Intensive Care Unit Admitting Patterns in the Veterans Affairs Health Care System | Critical Care Medicine | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Halpern NA, Pastores SM. Critical care medicine in the United States 2000-2005: an analysis of bed numbers, occupancy rates, payer mix, and costs.  Crit Care Med. 2010;38(1):65-7119730257PubMedGoogle ScholarCrossref
2.
Angus DC, Barnato AE, Linde-Zwirble WT,  et al; Robert Wood Johnson Foundation ICU End-of-Life Peer Group.  Use of intensive care at the end of life in the United States: an epidemiologic study.  Crit Care Med. 2004;32(3):638-64315090940PubMedGoogle Scholar
3.
Fisher ES, Wennberg DE, Stukel TA, Gottlieb DJ, Lucas FL, Pinder EL. The implications of regional variations in Medicare spending, part 1: the content, quality, and accessibility of care.  Ann Intern Med. 2003;138(4):273-28712585825PubMedGoogle Scholar
4.
Wennberg JE, Fisher ES, Baker L, Sharp SM, Bronner KK. Evaluating the efficiency of California providers in caring for patients with chronic illnesses.  Health Aff (Millwood). 2005;(suppl Web exclusives)  W5-526-W5-54316291779PubMedGoogle Scholar
5.
Wennberg JE, Fisher ES, Stukel TA, Skinner JS, Sharp SM, Bronner KK. Use of hospitals, physician visits, and hospice care during last six months of life among cohorts loyal to highly respected hospitals in the United States.  BMJ. 2004;328(7440):60715016692PubMedGoogle Scholar
6.
Chalfin DB, Trzeciak S, Likourezos A, Baumann BM, Dellinger RP.DELAY-ED Study Group.  Impact of delayed transfer of critically ill patients from the emergency department to the intensive care unit.  Crit Care Med. 2007;35(6):1477-148317440421PubMedGoogle Scholar
7.
Young MP, Gooder VJ, McBride K, James B, Fisher ES. Inpatient transfers to the intensive care unit: delays are associated with increased mortality and morbidity.  J Gen Intern Med. 2003;18(2):77-8312542581PubMedGoogle Scholar
8.
Joynt GM, Gomersall CD, Tan P, Lee A, Cheng CA, Wong EL. Prospective evaluation of patients refused admission to an intensive care unit: triage, futility and outcome.  Intensive Care Med. 2001;27(9):1459-146511685338PubMedGoogle Scholar
9.
Sinuff T, Kahnamoui K, Cook DJ, Luce JM, Levy MM.Values Ethics and Rationing in Critical Care Task Force.  Rationing critical care beds: a systematic review.  Crit Care Med. 2004;32(7):1588-159715241106PubMedGoogle Scholar
10.
Sprung CL, Geber D, Eidelman LA,  et al.  Evaluation of triage decisions for intensive care admission.  Crit Care Med. 1999;27(6):1073-107910397207PubMedGoogle Scholar
11.
Sprung CL, Baras M, Iapichino G,  et al.  The Eldicus prospective, observational study of triage decision making in European intensive care units, part I: European intensive care admission triage scores.  Crit Care Med. 2012;40(1):125-13121926598PubMedGoogle Scholar
12.
Ensminger SA, Morales IJ, Peters SG,  et al.  The hospital mortality of patients admitted to the ICU on weekends.  Chest. 2004;126(4):1292-129815486395PubMedGoogle Scholar
13.
Iwashyna TJ, Kramer AA, Kahn JM. Intensive care unit occupancy and patient outcomes.  Crit Care Med. 2009;37(5):1545-155719325466PubMedGoogle Scholar
14.
Lilly CM, Zuckerman IH, Badawi O, Riker RR. Benchmark data from more than 240,000 adults that reflect the current practice of critical care in the United States.  Chest. 2011;140(5):1232-124221868469PubMedGoogle Scholar
15.
Rosenthal GE, Sirio CA, Shepardson LB, Harper DL, Rotondi AJ, Cooper GS. Use of intensive care units for patients with low severity of illness.  Arch Intern Med. 1998;158(10):1144-11519605788PubMedGoogle Scholar
16.
Wunsch H, Angus DC, Harrison DA, Linde-Zwirble WT, Rowan KM. Comparison of medical admissions to intensive care units in the United States and United Kingdom.  Am J Respir Crit Care Med. 2011;183(12):1666-167321471089PubMedGoogle Scholar
17.
Render ML, Freyberg RW, Hasselbeck R,  et al.  Infrastructure for quality transformation: measurement and reporting in Veterans Administration intensive care units.  BMJ Qual Saf. 2011;20(6):498-50721345859PubMedGoogle Scholar
18.
American Thoracic Society.  What is the purpose of an intensive care unit? http://www.thoracic.org/clinical/critical-care/patient-information/general-information/what-is-the-purpose-of-an-intensive-care-unit.php. Accessed June 26, 2011
