In-Hospital and 1-Year Mortality in Patients Undergoing Early Surgery for Prosthetic Valve Endocarditis

Tahaniyat Lalani, MD, MHS; Vivian H. Chu, MD, MHS; Lawrence P. Park, PhD; Enrico Cecchi, MD; G. Ralph Corey, MD; Emanuele Durante-Mangoni, MD; Vance G. Fowler Jr, MD, MHS; David Gordon, MBBS, PhD, FRCPA, FRACP, FFoSc; Paolo Grossi, MD, PhD; Margaret Hannan, MD; Bruno Hoern, MD, PhD; Patricia Muñoz, MD, PhD; Hussien Rizk, MD; Souha S. Kanj, MD; Christine Selton-Suty, MD; Daniel J. Sexton, MD; Denis Spelman, MD; Veronica Ravasio, MD; Marie Françoise Tripodi, MD; Andrew Wang, MD; for the International Collaboration on Endocarditis–Prospective Cohort Study Investigators

IMPORTANCE There are limited prospective, controlled data evaluating survival in patients receiving early surgery vs medical therapy for prosthetic valve endocarditis (PVE).

OBJECTIVE To determine the in-hospital and 1-year mortality in patients with PVE who undergo valve replacement during index hospitalization compared with patients who receive medical therapy alone, after controlling for survival and treatment selection bias.

DESIGN, SETTING, AND PARTICIPANTS Participants were enrolled between June 2000 and December 2006 in the International Collaboration on Endocarditis–Prospective Cohort Study (ICE-PCS), a prospective, multinational, observational cohort of patients with infective endocarditis. Patients hospitalized with definite right- or left-sided PVE were included in the analysis. We evaluated the effect of treatment assignment on mortality, after adjusting for biases using a Cox proportional hazards model that included inverse probability of treatment weighting and surgery as a time-dependent covariate. The cohort was stratified by probability (propensity) for surgery, and outcomes were compared between the treatment groups within each stratum.

INTERVENTIONS Valve replacement during index hospitalization (early surgery) vs medical therapy.

MAIN OUTCOMES AND MEASURES In-hospital and 1-year mortality.

RESULTS Of the 1025 patients with PVE, 490 patients (47.8%) underwent early surgery and 535 individuals (52.2%) received medical therapy alone. Compared with medical therapy, early surgery was associated with lower in-hospital mortality in the unadjusted analysis and after controlling for treatment selection bias (in-hospital mortality: hazard ratio [HR], 0.44 [95% CI, 0.38-0.52] and lower 1-year mortality: HR, 0.57 [95% CI, 0.49-0.67]). The lower mortality associated with surgery did not persist after adjustment for survivor bias (in-hospital mortality: HR, 0.90 [95% CI, 0.76-1.07] and 1-year mortality: HR, 1.04 [95% CI, 0.89-1.23]). Subgroup analysis indicated a lower in-hospital mortality with early surgery in the highest surgical propensity quintile (21.2% vs 37.5%; P = .03). At 1-year follow-up, the reduced mortality with surgery was observed in the fourth (24.8% vs 42.9%; P = .007) and fifth (27.9% vs 50.0%; P = .007) quintiles of surgical propensity.

CONCLUSIONS AND RELEVANCE Prosthetic valve endocarditis remains associated with a high 1-year mortality rate. After adjustment for differences in clinical characteristics and survival bias, early valve replacement was not associated with lower mortality compared with medical therapy in the overall cohort. Further studies are needed to define the effect and timing of surgery in patients with PVE who have indications for surgery.

Published online July 15, 2013.
Prosthetic valve endocarditis (PVE) occurs in approximately 3% to 6% of patients within 5 years of valve implanta
tion and is associated with significant morbidity and mortality.™ Surgical intervention with debridement and
closure of any defect is recommended by consensus guidelines™ for patients with complications such as valve dys-
fuction, dehiscence, heart failure, cardiac abscesses, or persistent bacteremia. These guidelines are based largely on
expert opinion and limited observational data.™ Studies™ comparing survival between patients undergoing surgery vs
medical therapy for PVE have reported conflicting results. In addition, retrospective data collection, single-center study
design, and small sample sizes of these studies limit the ability to control for treatment selection and survivor bias.

Propensity score methods use an estimated probability of a treatment (ie, valve surgery) based on observed baseline char-
acteristics to control for selection bias. This method has been used frequently in studies estimating treatment effects for patients
with native valve endocarditis or including patients with either native valve endocarditis or PVE.™ Important recommenda-
tions regarding performance of observational studies and use of propensity score–based methods were recently published.™ The
method of inverse probability of treatment weighting (IPTW) using the surgical propensity score in regression models for mor-
tality is favored because of its superior performance in controlling for selection bias compared with stratification or propensity
matching.™ Survivor bias can profoundly affect outcome estimates, and this bias should be addressed by matching or includ-
ing treatment (surgery) as a time-dependent covariate.™

Although a small randomized trial of early surgery for na-
tive valve infective endocarditis (IE) has recently been
depicted,™ to our knowledge, no randomized studies of sur-
gery for PVE have been performed. The objective of the pre-
sent study was to assess in-hospital and 1-year mortality in pa-
tients with PVE who undergo valve replacement compared with patients who receive medical therapy alone using appropri-
ate propensity score–based methods to provide adjusted esti-
mates of treatment effect.

