Association of Thyroid Dysfunction With Cognitive Function An Individual Participant Data Analysis

Nicolien A. van Vliet, MD; Diana van Heemst, PhD; Osvaldo P. Almeida, MD, PhD; Björn O. Åsvold, MD, PhD; Carole E. Aubert, MD; Jong Bin Bae, MD; Linda E. Barnes, RGN; Douglas C. Bauer, MD; Gerard J. Blauw, MD, PhD; Carol Brayne, MBBS, MD, PhD; Anne R. Cappola, MD, ScM; Graziano Ceresini, MD, PhD; Hanne C. Comijs, PhD; Jean-François Dartigues, MD, PhD; Jean-Marie Degryse, MD, PhD; Robin P. F. Dullaart, MD, PhD; Robin P. F. Dullaart, MD, PhD; Oscar L. Lopez, MD; Jim Parle, MBChB, MD; Robin P. Peeters, MD, PhD; Mary H. Samuels, MD; J. Wouter Jukema, MD, PhD; Ki Woong Kim, MD, PhD; Lewis H. Kuller, MD, DrPH; Anne R. Cappola, MD, ScM; Graziano Ceresini, MD, PhD; Hanne C. Comijs, PhD; Jean-Francois Dartigues, MD, PhD; Jean-Marie Degryse, MD, PhD; Robin P. F. Dullaart, MD, PhD; Marlise E. A. van Elzen, PhD; Luigi Ferrucci, MD, PhD; Howard A. Fink, MD, MPH; Leon Flicker, MB, BS, PhD; Hans J. Grabe, MD; Ji Won Han, MD, PhD; Catherine Helmer, MD, PhD; Martijn Huisman, PhD; M. Arfan Ikram, MD, PhD; Misa Imaizumi, MD, PhD; Renate T. de Jongh, MD, PhD; J. Wouter Jukema, MD, PhD; Ki Woong Kim, MD, PhD; Lewis H. Kuller, MD, DrPH; Oscar L. Lopez, MD; Simon P. Mooijaart, MD, PhD; Catherine Helmer, MD, PhD; Martijn Huisman, PhD; M. Arfan Ikram, MD, PhD; Misa Imaizumi, MD, PhD; Renate T. de Jongh, MD, PhD; J. Wouter Jukema, MD, PhD; Ki Woong Kim, MD, PhD; Lewis H. Kuller, MD, DrPH; Oscar L. Lopez, MD; Simon P. Mooijaart, MD, PhD; Rudi G. J. Westendorp, MD, PhD; Michiko Yamada, MD, PhD; Bu B. Yeap, MBBS, PhD; Nicolas Rodondi, MD, MAS; Jacobijn Gussekloo, MD, PhD; Stella Trompet, PhD; for the Thyroid Studies Collaboration

IMPORTANCE In clinical guidelines, overt and subclinical thyroid dysfunction are mentioned as causal and treatable factors for cognitive decline. However, the scientific literature on these associations shows inconsistent findings.

OBJECTIVE To assess cross-sectional and longitudinal associations of baseline thyroid dysfunction with cognitive function and dementia.

DESIGN, SETTING, AND PARTICIPANTS This multicohort individual participant data analysis assessed 114 267 person-years (median, 1.7-11.3 years) of follow-up for cognitive function and 525 222 person-years (median, 3.8-15.3 years) for dementia between 1989 and 2017. Analyses on cognitive function included 21 cohorts comprising 38 144 participants. Analyses on dementia included eight cohorts with a total of 2033 cases with dementia and 44 573 controls. Data analysis was performed from December 2016 to January 2021.

EXPOSURES Thyroid function was classified as overt hyperthyroidism, subclinical hyperthyroidism, euthyroidism, subclinical hypothyroidism, and overt hypothyroidism based on uniform thyrotropin cutoff values and study-specific free thyroxine values.

MAIN OUTCOMES AND MEASURES The primary outcome was global cognitive function, mostly measured using the Mini-Mental State Examination. Executive function, memory, and dementia were secondary outcomes. Analyses were first performed at study level using multivariable linear regression and multivariable Cox regression, respectively. The studies were combined with restricted maximum likelihood meta-analysis. To overcome the use of different scales, results were standardized to mean differences. For incident dementia, hazard ratios were calculated.

RESULTS Among 74 565 total participants, 66 567 (89.3%) participants had normal thyroid function, 577 (0.8%) had overt hyperthyroidism, 2557 (3.4%) had subclinical hyperthyroidism, 4167 (5.6%) had subclinical hypothyroidism, and 697 (0.9%) had overt hypothyroidism. The study-specific median age at baseline varied from 57 to 93 years; 42 847 (57.5%) participants were women. Thyroid dysfunction was not associated with global cognitive function; the largest differences were observed between overt hypothyroidism and euthyroidism—cross-sectionally (−0.06 standardized mean difference in score; 95% CI, −0.20 to 0.08; P = .40) and longitudinally (0.11 standardized mean difference higher decline per year; 95% CI, −0.01 to 0.23; P = .09). No consistent associations were observed between thyroid dysfunction and executive function, memory, or risk of dementia.

CONCLUSIONS AND RELEVANCE In this individual participant data analysis of more than 74 000 adults, subclinical hypothyroidism and hyperthyroidism were not associated with cognitive function, cognitive decline, or incident dementia. No rigorous conclusions can be drawn regarding the role of overt thyroid dysfunction in risk of dementia. These findings do not support the practice of screening for subclinical thyroid dysfunction in the context of cognitive decline in older adults as recommended in current guidelines.

Author Affiliations: Author affiliations are listed at the end of this article.

Group Information: The participating studies of the Thyroid Studies Collaboration are listed at the end of the article.

