenmacher  BKruger-Kjaer  SSvare  EI  et al.  Seroreactivity to HPV16 virus-like particles as a marker for cervical cancer risk in high-risk populations.  Int J Cancer. 1996;68704- 709PubMedGoogle ScholarCrossref
21.
Wideroff  LSchiffman  MHHoover  R  et al.  Epidemiologic determinants of seroreactivity to human papillomavirus (HPV) type 16 virus-like particles in cervical HPV-16 DNA-positive and -negative women.  J Infect Dis. 1996;174937- 943PubMedGoogle ScholarCrossref
22.
Stark  SPetridis  AKGhim  SJ  et al.  Prevalence of antibodies against virus-like particles of epidermodysplasia verruciformis–associated HPV8 in patients at risk of skin cancer.  J Invest Dermatol. 1998;111696- 701PubMedGoogle ScholarCrossref
23.
Bouwes Bavinck  JNStark  SPetridis  AK  et al.  The presence of antibodies against virus-like particles of epidermodysplasia verruciformis–associated human papillomavirus type 8 in patients with actinic keratoses.  Br J Dermatol. 2000;142103- 109PubMedGoogle ScholarCrossref
24.
Wieland  URitzkowsky  AStoltidis  M  et al.  Papillomavirus DNA in basal cell carcinomas of immunocompetent patients.  J Invest Dermatol. 2000;115124- 128PubMedGoogle ScholarCrossref
25.
Kremsdorf  DFavre  MJablonska  S  et al.  Molecular cloning and characterization of the genomes of nine newly recognized human papillomavirus types associated with epidermodysplasia verruciformis.  J Virol. 1984;521013- 1018PubMedGoogle Scholar
26.
Kozak  M Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs.  Nucleic Acids Res. 1984;12857- 872PubMedGoogle ScholarCrossref
27.
Norusis  MJ SPSS for Windows Professional and Advanced Statistics, Release 8.0.  Chicago, Ill SPSS Inc1998;
28.
Stata Corp, Stata Statistical Software: Release 4.0 for Windows 95.  College Station, Tex Stata Corp1995;
29.
English  DRArmstrong  BKKricker  A Reproducibility of reported measurements of sun exposure in a case-control study.  Cancer Epidemiol Biomarkers Prev. 1998;7857- 863PubMedGoogle Scholar
30.
Weinstock  MAColditz  GAWillett  WCStampfer  MJRosner  BSpeizer  FE Recall (report) bias and reliability in the retrospective assessment of melanoma risk.  Am J Epidemiol. 1991;133240- 245PubMedGoogle Scholar
31.
Cockburn  MHamilton  AMack  T Recall bias in self-reported melanoma risk factors.  Am J Epidemiol. 2001;1531021- 1026PubMedGoogle ScholarCrossref
32.
Silins  IWang  ZAvall-Lundqvist  E  et al.  Serological evidence for protection by human papillomavirus (HPV) type 6 infection against HPV type 16 cervical carcinogenesis.  J Gen Virol. 1999;80 (pt 11) 2931- 2936PubMedGoogle Scholar
33.
Schwartz  SMDaling  JRDoody  DR  et al.  Oral cancer risk in relation to sexual history and evidence of human papillomavirus infection.  J Natl Cancer Inst. 1998;901626- 1636PubMedGoogle ScholarCrossref
34.
Favre  MMajewski  SNoszczyk  B  et al.  Antibodies to human papillomavirus type 5 are generated in epidermal repair processes.  J Invest Dermatol. 2000;114403- 407PubMedGoogle ScholarCrossref
35.
Tsambaos  DMonastirli  AKapranos  N  et al.  Detection of human papillomavirus DNA in nongenital seborrhoeic keratoses.  Arch Dermatol Res. 1995;287612- 615PubMedGoogle ScholarCrossref
36.
Yeatman  JMKilkenny  MMarks  R The prevalence of seborrhoeic keratoses in an Australian population.  Br J Dermatol. 1997;137411- 414PubMedGoogle ScholarCrossref
37.
Sciocchetti  GClemente  GFIngrao  GSacco  F Results of a survey on radioactivity of building materials in Italy.  Health Phys. 1983;45385- 388PubMedGoogle ScholarCrossref
38.
Sperati  AAbeni  DDTagesson  CForastiere  FMiceli  MAxelson  O Exposure to indoor background radiation and urinary concentrations of 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage.  Environ Health Perspect. 1999;107213- 215PubMedGoogle ScholarCrossref
39.
Etherington  DJPheby  DFBray  FI An ecological study of cancer incidence and radon levels in South West England.  Eur J Cancer. 1996;32A1189- 1197PubMedGoogle ScholarCrossref
40.
Eatough  JPHenshaw  DL The theoretical risk of non-melanoma skin cancer from environmental radon exposure.  J Radiol Prot. 1995;1545- 51Google ScholarCrossref
Study
July 2003

Evidence for the Association of Human Papillomavirus Infection and Cutaneous Squamous Cell Carcinoma in Immunocompetent Individuals

Author Affiliations

From the Clinical Epidemiology Unit (Drs Masini, Sera, Picconi, Cattaruzza, and Abeni), Department of Plastic Surgery (Dr Gabrielli), Department of Clinical Dermatology (Drs Melchi and Primavera), and Laboratory (Drs Pirchio and Petasecca), Istituto Dermopatico dell'Immacolata, Rome, Italy; Institut fuer Virologie der Universitaet zu Koeln, Cologne, Germany (Drs Fuchs, Stark, and Pfister and Ms Ploner); and Department of Public Health, Università "La Sapienza," Rome (Dr Cattaruzza). The authors have no relevant financial interest in this article. Dr Fuchs died July 10, 2002.

Arch Dermatol. 2003;139(7):890-894. doi:10.1001/archderm.139.7.890
Abstract

Objective  The aim of our study was to evaluate human papillomavirus (HPV) infection as a risk factor for cutaneous squamous cell carcinoma (SCC) in immunocompetent individuals.

Design  Hospital-based case-control study.

Setting  Referral center for dermatologic diseases for central and southern Italy.

Participants  Consecutive patients with histologically confirmed cutaneous SCC (n = 46) and control subjects (n = 84) chosen by frequency matching (age and sex) among patients admitted with unrelated diseases.

Main Outcome Measure  Infection with epidermodysplasia verruciformis–related HPV types, blindly assessed by serologic testing (viruslike particle enzyme-linked immunosorbent assay). Information was obtained on known potentially confounding risk factors (family history, history and signs of sun exposure, and pigmentary traits) and on history of HPV-related lesions and diseases, assessed by interview and examination by a dermatologist.

Results  Positive serologic findings for HPV type 8 were associated with SCC (odds ratio, 3.2; 95% confidence interval, 1.3-7.9) independently of other risk factors, whereas positive serologic findings for HPV type 15 were negatively associated with SCC (odds ratio, 0.4; 95% confidence interval, 0.2-0.9). Other variables significantly associated with the tumor were family history of skin cancer, professional or recreational sun exposure, light eye color, high number of solar keratoses and seborrheic keratoses on the body surface, and residency in radon-emitting buildings.

Conclusions  Positive serologic findings for HPV type 8 are associated with SCC occurrence in immunocompetent individuals. Viral infection could act as a cofactor in the tumor development, along with genetic predisposition, solar radiation, and other environmental exposures. If confirmed, these findings could open new perspectives for treatment and prevention of SCC.

×