Methods

Study Population and Clinical Data
The International Collaboration on Endocarditis–Prospective Co-
hort Study (ICE-PCS) is a prospective, multicenter, international
registry of patients with IE.™ Data based on standard
definitions were collected prospectively between January 1,
2000, and December 31, 2006, from 64 sites in 28 countries.
The study was approved by the institutional review boards or
ethics committees at all participating sites.

Inclusion criteria for this study cohort were patients diag-
nosed with definite PVE based on the modified Duke criteria.™ Patients with the following characteristics were excluded:
native and nonnative valve IE (eg, pacemaker IE), receipt of sur-
gery before admission, and missing values for sex, receipt
and/or date of surgery, length of initial hospitalization, in-
hospital death, and death at 1-year follow-up. To preserve the
assumption of independence of observations, only the first epi-

sode of IE recorded for an individual patient was used. For miss-
ing data in ICE-PCS, sites and their investigators were query-
ted to complete data collection.

Definitions
The definitions used in the ICE-PCS cohort have been reported.™ Early surgery was defined as replacement or repair of the in-
fected prosthetic valve during the initial hospitalization for PVE. Chronic illness was defined as the presence of chronic comor-
bidity, such as diabetes mellitus, cancer, immunosuppres-
sion, hemodialysis dependence, chronic obstructive pulmo-
nary disease, and cirrhosis. Paravalvular complication was
defined as the presence of an intracardiac abscess or fistula by
transthoracic or transesophageal echocardiography. Prosthetic
valvular complication was defined as evidence of dehis-
cence or severe regurgitation by transthoracic or transeso-
phageal echocardiography. Systemic embolization was defined as
embolism to any major arterial vessel, excluding stroke. Health
care–associated endocarditis consisted of either nosocomial or
nonnosocomial health care–associated infection.™

Analytical Plan
The association between early surgery and mortality was evalu-
ated in a prospective, observational cohort. The primary out-
comes were all-cause mortality during initial hospitalization and
at 1-year follow-up. Analyses were expressed as hazard ratios
(HRs) with 95% CIs; a 2-sided P value < .05 was considered sig-
nificant. The unadjusted effect of early surgery on survival time
was estimated using a univariate Cox proportional hazards
model. Next, adjustment for measured confounders was per-
formed using a multivariable Cox proportional hazards model
with IPTW to address treatment selection bias. The cohort
was also stratified by propensity score, and outcomes were com-
pared between the treatment groups within each stratum using
the Fisher exact test. A final Cox proportional hazards model
included all relevant covariates as well as surgery as a time-
dependent variable and IPTW to control for survival and treat-
ment selection bias. All analyses were performed using com-
mercial software (SAS, version 9.2; SAS Institute Inc).

Standard Univariate and Multivariable Analysis
Baseline characteristics and outcomes of patients with PVE who
received early surgery were compared with those receiving med-
ical therapy alone using the Wilcoxon rank sum test for continu-
ous variables and the χ2 test for categorical variables. Unadjusted
HRs were computed using a univariate Cox proportional hazards
model. A multivariable Cox proportional hazards model with
IPTW was performed to identify independent predictors of in-
hospital and 1-year mortality (see the IPTW and Adjustment for
Survivor Bias subsection below). This model included 19 clini-
cally relevant variables (Supplement [eTable]). All of the variables
used in the multivariable model had data collected for 97% or
more of patients. Missing values for clinical outcomes were im-
puted with the negative category for categorical variables.

Propensity Score Model
To account for treatment selection bias (ie, systematic differ-
ences in clinical characteristics between patients in the 2 treat-

ment groups that may affect treatment selection), the propensity or probability for early surgery was calculated for each patient on the basis of a nonparsimonious multivariable logistic regression model. This model included 21 clinically relevant variables (Table 1) considered a priori by the investigators to contribute to surgical treatment. Odds ratios (ORs) and 95% CIs for early surgery were calculated for all predictors. The total cohort of 1025 patients was stratified into quintiles based on the probability of early surgery (and without regard to actual treatment received by the patient), and outcomes were estimated within each stratum.