Corresponding Author: Nicolien A. van Vliet, MD, Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands (n.a.van_vliet@lumc.nl).
Thyroid dysfunction is considered a potentially reversible cause of cognitive decline; hence, thyroid function screening tests are described in guidelines as an essential component of the workup for the diagnosis of dementia.1-3 Thyroid dysfunction is frequently observed in individuals with suspected dementia.4 However, the outcomes of treatment of overt hypothyroidism and hyperthyroidism and subclinical hyperthyroidism on cognitive function are not fully clarified.5-7 For subclinical hypothyroidism, 4 of 5 recent randomized clinical trials and a meta-analysis on levothyroxine treatment did not find evidence for an improvement in cognitive function.8-13 Moreover, meta-analyses of observational studies have yielded inconsistent results on associations of subclinical and overt thyroid dysfunction with cognitive impairment and risk of dementia.14-17 An individual participant data analysis of cohort studies might help clarify the conflicting results of previous studies, as it allows for uniform definitions of thyroid dysfunction and it can assess the differential associations by age groups, sex, and thyroid medication in subgroup analyses.18 In the present study, we investigated cross-sectional and longitudinal associations of thyroid dysfunction with cognitive function and dementia in an individual participant data analysis of multiple cohorts.

Methods

Study Population
We first approached the coordinating center of the Thyroid Studies Collaboration, a collaborative project of 25 existing longitudinal studies with information on thyroid status.18 The Medical Ethics Committee of the Leiden University Medical Center waived the need for review owing to the retrospective nature of the study using only previously collected data; no individuals underwent interventions for the present study. Each participant gave informed consent to the original study they participated in, which was oral or written depending on the original study design and legislation at the time of data collection. All 15 Thyroid Studies Collaboration cohorts that had collected data on cognitive function or dementia joined the project. The study designs for all cohorts participating in the current study have been described previously in more detail.19-37 We approached 14 additional cohorts that were extracted from 4 recent meta-analyses on subclinical thyroid dysfunction and cognitive function or dementia.14-17 Six of these cohorts consented to collaborating and sharing data.34-39 Lastly, we included publicly available data of the National Health and Nutrition Examination Survey waves of 1999 to 2002 and 2011 to 2012, which simultaneously collected thyroid and cognitive function among many other parameters.40

Thyroid Function
Thyroid dysfunction was determined biochemically by measurements of thyrotropin and free thyroxine (FT4) concentrations in all cohorts. Cohort-specific cutoff values were used for FT4 levels (eTable 1 in the Supplement). In accordance with previous projects in the Thyroid Studies Collaboration, participants were classified as euthyroid if thyrotropin level was 0.45 to 4.49 mIU/L.18 Overt hyperthyroidism was defined as a thyrotropin level less than 0.45 mIU/L and FT4 level above the reference range. Subclinical hyperthyroidism was defined as a thyrotropin level less than 0.45 mIU/L and FT4 levels within the reference range, or only as thyrotropin level less than 0.45 mIU/L in absence of an FT4 measurement (n = 896 among 10 cohorts) because overt hyperthyroidism is rare.41 A combination of thyrotropin level of 4.50 to 20 mIU/L and FT4 levels within the reference range was defined as subclinical hypothyroidism. Individuals who had missing FT4 measurements with mildly elevated thyrotropin levels (4.50-20 mIU/L) were considered subclinically hypothyroid (n = 523 among 8 cohorts) because chances of overt hypothyroidism in this patient category are low.41 A thyrotropin level of 20 mIU/L or greater or thyrotropin level of 4.50 mIU/L or greater combined with FT4 levels below the reference range was defined as overt hypothyroidism.

Cognitive Function
The primary outcome was global cognitive function measured by Mini-Mental State Examination (MMSE), Modified Mini-Mental State (3MS), or Severe Cognitive Impairment Rating Scale.52-54 A difference of 1 point in MMSE score is considered the minimal clinically important difference in individuals without dementia.55 Executive function and memory were secondary outcomes. For executive function, various tests were used: Digit Symbol Substitution Test, Trail Making Test B, Letter Digit Substitution Test (LDST), Executive Interview 15, and Ruff Figural Fluency Test.46-50 The minimal clinically important difference for executive function was defined as a difference of 4 points in LDST.47 Memory was measured using either Rey’s Auditory Verbal Learning Test (also referred to as Word Learning Test or Verbal Learning Test), Digit Span Test, or Visual Association Test.52-55 No minimal clinically important difference for memory tests was found in the literature.

Dementia
Depending on the study design, dementia was diagnosed either in a clinical setting or at a research center. The diagnosis was, at least in part, based on clinical presentation. Studies in which dementia diagnosis was based only on a cutoff point for the
MMSE were excluded from this analysis because cognitive function tests are insufficient to diagnose dementia. Prevalence of dementia at baseline was available for 11 cohorts; 431 participants had a diagnosis of dementia at baseline, but only 78 of them were classified as noneuthyroid. Owing to the small number of participants with thyroid dysfunction at baseline, no cross-sectional analyses for dementia were performed.

Statistical Analyses

We used a 2-stage individual participant data analysis approach, which accommodates uniform definitions and analyses for each cohort while keeping complexity to a minimum. The first stage consisted of study-level analysis of thyroid dysfunction and cognitive function or dementia conducted on the original data sets with participant-level data. In the second stage, the effect estimates from the first stage were pooled using a random-effects model based on restricted maximum likelihood. Heterogeneity across studies was quantified using the I^2 statistic: less than 40% was considered low heterogeneity; 40% to 75%, moderate heterogeneity; and greater than 75%, high heterogeneity.

For both the cross-sectional and longitudinal analyses between thyroid dysfunction and cognitive function, we used multivariable linear regression models. To facilitate combination of different scales, the results were transformed to standardized mean differences. In the prospective analysis of cognitive decline, we calculated the difference between the last available measurement of cognitive function and baseline cognitive function. The difference was divided by the follow-up time in years to obtain an annual decline, irrespective of duration of follow-up. The annual decline was subsequently standardized, resulting in a standardized mean difference in annual change in cognitive function allowing comparison of changes over time.

The risk of developing dementia during follow-up was assessed using Cox regression models. In these analyses, participants with dementia at baseline were excluded. For studies without precise registration of the date of dementia diagnosis, it was assumed that dementia developed halfway between the registration date and the last date that absence of dementia was ascertained.

