Craig further argue that this was not unexpected and that up to 92.5% of individuals in this risk class were expected to remain event free. However, this would only be true if most individuals had only a small change in risk with the addition of CACS, ie, most newly classified intermediate- to high-risk patients were only slightly higher than the 7.5% risk threshold. We did not have individual patient data to directly investigate this scenario, but it is supported by the very high proportion (85.5%-96.4%) of the newly classified individuals in our review who did not have an event.

Dr Wann and colleagues argue that CAC should be conceptualized as subclinical disease rather than a risk factor; they have published a guideline recommending that all adults without cardiovascular disease (CVD) who are older than 40 years of age undergo screening for CAC. However, screening can be associated with overdiagnosis—a recognized harm of cancer screening—which is now a growing problem for all early detection activities. A study of more than 25,000 adults without CVD aged 50 to 64 years living in Sweden found that although 40% had CACS greater than zero, significant coronary stenosis (≥50%) was present in only 5%. Evidence that CACS predicts response to statin treatment (effect modification) might support the characterization by Wann and colleagues of CAC as a disease rather than a risk factor. However, there is no robust evidence of this effect modification, and the benefits of statins have been found to be very consistent across multiple subgroup analyses of trial data. Lastly, these authors argue that detection of CAC might facilitate adherence with prescribed therapy. Whether CACS is more motivating than absolute risk information is uncertain, and this has not been demonstrated in a randomized clinical trial. Nonadherence to statins is a problem even after a clinical CVD event, suggesting that any effect of visualizing CAC on adherence among people without CVD may be limited.

Katy J. L. Bell, PhD
Lin Zhu, PhD
Paul Glasziou, PhD

Author Affiliations: School of Public Health, University of Sydney, Sydney, New South Wales, Australia (Bell, Zhu); Institute for Evidence-Based Healthcare, Bond University, Gold Coast, Queensland, Australia (Glasziou).

Corresponding Author: Katy J. L. Bell, PhD, Sydney School of Public Health, University of Sydney, Edward Ford Building (A27), Sydney, NSW 2006, Australia (katy.bell@sydney.edu.au).

Published Online: September 6, 2022. doi:10.1001/jamainternmed.2022.3826

Conflict of Interest Disclosures: Dr Bell reported receiving grants from the Australian National Health and Medical Research Council (NHMRC) and salary and project support from an Investigator grant during the conduct of the original study. Dr Glasziou reported receiving grants from the NHMRC and the National Heart Foundation of Australia during the conduct of the original study. No other disclosures were reported.


CORRECTION

Omission in Data Sharing Statement: In the Original Investigation titled “Clinical and Genetic Risk Factors for Acute Incident Venous Thromboembolism in Ambulatory Patients With COVID-19,”1 the following was omitted from the Data Sharing Statement: “This research has been conducted using the UK Biobank Resource under Application Number 65397.” The article has been corrected online.