IPTW and Adjustment for Survivor Bias

An additional Cox proportional hazards model was created to estimate the effect of surgery on mortality while controlling for treatment selection and survivor bias. Survivor bias was considered important, since the likelihood of receiving early surgery may be influenced by longer survival (or, in other words, patients who die early during hospitalization may be considered as deaths associated with medical therapy despite surgical indications). To adjust for treatment selection bias, each patient was assigned a “weight” or influence when estimating the effect of treatment on mortality, which was inversely proportional to the probability of receiving the treatment to which they were assigned in reality (IPTW). To reduce survivor bias, early surgery was included as a time-dependent covariate, that is, surgical patients were included in the medical therapy group until the date of surgery and in the surgical group thereafter.

Results

A total of 4166 patients with definite left- or right-sided IE were enrolled in the ICE-PCS cohort between January 1, 2000, and

Table 1. Characteristics of 1025 Patients With Prosthetic Valve Endocarditis Treated With Early Surgery vs Medical Therapy

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%)</th>
<th>Early Surgery (n = 490)</th>
<th>Medical Therapy (n = 535)</th>
<th>P Value</th>
<th>OR for Early Surgery (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex</td>
<td>343 (70)</td>
<td>335 (63)</td>
<td>.01</td>
<td>1.24</td>
<td>(0.92-1.67)</td>
</tr>
<tr>
<td>Age, mean (range), y</td>
<td>59.4 (0.5-88)</td>
<td>63.8 (0.3-91)</td>
<td><.001</td>
<td>0.98</td>
<td>(0.97-0.99)</td>
</tr>
<tr>
<td>Aortic valve prosthesisb</td>
<td>350 (71.0)</td>
<td>369 (68.9)</td>
<td>.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitral valve prosthesisb</td>
<td>221 (45.1)</td>
<td>252 (47.1)</td>
<td>.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocarditis within 1 y of implantationc</td>
<td>78/195 (40)</td>
<td>90/213 (42)</td>
<td>.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic illnessd</td>
<td>154 (31)</td>
<td>199 (37)</td>
<td>.05</td>
<td>0.86</td>
<td>(0.64-1.15)</td>
</tr>
<tr>
<td>Duration of symptoms >1 mo before presentation</td>
<td>367 (75)</td>
<td>451 (84)</td>
<td><.001</td>
<td>0.60</td>
<td>(0.42-0.85)</td>
</tr>
<tr>
<td>Transfer from another facility</td>
<td>239 (49)</td>
<td>184 (34)</td>
<td><.001</td>
<td>1.54</td>
<td>(1.16-2.04)</td>
</tr>
<tr>
<td>Health care-associated infection</td>
<td>143 (29)</td>
<td>170 (32)</td>
<td>.37</td>
<td>0.92</td>
<td>(0.67-1.27)</td>
</tr>
<tr>
<td>Transeosophageal echocardiography performed</td>
<td>426 (87)</td>
<td>443 (83)</td>
<td>.07</td>
<td>1.42</td>
<td>(0.95-2.12)</td>
</tr>
<tr>
<td>Fever</td>
<td>387 (79)</td>
<td>472 (88)</td>
<td><.001</td>
<td>0.54</td>
<td>(0.37-0.79)</td>
</tr>
<tr>
<td>Echocardiographic findingsf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic regurgitation</td>
<td>161 (33)</td>
<td>103 (19)</td>
<td><.001</td>
<td>1.33</td>
<td>(0.93-1.91)</td>
</tr>
<tr>
<td>Mitral regurgitation</td>
<td>141 (29)</td>
<td>105 (20)</td>
<td><.001</td>
<td>1.64</td>
<td>(1.16-2.31)</td>
</tr>
<tr>
<td>Aortic valve vegetation</td>
<td>220 (45)</td>
<td>204 (38)</td>
<td>.03</td>
<td>1.53</td>
<td>(1.12-2.08)</td>
</tr>
<tr>
<td>Mitral valve vegetation</td>
<td>179 (37)</td>
<td>191 (36)</td>
<td>.78</td>
<td>1.57</td>
<td>(1.13-2.19)</td>
</tr>
<tr>
<td>Paravalvular complications</td>
<td>213 (44)</td>
<td>108 (20)</td>
<td><.001</td>
<td>2.62</td>
<td>(1.92-3.58)</td>
</tr>
<tr>
<td>Prosthetic valve complicationsf</td>
<td>204 (42)</td>
<td>129 (24)</td>
<td><.001</td>
<td>1.63</td>
<td>(1.17-2.27)</td>
</tr>
<tr>
<td>Causative microorganism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>96 (20)</td>
<td>133 (25)</td>
<td>.04</td>
<td>0.82</td>
<td>(0.57-1.18)</td>
</tr>
<tr>
<td>Coagulase-negative staphylococci</td>
<td>98 (20)</td>
<td>61 (11)</td>
<td><.001</td>
<td>1.63</td>
<td>(1.09-2.45)</td>
</tr>
<tr>
<td>Viridans group streptococci</td>
<td>56 (11)</td>
<td>68 (13)</td>
<td>.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus species</td>
<td>45 (9)</td>
<td>91 (17)</td>
<td><.001</td>
<td>0.55</td>
<td>(0.35-0.85)</td>
</tr>
<tr>
<td>Complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>176 (36)</td>
<td>157 (29)</td>
<td>.02</td>
<td>1.22</td>
<td>(0.90-1.66)</td>
</tr>
<tr>
<td>NYHA class III or IV heart failureg</td>
<td>123/447 (28)</td>
<td>110/507 (22)</td>
<td>.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>88 (18)</td>
<td>115 (22)</td>
<td>.16</td>
<td>0.74</td>
<td>(0.52-1.07)</td>
</tr>
<tr>
<td>Other systemic embolizationh</td>
<td>72 (15)</td>
<td>90 (17)</td>
<td>.35</td>
<td>0.81</td>
<td>(0.55-1.19)</td>
</tr>
<tr>
<td>Persistent bacteremia</td>
<td>39 (8)</td>
<td>45 (8)</td>
<td>.79</td>
<td>1.04</td>
<td>(0.61-1.77)</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of hospitalization, median (IQR)</td>
<td>33.5 (19-52)</td>
<td>28.0 (14-44)</td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-hospital mortality</td>
<td>108 (22)</td>
<td>143 (27)</td>
<td>.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-y Mortality</td>
<td>133 (27)</td>
<td>196 (37)</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range; NYHA, New York Heart Association; OR, odds ratio.