Thyroid dysfunction (overt hyperthyroidism, subclinical hyperthyroidism, subclinical hypothyroidism, and overt hypothyroidism) was included as a categorical variable with the euthyroid group serving as reference. All analyses were adjusted for age and sex. The longitudinal analyses of cognitive decline were adjusted for baseline cognitive function. Precoded subgroup analyses were performed by stratification and interaction analysis for sex and for age younger or older than 75 years. Additional analyses were performed with adjustment for educational attainment, though this variable was not available in all cohorts. In sensitivity analyses, participants with missing FT_4 measurements in the subclinical hyperthyroid and subclinical hypothyroid groups were excluded, as were those who used antithyroid medication or thyroid hormone replacement therapy at baseline. Furthermore, we assessed robustness of the associations by pooling the estimates using fixed-effect models and by excluding studies with strata of fewer than 10 participants. To assess whether effects were dependent on degree of disruption of thyrotropin, analyses were repeated with thyrotropin categories of less than 0.10 mIU/L, 0.10 to 0.44 mIU/L, 4.5 to 6.9 mIU/L, 7.0 to 10 mIU/L, and greater than 10 mIU/L, in which participants with thyrotropin between 0.45 and 4.49 mIU/L served as reference. Lastly, instead of using biochemical cutoff points, thyrotropin and FT_4 were analyzed continuously across the full range with cognitive function. Thyrotropin was transformed using the natural logarithm; for both natural log-transformed thyrotropin and FT_4, models were constructed per standard deviation. Continuous models were performed minimally adjusted by age and sex and with additional adjustment for educational attainment. For sensitivity purposes, the analyses were also conducted excluding the participants who used antithyroid medication or thyroid hormone replacement therapy at baseline. Cohorts with greater than 10% missing measurements for FT_4 were excluded for the continuous analyses on FT_4. All P values were 2-tailed; statistical significance was set at $P < .05$.

Study-level analyses were performed using SPSS Statistics, version 25 (IBM). Effect estimates were pooled and summarized in forest plots using R, version 3.6.1 and metafor package (R Foundation for Statistical Computing). This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Results

Population Characteristics

Individual participant data on thyroid function and cognitive function and/or dementia were provided by 23 cohorts comprising 74 565 participants. At baseline, 66 567 (89.3%) participants were biochemically classified as euthyroid, 577 (0.8%) as overtly hyperthyroid, 2557 (3.4%) as subclinically hyperthyroid, 4167 (5.6%) as subclinically hypothyroid, and 697 (0.9%) as overtly hypothyroid (eTable 1 in the Supplement). The study-specific median age at baseline varied from 57 to 93 years; 42 847 (57.5%) participants were women.

A total of 38 144 participants from 21 cohorts provided data on a measure of cognitive function (Table). The median age varied from 58 to 93 years, and 18 089 (47.4%) participants were women. Follow-up for cognitive decline was available for 14 cohorts, with a median follow-up duration varying from 1.7 to 11.3 years, accumulating 114 267 person-years.

Eight cohorts provided follow-up for dementia incidence on 46 606 participants (eTable 2 in the Supplement). Among these participants, 28 820 (61.8%) were women, and the median age at baseline was between 57 and 85 years. During follow-up, 2033 (4.4%) cases of incident dementia were identified. Median follow-up duration ranged from 3.8 to 15.3 years, accumulating 525 222 person-years.