19.
Hansen BB. The prognostic analogue of the propensity score.  Biometrika. 2008;95(2):481-488Google Scholar
20.
Render ML, Deddens J, Freyberg R,  et al.  Veterans Affairs intensive care unit risk adjustment model: validation, updating, recalibration.  Crit Care Med. 2008;36(4):1031-104218379226PubMedGoogle Scholar
21.
Render ML, Kim HM, Welsh DE,  et al; VA ICU Project (VIP) Investigators.  Automated intensive care unit risk adjustment: results from a National Veterans Affairs study.  Crit Care Med. 2003;31(6):1638-164612794398PubMedGoogle Scholar
22.
Render ML, Welsh DE, Kollef M,  et al; SISVistA Investigators.  Automated computerized intensive care unit severity of illness measure in the Department of Veterans Affairs: preliminary results.  Crit Care Med. 2000;28(10):3540-354611057814PubMedGoogle Scholar
23.
Knaus WA, Wagner DP, Draper EA,  et al.  The APACHE III prognostic system: risk prediction of hospital mortality for critically ill hospitalized adults.  Chest. 1991;100(6):1619-16361959406PubMedGoogle Scholar
24.
Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data.  Med Care. 1998;36(1):8-279431328PubMedGoogle Scholar
25.
Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care.  Crit Care Med. 2001;29(7):1303-131011445675PubMedGoogle Scholar
26.
Almenoff P, Sales A, Rounds S,  et al.  Intensive care services in the Veterans Health Administration.  Chest. 2007;132(5):1455-146217925432PubMedGoogle Scholar
27.
Laird NM, Ware JH. Random-effects models for longitudinal data.  Biometrics. 1982;38(4):963-9747168798PubMedGoogle Scholar
28.
Morris CN. Parametric empirical Bayes inference: theory and applications.  J Am Stat Assoc. 1983;78(381):47-55Google Scholar
29.
Cohen J. Weighted κ: nominal scale agreement with provision for scaled disagreement or partial credit.  Psychol Bull. 1968;70(4):213-22019673146PubMedGoogle Scholar
30.
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects.  Biometrika. 1983;70(1):41-55Google Scholar
31.
 R Foundation for Statistical Computing. R: a language and environment for statistical computing. http://www.R-project.org. Accessed May 25, 2012
32.
Bone RC, McElwee NE, Eubanks DH, Gluck EH. Analysis of indications for intensive care unit admission: Clinical Efficacy Assessment project: American College of Physicians.  Chest. 1993;104(6):1806-18118252969PubMedGoogle Scholar
33.
Zimmerman JE, Kramer AA. A model for identifying patients who may not need intensive care unit admission.  J Crit Care. 2010;25(2):205-21319682848PubMedGoogle Scholar
34.
Kollef MH, Canfield DA, Zuckerman GR. Triage considerations for patients with acute gastrointestinal hemorrhage admitted to a medical intensive care unit.  Crit Care Med. 1995;23(6):1048-10547774215PubMedGoogle Scholar
35.
Charlson ME, Sax FL. The therapeutic efficacy of critical care units from two perspectives: a traditional cohort approach vs a new case-control methodology.  J Chronic Dis. 1987;40(1):31-393805232PubMedGoogle Scholar
36.
Wagner DP, Knaus WA, Draper EA. Identification of low-risk monitor admissions to medical-surgical ICUs.  Chest. 1987;92(3):423-4283113831PubMedGoogle Scholar
37.
Wagner DP, Knaus WA, Draper EA, Zimmerman JE. Identification of low-risk monitor patients within a medical-surgical intensive care unit.  Med Care. 1983;21(4):425-4346843195PubMedGoogle Scholar
38.
Task Force of the American College of Critical Care Medicine, Society of Critical Care Medicine.  Guidelines for intensive care unit admission, discharge, and triage.  Crit Care Med. 1999;27(3):633-63810199547PubMedGoogle Scholar
39.
Hussey PS, de Vries H, Romley J,  et al.  A systematic review of health care efficiency measures.  Health Serv Res. 2009;44(3):784-80519187184PubMedGoogle Scholar
40.
Krumholz HM, Keenan PS, Brush JE Jr,  et al; American Heart Association Interdisciplinary Council on Quality of Care and Outcomes Research; American College of Cardiology Foundation.  Standards for measures used for public reporting of efficiency in health care: a scientific statement from the American Heart Association Interdisciplinary Council on Quality of Care and Outcomes Research and the American College of Cardiology Foundation.  J Am Coll Cardiol. 2008;52(18):1518-152619017522PubMedGoogle Scholar
Original Investigation
Sep 10, 2012