* Odds ratio and CI calculated from the logistic regression model used to determine the propensity score for surgery.

b Includes valve repair with prosthetic and/or replacement.

c Data missing for 295 patients in the surgery group and 322 patients in the medical therapy group.

d Includes diabetes mellitus, cancer, immunosuppression, hemodialysis dependence, chronic obstructive pulmonary disease, cirrhosis, and other chronic comorbid conditions.

e Based on transesophageal or transthoracic echocardiography.

f Transesophageal or transthoracic echocardiographic evidence of dehiscence or severe regurgitation.

g Data missing for 295 patients in the surgery group and 322 patients in the medical therapy group.
h Includes embolism to any major arterial vessel, excluding stroke.
December 31, 2006. Of these, 1025 patients had definite PVE and met the eligibility criteria for this study (Supplement [eFigure]). A prosthetic aortic valve was present in 719 (70.1%) patients (mechanical valve: 349 [48.5%]; bioprosthetic valve: 353 [49.1%]; repair: 17 [2.4%]), and a prosthetic mitral valve or ring was present in 473 (46.1%) patients (mechanical valve: 303 [64.1%]; bioprosthetic valve: 86 [18.2%]; repair: 84 [17.8%]) patients.

Staphylococcus aureus was the most common cause of PVE. Among the PVE cases, 490 of 1025 patients (47.8%) underwent early surgery and 535 patients (52.2%) received medical therapy alone during the index hospitalization (Table 1). There was no significant difference in the time interval between valve insertion and PVE diagnosis between the 2 treatment groups among the 408 patients for whom this variable was collected (the variable was removed from case report forms in August 2005). The mediantime from admission to surgery was 8 days (quintile 1 to quintile 3, 4-20 days).

Patients who received early surgery were significantly younger, had a shorter duration of symptoms, and were more likely to have been transferred from another facility. Prosthetic valve endocarditis caused by S aureus and enterococci was associated with receiving medical therapy, while coagulase-negative Staphylococcus was associated with higher use of surgery. As expected, a significantly higher proportion of the surgical group compared with the medical group had complications of PVE, such as mitral valve regurgitation (28.8% vs 19.60%; OR, 1.64 [95% CI, 1.16-2.31]), paravalvular complications (43.5% vs 20.2%; OR, 2.62 [95% CI, 1.92-3.58]), or prosthetic valve complications (41.6% vs 24.1%; OR, 1.63 [95% CI, 1.17-2.27]). Early surgery was associated with lower in-hospital mortality (22.0% vs 26.7%; HR, 0.68 [95% CI, 0.53-0.87]) and 1-year mortality (27.1% vs 36.6%; HR, 0.68 [95% CI, 0.55-0.85]) in the unadjusted Cox proportional hazards model.

To control for treatment selection bias, the probability of surgery by propensity score was calculated for each patient. The propensity score model had a concordance index of 0.74 and a Hosmer-Lemeshow test statistic of 7.78 (P = .45), indicating good discriminative and predictive ability. The predicted probability of surgery for the total cohort ranged from 5.2% to 98.2%. An adjusted Cox proportional hazards model, including IPTW and controlling for other measured covariates, was performed. Early surgery remained strongly associated with lower mortality after adjusting for treatment selection bias (in-hospital mortality: HR, 0.44 [95% CI, 0.38-0.52] and 1-year mortality: HR, 0.57 [95% CI, 0.49-0.67]) (Table 2, Figure 1, and Supplement [eTable]).