Thyroid Dysfunction and Global Cognitive Function

Cross-sectionally, thyroid dysfunction was not associated with global cognitive function among 18 cohorts (Figure 1; eFigure 1 in the Supplement). The largest observed difference was...
<table>
<thead>
<tr>
<th>Source</th>
<th>Location</th>
<th>Population description</th>
<th>Baseline, y</th>
<th>No. (%)</th>
<th>Age, median (range), y</th>
<th>Men</th>
<th>Women</th>
<th>Euthyroid(^a) Thyroid medication users</th>
<th>Cognitive function Scales</th>
<th>Score, (n) mean (SD)</th>
<th>Follow-up duration, y median (range), y</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELFRAIL cohort study</td>
<td>Belgium</td>
<td>Adults aged ≥80 y</td>
<td>2008-2009</td>
<td>523</td>
<td>84 (80-102)</td>
<td>193 (36.9)</td>
<td>330 (63.1)</td>
<td>453 (86.6) 50 (9.6)(^a)</td>
<td>MMSE</td>
<td>26 (4.0)</td>
<td>1.7 (0.5-2.3)</td>
</tr>
<tr>
<td>BETS</td>
<td>England</td>
<td>Community-dwelling adults aged ≥65 y</td>
<td>2002-2004</td>
<td>5845</td>
<td>72 (65-98)</td>
<td>2873 (49.2)</td>
<td>2972 (50.8)</td>
<td>5266 (90.1) 0 (0)</td>
<td>MMSE</td>
<td>28 (2.2)</td>
<td>0</td>
</tr>
<tr>
<td>CFAS</td>
<td>England and Wales</td>
<td>Adults aged ≥64 y</td>
<td>1991-1992</td>
<td>1015</td>
<td>73 (64-94)</td>
<td>497 (49.0)</td>
<td>518 (51.0)</td>
<td>906 (89.3) NA</td>
<td>MMSE</td>
<td>28 (2.0)</td>
<td>2.0 (1.9-2.6)</td>
</tr>
<tr>
<td>InCHIANTI Study</td>
<td>Italy</td>
<td>Community-dwelling adults</td>
<td>1998-2000</td>
<td>1187</td>
<td>71 (21-102)</td>
<td>521 (41.9)</td>
<td>666 (56.1)</td>
<td>1044 (88.0) 33 (2.8)</td>
<td>MMSE</td>
<td>25 (4.8)</td>
<td>9.0 (2.8-10.0)</td>
</tr>
<tr>
<td>LASA</td>
<td>The Netherlands</td>
<td>Adults aged ≥65 y</td>
<td>1995-1997</td>
<td>1266</td>
<td>75 (65-89)</td>
<td>616 (48.7)</td>
<td>650 (51.3)</td>
<td>1093 (86.3) 26 (2.1)</td>
<td>MMSE, WLT</td>
<td>27 (3.1)</td>
<td>9.9 (2.3-20.8)</td>
</tr>
<tr>
<td>Leiden 85-plus Study</td>
<td>The Netherlands</td>
<td>Adults aged 85 y</td>
<td>1997-1999</td>
<td>557</td>
<td>85</td>
<td>188 (33.8)</td>
<td>369 (66.2)</td>
<td>456 (81.9) 20 (3.6)</td>
<td>MMSE, LDST, WLT</td>
<td>24 (6.3)</td>
<td>5.0 (1.0-5.0)</td>
</tr>
<tr>
<td>LLS</td>
<td>The Netherlands</td>
<td>Long-lived siblings</td>
<td>2002-2005</td>
<td>776</td>
<td>93 (89-103)</td>
<td>308 (39.7)</td>
<td>468 (60.3)</td>
<td>652 (84.0) NA</td>
<td>MMSE</td>
<td>24 (5.1)</td>
<td>0</td>
</tr>
<tr>
<td>Paquid study</td>
<td>France</td>
<td>Community-dwelling adults aged ≥65 y</td>
<td>1989-1990</td>
<td>407</td>
<td>75 (66-94)</td>
<td>173 (42.5)</td>
<td>234 (57.5)</td>
<td>359 (88.2) 6 (1.5)(^a)</td>
<td>MMSE, DSST, VLT</td>
<td>26 (3.5)</td>
<td>11.3 (1.5-27.0)</td>
</tr>
<tr>
<td>PREVEND Study</td>
<td>The Netherlands</td>
<td>Adults</td>
<td>2003-2006</td>
<td>864</td>
<td>58 (35-82)</td>
<td>493 (57.1)</td>
<td>371 (42.9)</td>
<td>777 (89.9) NA</td>
<td>RFFT, VAT</td>
<td>64 (25.0)</td>
<td>5.2 (0.8-7.8)</td>
</tr>
<tr>
<td>PROSPER</td>
<td>The Netherlands, Ireland, Scotland</td>
<td>Community-dwelling adults at high cardiovascular risk</td>
<td>1998-1999</td>
<td>5775</td>
<td>75 (69-83)</td>
<td>2791 (48.3)</td>
<td>2984 (51.7)</td>
<td>5063 (87.7) 256 (4.4)</td>
<td>MMSE, LDST, WLT</td>
<td>28 (1.5)</td>
<td>3.3 (0.8-4.0)</td>
</tr>
<tr>
<td>Rotterdam Study</td>
<td>The Netherlands</td>
<td>Adults aged ≥75 y</td>
<td>1989-1992</td>
<td>1875</td>
<td>69 (55-93)</td>
<td>720 (38.4)</td>
<td>1155 (61.6)</td>
<td>1611 (85.9) 46 (2.5)(^a)</td>
<td>MMSE</td>
<td>28 (1.7)</td>
<td>10.8 (1.5-21.7)</td>
</tr>
<tr>
<td>SHIP</td>
<td>Germany</td>
<td>Adults</td>
<td>2002-2006</td>
<td>1329</td>
<td>69 (60-88)</td>
<td>682 (51.3)</td>
<td>647 (48.7)</td>
<td>1008 (75.8) 190 (14.3)</td>
<td>MMSE</td>
<td>28 (3.2)</td>
<td>5.6 (4.3-8.8)</td>
</tr>
<tr>
<td>CHS</td>
<td>US</td>
<td>Community-dwelling adults with Medicare eligibility</td>
<td>1994-1998</td>
<td>3991</td>
<td>74 (64-98)</td>
<td>1635 (41.0)</td>
<td>2356 (59.0)</td>
<td>3253 (81.5) 401 (10.0)(^a)</td>
<td>3MS, DSST</td>
<td>90 (9.9)</td>
<td>5.9 (0.9-7.0)</td>
</tr>
<tr>
<td>HABC Study</td>
<td>US</td>
<td>Community-dwelling adults aged 70-79 y with Medicare eligibility</td>
<td>1999-2000</td>
<td>2488</td>
<td>75 (71-82)</td>
<td>1208 (48.6)</td>
<td>1280 (51.4)</td>
<td>2076 (83.4) 251 (10.1)</td>
<td>3MS, EXIT 15</td>
<td>90 (8.9)</td>
<td>8.0 (2.0-13.0)</td>
</tr>
<tr>
<td>MMC</td>
<td>Mexico</td>
<td>Geriatric outpatients with and without dementia</td>
<td>2004</td>
<td>156</td>
<td>79 (58-98)</td>
<td>49 (31.4)</td>
<td>107 (68.6)</td>
<td>109 (69.9) 12 (7.7)</td>
<td>MMSE</td>
<td>15 (6.5)</td>
<td>0</td>
</tr>
<tr>
<td>MrOS Study</td>
<td>US</td>
<td>Community-dwelling men aged ≥65 y</td>
<td>2000-2002</td>
<td>1600</td>
<td>73 (65-99)</td>
<td>1600 (100)</td>
<td>1409 (88.1)</td>
<td>122 (7.6)(^a)</td>
<td>3MS, TMT</td>
<td>93 (6.4)</td>
<td>4.6 (3.5-5.9)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Source</th>
<th>Location</th>
<th>Population description</th>
<th>Baseline, y</th>
<th>No.</th>
<th>Age, median (range), y</th>
<th>No. (%)</th>
<th>Cognitive function</th>
<th>Follow-up duration, y</th>
<th>Scales</th>
<th>Score, mean (SD)</th>
<th>Follow-up duration, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHANES 1999-2002</td>
<td>US</td>
<td>Adults</td>
<td>1999-2002</td>
<td>853</td>
<td>70 (60-85)</td>
<td>416 (48.8)</td>
<td>DSST</td>
<td>751 (88.0) 91 (10.7)</td>
<td>42 (18.3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NHANES 2011-2012</td>
<td>US</td>
<td>Adults</td>
<td>2011-2012</td>
<td>434</td>
<td>68 (60-80)</td>
<td>220 (50.7)</td>
<td>DSST, WLT</td>
<td>405 (93.3) 57 (13.1)</td>
<td>45 (17.6)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>HIMS Australia</td>
<td></td>
<td>Men aged ≥65 y</td>
<td>2001-2004</td>
<td>3168</td>
<td>76 (71-89)</td>
<td>3168 (100)</td>
<td>MMSE</td>
<td>2897 (91.4) 112 (3.5)</td>
<td>28 (1.3)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td></td>
</tr>
<tr>
<td>KLOSCAD Republic of Korea</td>
<td>Adults aged ≥60 y</td>
<td>2010-2017</td>
<td>3854</td>
<td>70 (61-109)</td>
<td>1702 (44.2)</td>
<td>SCIRS, TMT, DST</td>
<td>29 (1.7) 3.7 (0.8-7.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KLOSHA Republic of Korea</td>
<td>Adults aged ≥65 y</td>
<td>2010-2012</td>
<td>181</td>
<td>75 (70-96)</td>
<td>2 (1.1)</td>
<td>MMSE, TMT, DST</td>
<td>154 (85.1) 24 (3.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>21 Cohorts</td>
<td>1989-2017</td>
<td>38144</td>
<td>74 (21-109)</td>
<td>20055 (52.6)</td>
<td>VAT</td>
<td>18 089 (47.4) 33 218 (87.1) 1673 (5.3)</td>
<td>5.4 (0.5-27.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BETS, Birmingham Elderly Thyroid Study; CFAS, Cognitive Function and Aging Study; CHS, Cardiovascular Health Study; DSST, Digit Symbol Substitution Test; DST, Digit Span Test; EXIT 15, 15-item Executive Interview; HABC, Health, Aging and Body Composition; HIMS, Health in Men Study; InCHIANTI, Invecchiare in Chianti Study; KLOSCAD, Korean Longitudinal Study on Cognitive Aging and Dementia; KLOSHA, Korean Longitudinal Study on Health and Aging; LASA, Longitudinal Aging Study Amsterdam; LDT, Letter Digit Substitution Test; LL5, Leiden Longevity Study; MCMC, Mexican Memory Clinic; MMSE, Mini-Mental State Examination; Moools, Osteoporotic Fractures in Men Study; NA, not available; NHANES, National Health and Nutrition Examination Survey; Paquid, Personnes Âgées QUID; PREVEND, Prevention of Renal and Vascular End-stage Disease; PROSPER, Progressive Study of Pravastatin in the Elderly at Risk; RFFT, Ruff Figural Fluency Test; SCIRS, Severe Cognitive Impairment Rating Scale; SHIP, Study of Health in Pomerania; 3MS, Modified Mini-Mental State Examination; TMT, Trail Making Test; VAT, Visual Association Test; VLT, Verbal Learning Test; WLT, Word Learning Test.

