Letters

Conflict of Interest Disclosures: Dr de Vries is employed at Maastricht University Medical Centre in Maastricht, the Netherlands, and in his role supervises 2 PhD students who are employed by F. Hoffmann-La Roche. The topics of the students’ PhDs are not related to this article nor did Dr de Vries receive any fees or reimbursement for his supervision.


In Reply We thank Dr de Vries for his letter and, overall, agree with his comments. Limitations of diagnostic codes exist in both studies. In the future, we believe that advancements in the design and structure of electronic health records will allow for more sophisticated algorithms to accurately identify exposures and outcomes. Such advances will be fundamental to the assessment of the risks and benefits of medications and clinical care processes, and ultimately, improvement in patient outcomes.

Benjamin Lazarus, MBBS, MPH
Morgan E. Grams, MD, PhD

Author Affiliations: Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (Lazarus, Grams); Division of Nephrology, Monash Medical Centre, Clayton, Australia (Lazarus); Department of Medicine, Johns Hopkins University, Baltimore, Maryland (Grams).

Corresponding Author: Morgan E. Grams, MD, PhD, Department of Medicine, Johns Hopkins University, 2024 E Monument St, Baltimore, MD 21205 (mgram2s@jhmi.edu).

Conflict of Interest Disclosures: None reported.

Association Between April 20 Cannabis Celebration and Fatal Crashes

To the Editor In our Research Letter examining crash risks on the “4/20” counterculture holiday, we identified drivers (rather than crashes) as the unit of analysis because one or more drivers may contribute to a crash. This approach also helps optimize interpretability for clinicians and policymakers around driving risks despite breaching strict assumptions for statistical independence. Furthermore, as Aydelotte and colleagues point out, similar results were obtained whether the driver (OR, 1.12; 95% CI, 1.05-1.19) or the crash (incidence rate ratio, 1.10; 95% CI, 1.02-1.20) was the unit of analysis. The observed difference in calculated absolute risks simply indicates the average crash involves more than one driver.

Aydelotte and colleagues also introduce some secondary analyses to test the robustness of our original results. In particular, limiting the control days to just April 13 or just April 27 also yielded similar estimates of relative risk (incidence rate ratios, 1.12 and 1.09, respectively). Naturally, each point estimate has a broad confidence interval, because halving the number of control days reduces statistical power. We believe the use of 2 flanking control days (not solitary control days) is preferable because the approach increases statistical power and also helps account for seasonal trends in crash risk.

Another new secondary analysis offered by Aydelotte and colleagues involves restricting the analysis to the years since 2010. However, the choice of this 7-year interval seems arbitrary and prone to selection bias. In particular, the secondary analysis excludes 2008 and 2009, the years in our study interval with the highest relative risk of fatal crashes on April 20. Furthermore, the observed relative risk of fatal crashes on April 20 may appear blunted if impaired driving on control days has become more common. This illustrates a larger point that absolute increases in crash risks are likely to reflect the prevalence of impaired driving. We hope that countermeasures designed to limit impaired driving will mitigate these risks.

Some countries, such as the Netherlands, decriminalized cannabis years ago yet have generally safer roads than the United States. To achieve similar success, effective safety measures should be deployed in the United States to reduce fatal traffic crashes on 4/20 and throughout the year.

John A. Staples, MD, MPH
Donald A. Redelmeier, MD, MSHSR

Author Affiliations: Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada (Staples); Centre for Clinical Epidemiology and Evaluation, Vancouver, British Columbia, Canada (Staples); Centre for Health Evaluation and Outcome Sciences, Vancouver, British Columbia, Canada (Staples); Department of Medicine, University of Toronto, Toronto, Ontario, Canada (Redelmeier); Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (Redelmeier).

Corresponding Author: John A. Staples, MD, MPH, Department of Medicine, University of British Columbia, 1081 Burrard St, Room 5910, Burrard Building, St Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada (john.a.staples@gmail.com).

Published Online: February 4, 2019. doi:10.1001/jamainternmed.2018.8094

Conflict of Interest Disclosures: Dr Stapes is supported by the Vancouver Coastal Health Research Institute and the Canadian Institutes of Health Research. Dr Redelmeier is supported by the Canadian Institutes of Health Research and the Canada Research Chair in Medical Decision Science.


CORRECTION

Error in Editorial Note: In the letter titled “Re-examining the Association Between ‘4/20’ and Fatal Crashes—Doobie-ous Data?” by Aydelotte et al,1 the Editorial Note

Revised by: Benjamin Lazarus, MBBS, MPH
March 2019 Volume 179, Number 3
© 2019 American Medical Association. All rights reserved.
Errors in Table Row Headings: In the Original Article by Bonica et al, titled “The Political Polarization of Physicians in the United States: An Analysis of Campaign Contributions to Federal Elections, 1991 Through 2012,” published in 2014, the row headings for “Pediatricsurgery” and “Pediatrics” were transposed in Table 2. This article has been corrected online.


Errors in Axis in Figure 2B: In the Original Investigation titled “Efficacy of Low-Dose Amitriptyline for Chronic Low Back Pain: A Randomized Clinical Trial,” published in November 2018, there was an error in the y-axis for Figure 2B. Where the label for mean disability previously ranged from 1 to 50, it now correctly ranges from 1 to 10. This article was corrected online.


Errors in Byline and Table and Omitted Conflict of Interest Disclosure: In the Research Letter titled “Volumetric Bone Density and Strength in Older Men With Low Testosterone: A Controlled Clinical Trial,” published in April 2017, there was an error in Table 1. The number of not anemic participants enrolled in the placebo arm was previously presented as 336, and those in the testosterone arm as 321. These numbers should have been reversed. This article was corrected online.


Error in Figure Legend: In the article titled “Effect of Testosterone Treatment on Volumetric Bone Density and Strength in Older Men With Low Testosterone: A Controlled Clinical Trial” by Snyder et al, the legend to Figure 3 incorrectly stated that the error bars represent standard deviations; they actually represent 95% confidence intervals. This article has been corrected online. This article was also corrected on April 3, 2017, to fix errors in the conflict of interest disclosures and author affiliations.


Error in Author Affiliation: In the Original Investigation titled “ω-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies” by Del Gobbo et al, published in JAMA Internal Medicine in 2016, the author affiliation for Mohammad Y. Yakoob, PhD, was incorrect. This error has been corrected online. This article was also corrected on October 3, 2016, to correct numerous errors in the Abstract and in reporting of analyses in the text and Supplement.