The cohort was then divided into 5 subgroups (ie, quintiles) based on the predicted probability of surgery (and without regard to actual treatment received by the patient). Thus, each quintile had 205 patients who were comparable in clinical characteristics and probability of surgery but differed by the treatment received (a process similar to randomization). In addition, patients in the fifth quintile had a higher predicted probability of surgery (range, 68.5%-98.2%) vs those in the first quintile (range, 5.2%-27.5%). Figure 2 shows the frequency of PVE complications that may indicate a clinical indication for surgery across the quintiles of propensity. Patients in quintile 5 had a higher frequency of new mitral or aortic

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Unadjusted</th>
<th>Multivariable Model With IPTWa</th>
<th>Multivariable Model With IPTW and Surgery as Time-Dependent Covariatesb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>P Value</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>In-hospital mortality</td>
<td>0.68 (0.53-0.87)</td>
<td>.003</td>
<td>0.44 (0.38-0.52)</td>
</tr>
<tr>
<td>1-y Mortality</td>
<td>0.68 (0.55-0.85)</td>
<td><.001</td>
<td>0.57 (0.49-0.67)</td>
</tr>
</tbody>
</table>

Abbreviations: HR, hazard ratio; IPTW, inverse probability of treatment weighting (using the propensity score for surgery).

a See the Supplement (eTable) for the full model.
b See Table 3 for the full model.

Figure 1. Kaplan-Meier Curves for the Cumulative Probability of Survival at 1 Year

Figure 2. The frequency of PVE complications that may indicate a clinical indication for surgery across the quintiles of propensity.
valve regurgitation, prosthetic valve/paravalvular complications, and New York Heart Association class I to IV congestive heart failure compared with patients in the lower quintiles and therefore had a higher probability of receiving surgical treatment. We then compared the outcomes between patients who underwent valve surgery with those who received medical therapy alone within each quintile. A lower in-hospital mortality incidence for surgery was observed only in the highest surgical propensity quintile (21.2% vs 37.5%, respectively; \(P = .03 \)) (Figure 3). At the 1-year follow-up, lower mortality associated with surgery was observed in the fourth (24.8% vs 42.9%; \(P = .007 \)) and fifth (28% vs 50%; \(P = .007 \)) quintiles (Figure 4).

Next, we evaluated the effect of early surgery on mortality after controlling for treatment selection and survivor bias. The survival benefit was no longer evident after adjusting for survivor bias by including surgery as a time-dependent variable in the Cox proportional hazards model (in-hospital mortality: HR, 0.90 [95% CI, 0.76-1.07] and 1-year mortality: HR, 1.04 [0.89-1.23]). Variables independently associated with in-hospital and 1-year mortality in this model included chronic illness, \textit{S} aureus infection, health care–associated infection, and PVE complications of stroke, congestive heart failure, intracardiac abscess, and paravalvular complications (Table 3).

Discussion

Our study compared the clinical characteristics and outcome of patients with PVE treated with early surgery or medical therapy during the index hospitalization. Our main findings were (1) a high percentage of patients with PVE (48%), par-

Figure 2. Distribution of Key Predictors of Surgery Across the Propensity Quintiles in a Cohort of Patients With Prosthetic Valve Endocarditis

<table>
<thead>
<tr>
<th>Predictor</th>
<th>1st Quintile</th>
<th>2nd Quintile</th>
<th>3rd Quintile</th>
<th>4th Quintile</th>
<th>5th Quintile</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Mitral Regurgitation</td>
<td>0.05-0.28</td>
<td>0.28-0.40</td>
<td>0.40-0.53</td>
<td>0.53-0.69</td>
<td>0.69-0.98</td>
</tr>
<tr>
<td>New Aortic Regurgitation</td>
<td>0.34</td>
<td>0.46</td>
<td>0.61</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>Aortic Vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitral Vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paravalvular Complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prosthetic Valve Complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestive Heart Failure (NYHA I-IV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent Bacteremia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NYHA I-IV indicates New York Heart Association class I to IV heart failure.

*Transesophageal or transthoracic echocardiographic evidence of paravalvular abscess or fistula formation.

Figure 3. In-Hospital Mortality Rates for Patients With Prosthetic Valve Endocarditis by Propensity Quintile for Surgery

<table>
<thead>
<tr>
<th>Propensity Quintile</th>
<th>Medical Therapy</th>
<th>Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>171</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>131</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>109</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>84</td>
<td>121</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>165</td>
</tr>
</tbody>
</table>

Data are given as mortality point estimates; error bars indicate 95% CIs.

*Fisher exact P value.
particularly those with complications related to endocarditis, underwent surgery during the index hospitalization; (2) although early surgery was associated with a mortality benefit in the unadjusted analysis and after controlling for treatment selection bias, this mortality benefit was neutralized after controlling for survivor bias in the overall cohort; (3) surgery in subgroups of patients who had strong indications for surgery (e.g., valve regurgitation, vegetation, and dehiscence or paravalvular abscess/fistula) was associated with lower 1-year mortality. To our knowledge, this is the largest study of PVE in the medical literature with strengths of prospectively collected data from multinational centers with an expertise in IE and in a contemporary era of surgical therapy.