* We used a common definition for biochemical euthyroidism of thyrotropin level of 0.45 to 4.49 mIU/L, resulting in different numbers from previous reports.

** Test scores are shown for global cognitive function tests. If no global cognitive function test scores were provided, executive function test scores are shown.

*Follow-up in years for participants who had a follow-up measurement for cognitive function.

*Data on baseline medication use (thyroid replacement therapy, antithyroid drugs) were unavailable for 2 participants of the BELFRAIL Study, 3 participants of the CHS, 64 participants of the MrOS Study, 12 participants of the PAQUID Study, 1 participant of the Rotterdam Study.
A 0.06 standardized mean difference (95% CI, −0.20 to 0.08; \(P = .40 \)) global cognitive function for overt hypothyroidism compared with euthyroidism, which could be interpreted as an approximately 0.1 point lower MMSE score based on the SD for the 2 largest cohorts included. No statistically significant association was observed between thyroid dysfunction at baseline and annual change in global cognitive function during follow-up among 13 cohorts (Figure 2). Participants with overt hypothyroidism had 0.11 standardized mean difference (95% CI, −0.01 to 0.23; \(P = .09 \)) higher decline per year in global cognitive function than participants who were euthyroid, which translates to approximately 0.1 point on the MMSE scale faster decline per year based on the SD in the largest cohort for this analysis. Additional adjustment for educational attainment did not materially change the results (eFigure 2 in the Supplement). Stratification by age and sex did not show any differential effects for global cognitive function (eTable 3 in the Supplement). No statistically significant associations were found when individuals were categorized by severity of thyrotropin abnormality (eFigure 3 in the Supplement). Reanalyzing the data with a fixed-effects model or without strata with fewer than 10 participants did not yield different results (eTable 4 in the Supplement). Leaving out participants with missing FT4 measurements or those using antithyroid medi-
Association of Thyroid Dysfunction With Cognitive Function

Original Investigation Research

When participants using thyroid medication were removed. No association was found when individuals were categorized by severity of thyrotropin abnormality or when thyrotropin level was analyzed continuously (eFigure 3 and eTable 5 in the Supplement). Continuous analysis of FT4 levels showed a positive association with executive function (0.019 higher standardized mean difference per SD; 95% CI, 0.002 to 0.036; P = .03), which was attenuated when participants using thyroid medication were left out. Heterogeneity across studies was low for the cross-sectional main analyses (I² = 0%-40%), while heterogeneity was low to moderate for the longitudinal and sensitivity analyses (I² = 0%-70%).

Thyroid Dysfunction and Executive Function and Memory

No negative association was observed cross-sectionally between thyroid dysfunction and executive function or memory among 11 and 8 cohorts, respectively (Figure 1; eFigures 4 and 5 in the Supplement). Participants with overt hyperthyroidism had a 0.20 standardized mean difference (95% CI, 0.07 to 0.33; P = .002) higher executive function score compared with participants who were euthyroid; transformed, this would account for 1.6 more correct substitutions within 60 seconds for the LDST based on the largest cohort in this analysis. In both executive function and memory, participants with subclinical hypothyroidism performed better than participants who were euthyroid (executive function: 0.07 standardized mean difference; 95% CI, 0.01 to 0.13; P = .03; memory: 0.08 standardized mean difference; 95% CI, 0.01 to 0.15; P = .03). Longitudinally, no association was found between thyroid dysfunction at baseline and decline in executive function among 7 cohorts or memory among 6 cohorts; all differences were smaller than 0.1 standardized mean difference (Figure 2). Additional adjustment for educational attainment did not materially change the results (eFigure 2 in the Supplement). No statistically significant interaction with sex or age was present (P > .05 for all; supporting data in eTable 3 in the Supplement). Using a fixed-effects model or excluding strata with fewer than 10 participants did not change the results for executive function or memory (eTable 4 in the Supplement). The association of subclinical hypothyroidism and better executive function was attenuated when participants with missing FT4 measurements were left out, while the association with memory was unchanged. The positive association between overt hyperthyroidism and executive function disappeared when participants using thyroid medication were removed. No association was found when individuals were categorized by severity of thyrotropin abnormality or when thyrotropin level was analyzed continuously (eFigure 3 and eTable 5 in the Supplement). Continuous analysis of FT4 levels showed a positive association with executive function (0.019 higher standardized mean difference per SD; 95% CI, 0.002 to 0.036; P = .03), which was attenuated when participants using thyroid medication were left out. Heterogeneity across studies was low for the cross-sectional main analyses (I² = 0%-40%), while heterogeneity was low to moderate for the longitudinal and sensitivity analyses (I² = 0%-70%) and up to high heterogeneity in the sensitivity analyses (I² ≤ 73%).