Intensive Care Unit Admitting Patterns in the Veterans Affairs Health Care System

Author Affiliations

Author Affiliations: Veterans Affairs Health Services Research and Development Center of Excellence, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan (Drs Chen, Sales, Wiitala, and Hofer and Mr Kennedy); Division of General Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor (Drs Chen and Hofer); Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio (Dr Render); Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati (Dr Render); and Veterans Affairs Inpatient Evaluation Center, Office of Informatics and Analytics, Cincinnati, Ohio (Dr Sales). Dr Sales is now with Veterans Affairs Health Services Research and Development Center of Excellence, Veterans Affairs Ann Arbor Healthcare System, and the School of Nursing, University of Michigan, Ann Arbor.

Arch Intern Med. 2012;172(16):1220-1226. doi:10.1001/archinternmed.2012.2606
Abstract

Background Critical care resource use accounts for almost 1% of US gross domestic product and varies widely among hospitals. However, we know little about the initial decision to admit a patient to the intensive care unit (ICU).

Methods To describe hospital ICU admitting patterns for medical patients after accounting for severity of illness on admission, we performed a retrospective cohort study of the first nonsurgical admission of 289 310 patients admitted from the emergency department or the outpatient clinic to 118 Veterans Affairs acute care hospitals between July 1, 2009, and June 30, 2010. Severity (30-day predicted mortality rate) was measured using a modified Veterans Affairs ICU score based on laboratory data and comorbidities around admission. The main outcome measure was direct admission to an ICU.

Results Of the 31 555 patients (10.9%) directly admitted to the ICU, 53.2% had 30-day predicted mortality at admission of 2% or less. The rate of ICU admission for this low-risk group varied from 1.2% to 38.9%. For high-risk patients (predicted mortality >30%), ICU admission rates also varied widely. For a 1-SD increase in predicted mortality, the adjusted odds of ICU admission varied substantially across hospitals (odds ratio = 0.85-2.22). As a result, 66.1% of hospitals were in different quartiles of ICU use for low- vs high-risk patients (weighted κ = 0.50).

Conclusions The proportion of low- and high-risk patients admitted to the ICU, variation in ICU admitting patterns among hospitals, and the sensitivity of hospital rankings to patient risk all likely reflect a lack of consensus about which patients most benefit from ICU admission.

×