The rate of valve surgery in our cohort (48%) is similar to surgical rates for PVE reported in the literature.8–25 This is a reflection of the guidelines from the American Heart Association/American College of Cardiology and the European Society of Cardiology that recommend consideration of surgery for all patients with PVE, particularly those with complications unlikely to be treated effectively by medical therapy alone, such as heart failure, prosthetic valve dysfunction, and intracardiac abscesses.5,6 Nevertheless, operative (in-hospital) mortality remains high for surgical patients and not less than the rates in previous eras,7,25 and patients with complicated PVE in our cohort had similar in-hospital and longer-term mortality compared with patients with a lower-risk clinical profile treated with medical therapy alone. A recent study reported in the Society of Thoracic Surgery database40 showed a low operative mortality in IE (8%), but the study did not specifically evaluate PVE, and surgery during the active stage of IE was associated with a 2-fold higher operative mortality.

In our study, early surgery was not associated with a mortality benefit in the overall cohort after adjusting for treatment selection and survivor bias. The findings of our subgroup analysis support the American Heart Association guidelines because patients with the highest predicted probability of surgery (i.e., those with the surgical indications mentioned above) had lower mortality rates when they received surgery vs medical therapy. However, these findings should be interpreted cautiously as results of a post hoc subgroup analysis that did not adjust for survivor bias.

Previous studies of PVE have found conflicting results regarding the effect of surgery. In a previous study by the International Collaboration on Endocarditis Investigators41 of retrospectively merged IE databases with propensity matching, surgery and medical therapy had similar in-hospital mortality rates, but longer-term outcome was not evaluated. In planning the present study, we had hypothesized that a survival benefit of surgery may not be apparent during the initial hospitalization given the higher operative risk of patients with PVE. However, after adjusting for selection and survivor bias in the surgical group, mortality rates remained similar even at 1 year after PVE for both treatment groups and were strongly related to host factors, pathogen, and particularly complications of PVE (heart failure, stroke, and paravalvular complications). Of note, heart failure was the strongest predictor of both in-hospital and 1-year mortality, confirming the significance of this complication even with a high rate of surgical intervention.42 Several other factors reflecting changes in the epidemiology of PVE, such as the higher patient age, cause of S aureus, and health care–associated infection, may contribute to the persistently high in-hospital and 1-year mortality compared with earlier studies.25,41

Recently, a small, randomized study34 of surgery for native valve endocarditis was reported. In that study, patients treated with surgery within 48 hours of diagnosis had a lower rate of embolic events but similar survival at 6 months compared with patients treated with usual care (yet 77% of patients receiving usual care underwent surgery).34
No randomized studies of surgery for PVE have been performed. Based on the differing survival estimates between the propensity-adjusted and Cox proportional hazards model, our results emphasize that survival bias and timing of surgery should be considered when evaluating the treatment effect on mortality. Although patients underwent surgery at a median of 8 days after admission, the potential benefit of earlier intervention was not evaluated and may influence outcome.

This study had several other limitations. The ICE cohort may be influenced by referral bias because most institutions are tertiary care centers with voluntary participation. Thus, the results of the present study may not be generalizable to the global epidemiology, treatment, and outcomes of PVE. Despite the use of propensity score adjustment to reduce selection bias for surgical treatment and Cox proportional hazards modeling to reduce survival bias, other variables not evaluated may confound the results of this analysis. The timing of PVE diagnosis relative to the date of prosthetic valve implantation was not evaluated because of missing data. Data regarding the presence of surgical indications in medically treated patients and the reason for not undergoing valve surgery were also unavailable for most patients in the cohort. However, other variables included in these analyses, such as health care–associated infection and causative organism (staphylococcal), correlate with early PVE characteristics. Data regarding surgery after hospital discharge were not routinely collected; among 252 of 392 patients (64%) who received medical therapy and survived to hospital discharge, only 24 of 252 patients (10%) had undergone surgery at 1-year follow-up.

In conclusion, approximately one-third of patients with PVE die within 1 year after diagnosis, with mortality strongly associated with other chronic illness, health care–associated infection, *S. aureus*, and complications of PVE. Surgical treatment was not associated with a lower mortality at 1-year in the overall PVE cohort after controlling for treatment selection and survivor bias. Further studies are needed to define the effect and timing of surgery in patients with PVE who have indications for surgery.