Thyroid Dysfunction and Dementia

Cross-sectional analysis of thyroid dysfunction and dementia was unfeasible owing to few participants who were not euthyroid with dementia at baseline (78 participants among 11 cohorts). In longitudinal analyses among 12 cohorts, no association was found between thyroid dysfunction and incident dementia (Figure 3; eFigure 6 in the Supplement). The hazard ratio of dementia ranged from 1.54 (95% CI, 0.76 to 3.10) for overt hyperthyroidism to 0.79 (95% CI, 0.48 to 1.28) for overt hypothyroidism. Continuous analysis of thyrotropin and FT4 levels also did not provide evidence for an association; hazard ratio, 0.96 per SD increase of natural log-transformed thyrotropin (95% CI, 0.91 to 1.02; P = .16); hazard ratio, 1.05 per SD increase of FT4 (95% CI, 0.98 to 1.13; P = .16). Heterogeneity between studies was low (I² = 0%-40%).

Discussion

In this individual participant data analysis of 74 565 participants from 23 cohorts, there was no association between subclinical thyroid dysfunction and cognitive function, cognitive decline, or the onset of dementia. Owing to uncertainty of the results for overt hypothyroidism and hyperthyroidism, no rigorous conclusions can be drawn regarding the association between overt thyroid dysfunction and cognitive decline and dementia.

While prior study-level meta-analyses also reported no association between subclinical hypothyroidism and cognitive function, cognitive decline, or dementia, they were limited by heterogeneity in definitions of thyroid dysfunction and choices of covariates in the statistical models.14-17 Because we performed an individual participant data analysis, we could standardize definitions of thyroid function categories and of cog-
ritive function and cognitive decline and standardize the statistical models. By addressing these limitations and reaching the same results, the present study provides the strongest observational evidence to date suggesting that subclinical hypothyroidism is not associated with cognitive function or cognitive decline.

Various studies and 2 meta-analyses did show an association between subclinical or overt hyperthyroidism or low thyrotropin level within the reference range and a higher risk of dementia.\(^\text{14,17,20,26,59-61}\) Although our findings for subclinical and overt hyperthyroidism and dementia did not reach statistical significance, they are directionally consistent with the literature. Despite combining 8 cohorts comprising more than 45,000 participants, the number of individuals with subclinical and overt hyperthyroidism and the number of individuals who developed dementia during follow-up are limited. Therefore, we cannot exclude a higher risk of dementia in individuals with hyperthyroidism. In addition, individuals with overt hyperthyroidism had a slightly higher rate of cognitive decline, though not statistically significant. Considering the existing literature and the other results in the present study, the observed cross-sectional association between overt hyperthyroidism and better executive function was most likely a chance finding. Moreover, the observed difference in executive function was less than half the minimal clinically important difference, making it a clinically insignificant finding regardless of the P value.

Higher vulnerability among subgroups has been proposed; younger adults and women might be more susceptible to cognitive dysregulation associated with thyroid dysfunction.\(^\text{16,62}\) Moreover, cognitive decline might only be present in individuals with more extreme values of thyrotropin,\(^\text{17,63}\) or variation in FT\(_4\) instead of thyrotropin levels could be associated with dementia risk.\(^\text{21}\) In the present multicohort study, we did not observe differential associations for participants younger and older than 75 years or for men and women, nor any association with variation in FT\(_4\) level or more extreme values of thyrotropin. Therefore, subgroup associations reported in prior studies might not be generalizable outside the original cohorts.

As mentioned before, all but 1 randomized clinical trial on levothyroxine treatment for subclinical hypothyroidism also did not provide evidence for improvement of cognitive function.\(^\text{8-12}\) Moreover, both undertreatment and overtreatment with levothyroxine are common, estimated at 27% and 14%, respectively.\(^\text{64}\) Overtreatment is associated with increased risk of atrial fibrillation and atherosclerosis\(^\text{65,66}\) and, via cerebrovascular damage, might be associated with increased risk of cognitive decline. Therefore, screening for subclinical thyroid dysfunction in older adults to prevent cognitive impairment and dementia does not appear to be effective.

The current individual participant data analysis has several strengths. The use of individual participant data from cohorts from all over the globe enhances generalization while allowing standardized definitions and relevant subgroup analyses. All but 5 of the included studies had a median age of 70 years or older, which is essential but often not the case in research concerning outcomes that are most relevant for older adults.\(^\text{57}\) The present study approached cognition comprehensively; we assessed multiple domains of cognitive function, cross-sectionally and longitudinally, and incidence of dementia.

