patients. They may also reflect known differences in communication style. These results do not exclude the possibility that patients who choose a female physician are different in other ways that make them more likely to be vaccinated. Limitations include inability to record vaccinations not reimbursed by Medicare. Understanding contributors to these vaccination differences may provide insights into improving vaccination efforts for influenza and other diseases, particularly among minority patients.

Dan P. Ly, MD, PhD, MPP

Author Affiliation: Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at University of California Los Angeles.

Accepted for Publication: February 4, 2021.

Published Online: April 12, 2021. doi:10.1001/jama.2021.0742

Corresponding Author: Dan P. Ly, MD, PhD, MPP, Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine at University of California Los Angeles, 1100 Glendon Ave, Ste 850, Los Angeles, CA 90024 (dply@mednet.ucla.edu).

Author Contributions: Dr Ly had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Ly.

Acquisition, analysis, or interpretation of data: Ly.

Drafting of the manuscript: Ly.

Critical revision of the manuscript for important intellectual content: Ly.

Statistical analysis: Ly.

Conflict of Interest Disclosures: None reported.

Additional Contributions: The author wishes to thank Pragya Kakani, BA, Grace McCormack, BA, and Daniel Prinz, BA, Harvard University, for helpful comments on the paper. None was compensated for their work.

Association Between Patients’ Perceptions of the Sexual Acceptability of Contraceptive Methods and Continued Use Over Time

Despite contraception's health and social benefits, many women report nonuse and discontinuation due to method dissatisfaction. Burgeoning research suggests that sexual acceptability influences contraceptive practices. In a large cohort of new-start contraceptive users, we examined the association of sexual function, satisfaction, and self-reported sexual acceptability with continued contraceptive use over time.

Methods | Data were obtained from the HER Salt Lake Contraceptive Initiative, a cohort study (Contraceptive Trial Registration Number NCT02734199) approved by the University of Utah institutional review board. All interested participants completed the informed consent process and the baseline survey in a private room. From March 2016 to March 2017, family planning clients received their desired contraceptive method at no cost and could switch or discontinue at any time. At baseline, 1, 3, and 6 months, participants completed sexual acceptability measures including the Female Sexual Function Index (FSFI-6) and the 20-item New Sexual Satisfaction Scale (NSSS). In follow-up surveys, they reported whether, and how, their contraceptive method had affected their sex life in the past month (from “a lot worse” to “a lot better”).

Investigators used multivariable logistic regression models to assess patterns of noncontinuation (switching or discontinuation) of enrollment method by 6 months. Independent variables were perceived sexual effect of method and changes in FSFI-6 and NSSS scores. Covariates included bleeding changes and frequency of adverse effects captured by the Menstrual Symptom Questionnaire, divided into physical (eg, breast tenderness) and mood-related (eg, depression) changes.

| Table 1. Sexuality Measures, Bleeding Changes, and Adverse Effects, 0 to 1 Month, Among New-Start Contraceptive Users (N = 2027) |
|-----------------|-----------------|
| Variable Mean (SD) |
| Effect of method on sex life, measured at 1 mo only, No. (%) |
Has made my sex life a lot worse	924 (45.6)
Has made my sex life a little worse	1361 (67.1)
Has had no effect on my sex life	774 (38.2)
Improved my sex life a little	529 (26.1)
Improved my sex life a lot	529 (26.1)
New sexual satisfaction scale, range 20-100	
Average baseline score	75.8 (16.6)
Average change in score from 0-1 mo	−2.1 (16.9)
Female Sexual Functioning Index-6, range 0-5	
Average baseline score	23.4 (4.8)
Average change in score from 0-1 mo	0.0 (5.3)
Changes in vaginal bleeding, measured at 1 mo only, No. (%)	
I’ve had no vaginal bleeding	297 (14.7)
I’ve had less bleeding than before	531 (26.2)
I’ve had no change from before	275 (13.6)
I’ve had more bleeding than before	924 (45.6)
Menstrual Symptoms Questionnaire: mood symptoms, range 0-5	
Average baseline score	1.7 (1.3)
Average change in score from 0-1 mo	0.30 (1.5)
Menstrual Symptoms Questionnaire: physical symptoms, range 0-5	
Average baseline score	1.2 (0.8)
Average change in score from 0-1 mo	0.25 (0.9)

* Mood adverse effects include feelings of depression or changes in mood. b Physical adverse effects include headaches, bloating, cramping, diarrhea or constipation, acne, weight gain or loss, and breast tenderness.
Controls included enrollment method and sociodemographic factors related to contraceptive practices (eg, age, relationship status, and education). Participants selected their race(s) and ethnicity from 7 listed categories, including a write-in option.