Table 3. Cox Proportional Hazards Model Weighted by the Inverse Probability of Early Surgery and Using Early Surgery and a Time-Dependent Variable: Predictors of In-Hospital and 1-Year Mortality

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>In-Hospital Mortality HR (95% CI)</th>
<th>1-Year Mortality HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early surgery, as a time-dependent covariate</td>
<td>0.90 (0.76-1.07)</td>
<td>1.04 (0.89-1.23)</td>
</tr>
<tr>
<td>Age</td>
<td>1.02 (1.02-1.03)</td>
<td>1.02 (1.02-1.03)</td>
</tr>
<tr>
<td>Male sex</td>
<td>1.20 (1.03-1.39)</td>
<td>1.06 (0.90-1.23)</td>
</tr>
<tr>
<td>Chronic illness*</td>
<td>1.36 (1.17-1.58)</td>
<td>1.34 (1.15-1.57)</td>
</tr>
<tr>
<td>History of CHF before IE episode</td>
<td>0.59 (0.46-0.74)</td>
<td>0.66 (0.52-0.83)</td>
</tr>
<tr>
<td>Health care–associated infection</td>
<td>1.27 (1.08-1.48)</td>
<td>1.39 (1.18-1.64)</td>
</tr>
<tr>
<td>Coagulase-negative staphylococcal infection</td>
<td>0.91 (0.73-1.13)</td>
<td>0.99 (0.78-1.24)</td>
</tr>
<tr>
<td>Staphylococcus aureus infection</td>
<td>1.26 (1.05-1.52)</td>
<td>1.45 (1.19-1.76)</td>
</tr>
<tr>
<td>Viridans group streptococcal infection</td>
<td>0.57 (0.40-0.80)</td>
<td>0.92 (0.67-1.23)</td>
</tr>
<tr>
<td>Enterococcal infection</td>
<td>0.79 (0.62-1.00)</td>
<td>1.03 (0.80-1.31)</td>
</tr>
<tr>
<td>Transesophageal echocardiography performed</td>
<td>0.42 (0.35-0.51)</td>
<td>0.48 (0.40-0.59)</td>
</tr>
<tr>
<td>Intracardiac vegetation</td>
<td>1.75 (1.45-2.13)</td>
<td>1.58 (1.30-1.92)</td>
</tr>
<tr>
<td>Intracardiac abscess*</td>
<td>1.38 (1.11-1.72)</td>
<td>1.41 (1.13-1.76)</td>
</tr>
<tr>
<td>Paravalvular complications*</td>
<td>1.54 (1.24-1.90)</td>
<td>1.40 (1.13-1.73)</td>
</tr>
<tr>
<td>Prosthetic valve complication*</td>
<td>0.95 (0.81-1.12)</td>
<td>1.07 (0.90-1.26)</td>
</tr>
<tr>
<td>Systemic embolization*</td>
<td>1.11 (0.92-1.34)</td>
<td>1.10 (0.90-1.33)</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.38 (1.17-1.63)</td>
<td>1.64 (1.37-1.95)</td>
</tr>
<tr>
<td>Persistent bacteremia</td>
<td>1.05 (0.84-1.31)</td>
<td>1.41 (1.12-1.75)</td>
</tr>
<tr>
<td>CHF</td>
<td>2.05 (1.76-2.38)</td>
<td>1.84 (1.58-2.16)</td>
</tr>
</tbody>
</table>

Abbreviations: CHF, congestive heart failure; HR, hazard ratio; IE, infective endocarditis.

* Includes diabetes mellitus, cancer, immunosuppression, hemodialysis dependence, chronic obstructive pulmonary disease, cirrhosis, and other chronic comorbid conditions.

* Based on transesophageal or transthoracic echocardiography.

* Transesophageal or transthoracic echocardiographic evidence of paravalvular abscess or fistula formation.

* Transesophageal or transthoracic echocardiographic evidence of dehiscence or severe regurgitation.

* Includes embolism to any major arterial vessel, excluding stroke.

ARTICLE INFORMATION

Accepted for Publication: April 14, 2013.
Published Online: July 15, 2013.

Author Affiliations: Infectious Disease Clinical Research Program, Bethesda, Maryland (Lalani); Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina (Chu, Park, Corey, Fowler); Maria Vittoria Hospital, Torino, Italy (Cecchi); Istituto Universitario di Napoli, Naples, Italy (Durante-Mangoni, Tripodi); Flinders Medical Centre, Bedford Park, South Australia, Australia (Gordon); Ospedale di Circolo Varese, Varese, Italy (Grossi); Mater Misericordiae University Hospital, Dublin, Ireland (Hannan); University Medical Center of Besançon, Besançon, France (Hoen); Hospital General Universitario Gregorio Marañón, Madrid, Spain (Muñoz); Cairo University Medical School, Cairo, Egypt (Rizk); American University of Beirut Medical Center, Beirut, Lebanon (Kanji); CHU Nancy-Brabois, Nancy, France (Selton-Suty); Department of Medicine, Duke University Medical Center, Durham, North Carolina (Sexton; Wang); Alfred Hospital, Melbourne, Victoria, Australia (Spelman); Ospedali Riuniti di Bergamo, Bergamo, Italy (Ravasio).