Limitations

Some limitations need to be acknowledged. Thyroid function categorization was based on biochemical characteristics. For 20% to 30% of the participants who were categorized as subclinical hypothyroid or hyperthyroid, we could not confirm subclinical thyroid dysfunction owing to the absence of FT\(_4\) measurement. This may have led to some misclassification, yet sensitivity analyses excluding those participants with missing FT\(_4\) data yielded similar results. We could not include educational attainment in our main analysis because 5 out of 18 cohorts did not collect these data. Even though the sensitivity analyses with adjustment for educational attainment yielded similar results as the main analysis, education is a possible confounder that could not be accounted for. For most cohorts, only 1 measurement of thyroid function was available, which is why only baseline thyroid function was used in the present individual participant data analysis. This study could therefore not capture any changes in cognitive function that might occur at the transition of one thyroid status to another. Moreover, for the vast majority of study participants, a maximum of 2 measurements of cognitive function was available, which precluded advanced modeling of change over time including nonlinear trajectories. In addition, the interpretation of longitudinal studies of cognitive function can be complicated by practice effects.\(^\text{68}\) Standardization of change over time might not fully alleviate this; hence, residual practice effects may still be present. Furthermore, because dementia is clinically difficult to diagnose, some misclassification could have occurred, which may have led to an underestimation of the association. In addition, the number of incident dementia cases in the included cohort studies was low; we therefore cannot rule out a clinically relevant association between thyroid dysfunction and risk of dementia. The heterogeneity between studies may have been increased by the use of different cognitive function tests, different durations of follow-up, differences in age and sex distribution, different lifestyles across continents, and different inclusion criteria. As heterogeneity was expected a priori, we performed all meta-analyses with random effects. Nonetheless, results for fixed-effects meta-analyses were not materially different. The observed heterogeneity was larger in the longitudinal analyses heterogeneity ($I^2 = 0%-70\%$) than in the cross-sectional analyses ($I^2 = 0%-40\%$), likely owing to the additional variation of follow-up duration. We hypothesize that the minor differences in I^2 estimates between different cross-sectional analyses are attributable to differences in sample size per exposure. Because individuals with thyroid disease generally receive medical treatment, we cannot address the question of whether long-term untreated hyperthyroidism or hypothyroidism is associated with cognitive function and dementia risk. Moreover, these results only apply to objectifiable cognitive decline, which is not synonymous with the more subjective cognitive complaints.
Conclusions
In this individual participant data analysis combining the in-
dividual participant data of 74,565 participants from 23 co-
orts, subclinical thyroid dysfunction was not associated with
cognitive function, cognitive decline, or risk of dementia.
Hence, it is unlikely that treatment for otherwise undetected
subclinical thyroid dysfunction would improve cognitive func-
tion. Moreover, the chance of overtreatment is considerable,
which increases the risk of atrial fibrillation, atherosclerosis,
and cerebral infarction and thereby might increase the risk of
cognitive decline. Whether treatment of overt hypothyroid-
ism or hyperthyroidism is associated with cognitive decline and
risk of dementia remains uncertain. Existing clinical guide-
lines that prescribe screening of subclinical thyroid dysfunc-
tion for prevention of cognitive decline or dementia should
therefore be revisited.

ARTICLE INFORMATION
Accepted for Publication: July 15, 2021.
Published Online: September 7, 2021.

Open Access: This is an open access article
distributed under the terms of the CC-BY License.
© 2021 van Vliet NA et al. JAMA Internal Medicine.

Author Affiliations:
Department of Internal Medicine, Section of Gerontology and Geriatrics,
Leiden University Medical Center, Leiden, the Netherlands (van Vliet; van Heemst; Blauw;
Moutzouri, Rodondi); Center for Clinical Sciences, University of Birmingham,
Birmingham, United Kingdom (Parle); Department of Internal Medicine, Erasmus MC, Rotterdam, the
Netherlands (Peeters); DZHK (German Centre for Cardiovascular Research),
partner site, Greifswald, Greifswald, Germany (Nauck); DZHK (German Centre for Cardiovascular Research),
Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom (Parle); Department of
Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (Peeters); Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine, Oregon Health & Science University, Portland (Samuels); Department of Radiology, University Medicine Greifswald, Greifswald, Germany (Schmidt); Department of Neurology, University Medicine Greifswald, Greifswald, Germany (Schminke); Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands (Slagboom); Max Planck Institute for Biology of Ageing, Cologne, Germany (Slagboom); Namsos Hospital, Nord-Trøndelag Hospital Trust, Namsos, Norway (Stordal); Department of Mental Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway (Stordal); Institute for Clinical Sciences, University of Birmingham, Birmingham, United Kingdom (Parle); Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (Peeters); Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine, Oregon Health & Science University, Portland (Samuels); Department of Radiology, University Medicine Greifswald, Greifswald, Germany (Schmidt); Department of Neurology, University Medicine Greifswald, Greifswald, Germany (Schminke); Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands (Slagboom); Max Planck Institute for Biology of Ageing, Cologne, Germany (Slagboom); Namsos Hospital, Nord-Trøndelag Hospital Trust, Namsos, Norway (Stordal); Department of Mental Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway (Stordal); Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany (Völzke); Department of Public Health, Section of Epidemiology, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark (Westendorp); Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Western Australia, Australia (Yeap); Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands (Gussekloo).

Author Contributions: Drs van Vliet and Trompet had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: van Vliet, Blauw, Comjis, Dartigues, den Elzen, Imaizumi, Mooijaart, Stordal, Westendorp, Gussekloo, Trompet.

Acquisition, analysis, or interpretation of data: van Vliet, van Heemst, Almeida, Åsvold, Aubert, Bae, Barnes, Bauer, Blauw, Brayne, Cappola, Ceresini, Dartigues, Degryse, Dullaart, van Eersel, den Elzen, Ferrucci, Fink, Flier, Grabe, van Helmer, Huisman, Ikram, Imaizumi, de Jongh, Jukema, Kim, Kuller, Lopez, Mooijaart, Moon, Moutzouri, Nauck, Parle, Peeters, Samuels, Schmidt, Schminke, Slagboom, Völzke, Westendorp, Yamada, Yeap, Rodondi, Trompet.

Drafting of the manuscript: van Vliet, Barnes, Comjis, Dullaart, Mooijaart.