Results | Among 2027 eligible participants included in the analyses, 610 (30.1%) selected the levonorgestrel, 52 mg, intrauterine device (IUD), 454 (22.4%) the etonogestrel contraceptive implant, 367 (18.1%) oral contraceptive pills, 303 (15.0%) copper T380A IUD, 190 (9.4%) depo medroxyprogesterone acetate injection, and 103 (5.1%) vaginal ring. Less than 1% selected all other methods.

Participants reported no significant changes in FSFI-6 and NSSS scores (Table 1). However, at 1 month, 107 participants (52.8%) in total said their new method improved their sex life (529 [26.1%] “improved a lot”; 542 [26.7%] “improved a little”; 340 [16.8%] in total said their sex life worse (291 [14.4%] “a little worse”; 49 [2.4%] “a lot worse”); and 616 (30.4%) reported no sexual effect. Respondents whose method made their sex life “a lot worse” had 3.3 increased odds of noncontinuation by 6 months—more robustly than other adverse effects. Qualitative research on contraceptive sexual acceptability documents multiple domains that may help explain this effect, including sexual spontaneity, psychological disinhibition, and partner connection when feeling well protected against unwanted pregnancy.¹

Study strengths include its large sample size, prospective design, and use of multiple measures to assess sexual experiences. Limitations of this study include that the outcome measure was affected by the large proportion of participants who initiated IUDs or implants—methods that require more effort to discontinue than pills, rings, and injections. Though we included only participants with complete variables, sensitivity analyses indicated that results held when we included all participants.

These findings suggest that the sexual acceptability of a contraceptive method may have an important role in whether a patient continues to use it. Finding methods that favorably align with users’ sexual experiences may reduce noncontinuation and improve patients’ sexual lives and well-being.

Jenny A. Higgins, PhD, MPH
Renee D. Kramer, MPH, PhD
Bethany Everett, PhD
Kelsey Q. Wright, MPH
David K. Turok, MD, MPH
Jessica N. Sanders, PhD, MPH

Author Affiliations: Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison (Higgins); Collaborative for Reproductive Equity, University of Wisconsin-Madison, Medical Sciences Center 4245, Madison
(Higgins); Department of Gender and Women’s Studies, University of Wisconsin-Madison, Madison (Higgins, Kramer, Wright); Department of Population Health Sciences, University of Wisconsin-Madison, Madison (Kramer); Department of Sociology, University of Utah, Salt Lake City (Everett); Department of Sociology, University of Wisconsin-Madison, Madison (Wright); Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (Turok, Sanders).

Accepted for Publication: March 6, 2021.

Published Online: April 26, 2021. doi:10.1001/jamainternmed.2021.14339

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Higgins JA et al. JAMA Internal Medicine.

Corresponding Author: Jenny A. Higgins, PhD, MPH, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 1010 Mound St, Madison, WI 53715 (jenny.a.higgins@wisc.edu).

Author Contributions: All authors had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Higgins, Turok, Sanders.

Acquisition, analysis, or interpretation of data:

All authors.

Drafting of the manuscript: Higgins, Wright.

Critical revision of the manuscript for important intellectual content:

Higgins, Kramer, Everett, Turok, Sanders.

Statistical analysis:

Higgins, Kramer, Wright, Everett.

Obtained funding:

Higgins, Turok, Sanders.

Administrative, technical, or material support:

Higgins, Turok, Sanders.

Supervision:

Higgins, Turok, Sanders.