Early Surgery for Prosthetic Valve Endocarditis

Judy Stafford, MS, Lawrence P. Park, PhD, Bob Sanderford, and Judy Stafford, MS. Ice Steering Committee: Kevin Aström, PhD, Eugene Athan, MD, Arnold S. Bayer, MD, Christopher H. Cabell, MD, MHS, Vivian H. Chu, MD, MHS, G. Ralph Corey, MD, Vance G. Fowler Jr, MD, MHS, Bruno Hoen, MD, PhD, A. W. Karchmer, MD, José M. Miró, MD, PhD, David T. Durack, MD, PhD, Susannah Eykyn, MD, Vance G. Fowler, Jr, MHS, Bruno Hoen, MD, PhD, José M. Miró, MD, PhD, Philippe Moreillon, MD, PhD, Lars Olaison, MD, PhD, Didier Raoult, MD, PhD, Ethan Rubinstein MD, LLB, and Daniel J. Sexton, MD.

Correction: This article was corrected on September 30, 2013, for errors in Figure 3.

REFERENCES

Challenges in Treating Prosthetic Valve Endocarditis

Ann F. Bolger, MD

Which patients with endocarditis will benefit from early surgery is vigorously debated. Prospective randomized trials have demonstrated that patients with infections of native mitral and aortic valves associated with large vegetations and severe valvular regurgitation benefit from early surgery in terms of longer survival and fewer embolic complications; several observational studies using propensity score analysis have also supported early surgery in high-risk patients.

But what about patients with prosthetic valve infection? Such patients fill us with dread. Their outcomes are indisputably poor. Would early surgery make a difference in this group? Lalani and colleagues provide us with data on 1025 patients with prosthetic valve endocarditis (PVE), approximately half of whom underwent early surgery during their initial hospitalization. Overall, nearly one-third of these patients died within a year after diagnosis. This mortality is within the range published over the past 20 years. Despite technical improvements in diagnosis and surgery, we clearly have not made significant improvements in the treatment of PVE. The numbers of patients with prosthetic valves and therefore at risk for these infections continue to expand, underscoring the need to find more effective treatment.

The hypothesis of Lalani and colleagues was that early surgery within the index hospitalization would improve 1-year outcomes in patients with high-risk features. In keeping with their previously used statistical methods accounting for treatment selection bias, it appeared that early surgery did indeed improve early outcomes in patients in the highest quintile for propensity for surgery, and both early and 1-year outcomes in the fourth and fifth quintiles. These quintiles were assigned according to predictors of poor outcomes familiar from European Society of Cardiology and American Heart Association guidelines. However, after accounting for survivor bias, the startling conclusion was that early surgery did not improve early or 1-year outcomes in the overall cohort. These results are surprising and will need broader confirmation. As they stand, they represent an opportunity for us to challenge ourselves as clinicians to consider how we weigh the various host-, bacteriologic-, and prosthesis-related aspects of this complex clinical scenario.

The echocardiographic findings of prosthetic valve infections are often impressive. The anatomic distortions of abscesses, fistulae, and prosthetic dehiscence are dramatic and intuitively seem important to treat given that they are unlikely to improve with antibiotic therapy alone. Debriding the infection, removing the source of potential emboli and ongoing sepsis, and eliminating fistulous shunting or paravalvular leak would seem an appealing “root cause” solution.

Impressive as these visible anatomic and functional features of PVE may be, perhaps we overvalue them in our overall assessment of patient risk. Guidelines have consistently emphasized these features as indicators of a need for surgery. However, their presence does not guarantee poor immediate outcomes. It is important, as we discuss treatment options with the patient and care team, that we be nuanced in our assessment of the patient’s comorbidities, as well as the individual patient’s ability to tolerate some of the functional sequelae of prosthetic infection.

Fistulae, paravalvular leak, or transprosthetic leak create functional challenges to the heart via abnormal load and turbulence. In some situations, they are associated with heart failure and are harbingers of poor outcome, such as ventricular arrhythmia. For some patients, however, the functional impact of these lesions may be medically tolerable and/or non-progressive in the short term. By definition, patients with PVE have had a prior reason to undergo valve surgery. It is reasonable to anticipate that their ventricles are no strangers to volume or pressure overload and might be more capable of handling the incremental load imposed by these abnormalities by virtue of prior compensatory remodeling. This may provide some tolerance for valvular regurgitation that would not be true of the patient with de novo native valvular infection and regurgitation. In that sense, flow-related lesions in a patient with PVE may not carry the same risk for decompensation as in a patient with native valve infection, for whom we fear delaying surgery in the setting of acute, de novo regurgitation. It is interesting to observe that, in the International Collaboration on Endocarditis data, a diagnosis of heart failure that preceded endocarditis was not associated with short- or long-term mortality in multivariate analysis in this study. Volume lesions may present a spectrum of cause, severity, and prognostic implication influenced by individual response. The in-

Invited Commentary

Early Surgery for Prosthetic Valve Endocarditis