Critical revision of the manuscript for important intellectual content: van Vliet, van Heemst, Almeida, Åsvold, Aubert, Bae, Bauer, Blauw, Brayne, Cappola, Ceresini, Dartigues, Degryse, van Eersel, den Elzen, Ferrucci, Fink, Flier, Grabe, van Helmer, Huisman, Ikram, Imaizumi, de Jongh, Jukema, Kim, Kuller, Lopez, Mooijaart, Moon, Moutzouri, Nauck,

jamainternalmedicine.com

Conflict of Interest Disclosures: Dr van Vliet reported grants from European Commission Horizon 2020 program during the conduct of the study. Dr van Heemst reported grants from European Commission during the conduct of the study; grants from Velux Stiftung (grant No. 1156) outside the submitted work. Dr Almeida reported grants from DFG, National Health and Medical Research Council of Australia during the conduct of the study and outside the submitted work. Dr Brayne reported grants from Medical Research Council during the conduct of the study. Dr Degryse reported grants from Fondation Louvain during the conduct of the study. Dr Ficker reported grants from the University of Western Australia from Australian National Health and Medical Research Council during the conduct of the study. Dr Grabe has received travel grants and speakers honoraria from Fresenius Medical Care, Neuroaxpharm, Servier, and Janssen Cilag as well as research funding from Fresenius Medical Care outside the submitted work. Dr Huisman reported grants from Ministry of Health, Welfare and Sport for setting up and maintaining a prospective cohort study, of which data were used during the conduct of the study. Dr Lopez reported personal fees for consulting from Biogen and Griffols outside the submitted work. Dr Mooijaart reported nonfinancial support (provision of medication free of charge) from Merck during the conduct of the study. Dr Nauck reported grants from Federal Ministry of Education and Research, Germany, European Union Interreg IVa grants No. O2Z/G09/013, O2Z/G00/013, O2Z/G00/014, O2Z/G00/017, O2Z/G00/017, INT-10-0008, personal fees for advisory boards and presentations from Radiometer, Becton Dickinson, AstraZeneca, Technopat Clinical Diagnostics, Novartis, Symex, Tosoh, medpoint Medizincommunications GmbH, ProteinT, and MDI Limbach; and travel/accommodations expenses covered or reimbursed from German Medical Association (BÄK), German Centre for Cardiovascular Research (GCCR), National Cohort, German Society for Clinical Chemistry and Laboratory Medicine e.V. (DGKL), ISBER, DAkkS, Deutsche Forschungsgemeinschaft (DFG), European Association for the Study of Diabetes (EASD), and Max Rubner-Institut outside the submitted work. Dr Yeap reported grants from National Health and Medical Research Council of Australia during the conduct of the study. Dr Rodondi reported grants from Swiss National Science Foundation during the conduct of the study. No other disclosures were reported.

Funding/Support: This work was supported by the European Commission project THYRAGE (Horizon 2020 research and innovation program, 666869). The Thyroid Studies Collaboration is funded by a grant from the Swiss National Science Foundation (SNSF 20ZO30-172676 to Dr Rodondi). This research was supported by contracts HHSN268200200036C, HHSN268200200007C, HHSN268200200001C, NO1-HC-52222, NO1-HC-52079, NO1-HC-52080, NO1-HC-52081, NO1-HC-52082, NO1-HC-52083, NO1-HC-52086, 7596202000006, and grants U01HL082095 and U01HL130114 from the National Heart, Lung, and Blood Institute with additional contribution from the National Institute of Neurological Disorders and Stroke. Additional support was provided by R01AG03269 from the National Institute on Aging. Dr Cappola received additional support from R01AG032758. Dr Kuller from R01AG57928, and Dr Lonn from R01AG20098. A list of principal Cardiovascular Health Study investigators and institutions can be found at https://chs-nhlbi.org/. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health (NIH). This research was supported by National Institute on Aging contracts N01-AG-6-2101; N01-AG-6-2103; N01-AG-6-2106; National Institute on Aging grant R01-AG02850; and National Institute of Nursing Research grant R01-NR012459. This research was funded in part by the Intramural Research Program of the NIH National Institute on Aging. The Trandelang Health Study (The HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology), Trøndelag County Council, Central Norway Regional Health Authority, and the Norwegian Institute of Public Health. Information on incident dementia diagnoses for the HUNT study population was provided by Nord-Trøndelag Hospital Trust. The InCHIANTI study was supported as a “targeted project” (IC51011/RF977/1) by the Italian Ministry of Health and in part by the US National Institute on Aging (contracts: 263 MD 9164 and 263 MD 821366), supported in part by the Intramural Research Program of the NIH National Institute on Aging, Baltimore, Maryland. This study was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (grant no. H1209C179 [AG092077]). The Longitudinal Aging Study Amsterdam is supported by a grant from the Netherlands Ministry of Health Welfare and Sports, Directorate of Long-Term Care. The Osteoporotic Fractures in Men Study is supported by NIH funding. The following institutions provide support: the National Institute on Aging, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, the National Center for Advancing Translational Sciences, and NIH Roadmap for Medical Research under the following grant numbers: U01 AG090424, U01 AG02193, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AG06160, and U1L TR001238. MHS is supported by NIH NCATS U1TR002369, the Oregon Clinical and Translational Research Institute. The PREVEND study was funded by the Dutch Kidney Foundation (https://nierschifichten.nl/; grant E-033). This study was partly funded by the Dutch Alzheimer Foundation (https://www.alzheimer-nederland.nl/). The Radiation Effects Research Foundation (RERF), Hiroshima and Nagasaki, Japan, is a public interest foundation funded by the Japanese Ministry of Health, Labour and Welfare and the US Department of Energy. This publication was supported by REFR Research Protocol RP-A2-16. The views of the authors do not necessarily reflect those of the 2 governments. The site “100 Years of Health in Pomerania (https://www.alzheimer-nederland.nl/). The Rotterdam Study. The Netherlands: Leeden 95-Plus Study; Prevention of Renal and Vascular End-stage Disease Study (PREVEND Study); and the Rotterdam Study. The Netherlands/Ireland/Scotland: Prospective Study of Pravastatin in the Elderly at Risk (PROSPER Study). Italy: Invecchiarre (InCHIANTI) Study. Belgium: BELTFRAY Study. Germany: Study of Health in Pomerania (SHIP). Australia: Health in Men Study. Japan: Nagasaki Adult Health Study (Radiation Effects Research Foundation, REFR). Republic of Korea: Korean Longitudinal Study on Cognitive Aging and Dementia KLoSCAD); and Korean Longitudinal Study on Health and Aging (KLoSHA).

Additional Contributions: We thank all study participants for making this study possible. We thank Lilia Cárdenas-Ibarra, MD, for providing data from the Mexican Memory Clinic; she was compensated for this contribution.

REFERENCES

Association of Thyroid Dysfunction With Cognitive Function