Conflict of Interest Disclosures: Dr Higgins reported grants from Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) (R01 HD095661) and grants from Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) (Population Research Infrastructure Grant (P2C HD047873)) during the conduct of the study. Dr Kramer and Ms Wright also receive support from, NICHD grant (P2C HD047873). Dr Turok reported grants from Eunice Kennedy Shriver National Institute of Child Health & Human Development Award number K24HD087436, nonfinancial support from Bayer pharmaceuticals They provided contraceptive devices for the study, nonfinancial support from Merck (they provided contraceptive devices for the study); nonfinancial support from Teva Pharmaceuticals (now Copper Surgical, they provided contraceptive devices for the study); grants from Anonymous Foundation, and grants from William and Flora Hewlett Foundation during the conduct of the study; fees from Sebela Pharmaceuticals The University of Utah Department of Obstetrics & Gynecology as a scientific advisor, fees from Medicines360. The University of Utah Department of Obstetrics & Gynecology has a contract to design and develop contraceptive devices for a clinical research site used in this study. He also reports fees from Merck for the University of Utah Department of Obstetrics & Gynecology to conduct investigator-initiated research of a eutrogenic contraceptive implant outside the submitted work. Dr Sanders reported grants from NICHD R01 HD095661 and grants from NICHD K02 HD085852 during the conduct of the study. No other disclosures were reported.

Funding/Support: This analysis was funded by an award (R01 HD095661) from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). Support for the HER Salt Lake Contraceptive Initiative comes from The Society of Family Planning Research Fund, the William and Flora Hewlett Foundation, and a large, anonymous family foundation. The following companies contributed contraceptive products: Bayer Women’s Healthcare, Merck & Co Inc, and Teva Pharmaceuticals. The authors also acknowledge support from two NICHD infrastructure grants (P2C HD047873 for the University of Wisconsin; the Building Interdisciplinary Researchers in Women’s Health K12 HD085852 for the University of Utah). Study data were collected and managed using REDCap (Research Electronic Data Capture) hosted at the University of Utah; this service is supported by Center for Clinical and Translational Sciences grant U1TR000105. Dr Turok is funded by an NICHD Midcareer Investigator Award (K24 HD087436).

Role of the Funder/Sponsor: The Eunice Kennedy Shriver National Institute of Child Health and Human Development had no role in the design and conduct of the study; collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: This content is solely the responsibility of the authors and does not necessarily represent the official view of any of the funding agencies or participating institutions, including the NIH, the University of Wisconsin-Madison, the University of Utah, and the Planned Parenthood Federation of America, Inc.

Additional Contributions: The authors thank clinic staff at the 4 recruiting family planning clinics for their critical work in making the study a success.

COMMENT & RESPONSE

Caution Against Overinterpreting Time-Restricted Eating Results

To the Editor We read the randomized clinical trial from Lowe et al1 with great interest. Investigators have compared timed-resticted eating (TRE, daily 16 hours fasting and 8-hour eating window) with consistent meal timing (CMT, 3 meals daily with snacking permitted) in adults with obesity. In the TRE group, noncaloric beverages were permitted outside the 8-hour eating window. The CMT group received meal coaching with daily text messages, “fruits and vegetables are healthy snacks,” “start your day with a healthy breakfast,” and “regular meals reduce snacking.” All the participants were instructed to measure daily weight, which were automatically uploaded from the study-provided weighing scales. The primary outcome was weight loss. Noncaloric beverages were allowed in fasting cycles in the TRE group.

Sucralose is one of the most common noncaloric sweetener used in the US. Consumption of sucralose is shown to increase acute insulin reaction to glucose and decrease insulin sensitivity.2 Also, noncaloric beverages are associated with weight gain and metabolic syndrome in the US.3,4 In theory, the insulin secretion from noncaloric beverages during the fasting cycle negates the metabolic benefit of fasting. It is possible that participants in the TRE group consumed noncaloric beverages, comparable in amount or more than the CMT group, resulting in insulin secretion in the fasting cycle. In the absence of absorbable nutrients in the fasting cycle, insulin availability decreases basal metabolic rate, leading to decrease in energy expenditure, as seen in patients with diabetes, insulin therapy or treatment with sulphonylureas increases insulin secretion and causes weight gain, whereas metformin therapy improves insulin resistance and does not cause weight gain.5