Timing of Acute Myocardial Infarction in Patients Undergoing Total Hip or Knee Replacement: A Nationwide Cohort Study | Acute Coronary Syndromes | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Harris WH, Sledge CB. Total hip and total knee replacement (1).  N Engl J Med. 1990;323(11):725-7312201916PubMedGoogle ScholarCrossref
Agency for Healthcare Research and Quality.  Healthcare Cost and Utilization Project 2009. Rockvile, MD: Agency for Healthcare Research and Quality; 2009
Datamonitor Healthcare.  Report: Hip and Knee Replacement Market: Product Code: DMHC2264 . London, England: Datamonitor Healthcare; 2006
Mantilla CB, Horlocker TT, Schroeder DR, Berry DJ, Brown DL. Frequency of myocardial infarction, pulmonary embolism, deep venous thrombosis, and death following primary hip or knee arthroplasty.  Anesthesiology. 2002;96(5):1140-114611981154PubMedGoogle Scholar
Marsch SC, Schaefer HG, Skarvan K, Castelli I, Scheidegger D. Perioperative myocardial ischemia in patients undergoing elective hip arthroplasty during lumbar regional anesthesia.  Anesthesiology. 1992;76(4):518-5271550276PubMedGoogle Scholar
White HD, Chew DP. Acute myocardial infarction.  Lancet. 2008;372(9638):570-58418707987PubMedGoogle Scholar
Caillouette JT, Anzel SH. Fat embolism syndrome following the intramedullary alignment guide in total knee arthroplasty.  Clin Orthop Relat Res. 1990;251(251):198-1992295174PubMedGoogle Scholar
Jones RH. Physiologic emboli changes observed during total hip replacement arthroplasty: a clinical prospective study.  Clin Orthop Relat Res. 1975;112(112):192-2001192632PubMedGoogle Scholar
FRagmin and Fast Revascularisation during InStability in Coronary artery disease (FRISC II) Investigators.  Long-term low-molecular-mass heparin in unstable coronary-artery disease: FRISC II prospective randomised multicentre study.  Lancet. 1999;354(9180):701-70710475180PubMedGoogle Scholar
Mantilla CB, Wass CT, Goodrich KA,  et al.  Risk for perioperative myocardial infarction and mortality in patients undergoing hip or knee arthroplasty: the role of anemia.  Transfusion. 2011;51(1):82-9121219324PubMedGoogle Scholar
Khatod M, Inacio M, Paxton EW,  et al.  Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004.  Acta Orthop. 2008;79(6):812-81919085500PubMedGoogle Scholar
Pulido L, Parvizi J, Macgibeny M,  et al.  In hospital complications after total joint arthroplasty.  J Arthroplasty. 2008;23(6):(suppl 1)  139-14518722311PubMedGoogle Scholar
Parvizi J, Mui A, Purtill JJ, Sharkey PF, Hozack WJ, Rothman RH. Total joint arthroplasty: when do fatal or near-fatal complications occur?  J Bone Joint Surg Am. 2007;89(1):27-3217200306PubMedGoogle Scholar
Gandhi R, Petruccelli D, Devereaux PJ, Adili A, Hubmann M, de Beer J. Incidence and timing of myocardial infarction after total joint arthroplasty.  J Arthroplasty. 2006;21(6):874-87716950042PubMedGoogle Scholar
Mahomed NN, Barrett J, Katz JN, Baron JA, Wright J, Losina E. Epidemiology of total knee replacement in the United States Medicare population.  J Bone Joint Surg Am. 2005;87(6):1222-122815930530PubMedGoogle Scholar
Lenssen TA, van Steyn MJ, Crijns YH,  et al.  Effectiveness of prolonged use of continuous passive motion (CPM), as an adjunct to physiotherapy, after total knee arthroplasty.  BMC Musculoskelet Disord. 2008;9:6018442423PubMedGoogle Scholar
García Rodríguez LA, González-Pérez A. NSAIDs and the risk of acute myocardial infarction.  Nat Clin Pract Rheumatol. 2007;3(4):202-20317342079PubMedGoogle Scholar
Fosbøl EL, Gislason GH, Jacobsen S,  et al.  Risk of myocardial infarction and death associated with the use of nonsteroidal anti-inflammatory drugs (NSAIDs) among healthy individuals: a nationwide cohort study.  Clin Pharmacol Ther. 2009;85(2):190-19718987620PubMedGoogle Scholar
Andersen TF, Madsen M, Jørgensen J, Mellemkjoer L, Olsen JH. The Danish National Hospital Register: a valuable source of data for modern health sciences.  Dan Med Bull. 1999;46(3):263-26810421985PubMedGoogle Scholar
World Health Organization.  International Statistical Classification of Diseases, 10th Revision (ICD-10). Geneva, Switzerland: World Health Organization; 1992
Dansk Orthopædisk Selskab.  Referenceprogrammer Hoftealloplastik/knæalloplastik. http://www.ortopaedi.dk/index.php?id=32. Accessed December 19, 2011
Pedersen AB, Sorensen HT, Mehnert F, Overgaard S, Johnsen SP. Risk factors for venous thromboembolism in patients undergoing total hip replacement and receiving routine thromboprophylaxis.  J Bone Joint Surg Am. 2010;92(12):2156-216420844157PubMedGoogle Scholar
Antman EM, Cohen M, Bernink PJ,  et al.  The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making.  JAMA. 2000;284(7):835-84210938172PubMedGoogle Scholar
Granger CB, Goldberg RJ, Dabbous O,  et al; Global Registry of Acute Coronary Events Investigators.  Predictors of hospital mortality in the global registry of acute coronary events.  Arch Intern Med. 2003;163(19):2345-235314581255PubMedGoogle Scholar
Lalmohamed A, Opdam F, Arden NK,  et al.  Knee arthroplasty and risk of hip fracture: a population-based, case-control study.  Calcif Tissue Int. 2011;90(2):144-15022179584PubMedGoogle Scholar
Pouwels S, Lalmohamed A, Leufkens B,  et al.  Risk of hip/femur fracture after stroke: a population-based case-control study.  Stroke. 2009;40(10):3281-328519661475PubMedGoogle Scholar
Pouwels S, Lalmohamed A, van Staa TP,  et al.  Use of organic nitrates and the risk of hip fracture: a population-based case-control study.  J Clin Endocrinol Metab. 2010;95(4):1924-193120130070PubMedGoogle Scholar
Pouwels S, Lalmohamed A, Souverein PC,  et al.  Use of proton pump inhibitors and risk of hip/femur fracture: a population-based case-control study.  Osteoporos Int. 2011;22(3):903-91020585937PubMedGoogle Scholar
Greenland S. Dose-response and trend analysis in epidemiology: alternatives to categorical analysis.  Epidemiology. 1995;6(4):356-3657548341PubMedGoogle Scholar
Taylor HD, Dennis DA, Crane HS. Relationship between mortality rates and hospital patient volume for Medicare patients undergoing major orthopaedic surgery of the hip, knee, spine, and femur.  J Arthroplasty. 1997;12(3):235-2429113536PubMedGoogle Scholar
Uchino K, Hernandez AV. Dabigatran association with higher risk of acute coronary events: meta-analysis of noninferiority randomized controlled trials.  Arch Intern Med. 2012;172(5):397-40222231617PubMedGoogle Scholar
Lawesson SS, Stenestrand U, Lagerqvist B, Wallentin L, Swahn E. Gender perspective on risk factors, coronary lesions and long-term outcome in young patients with ST-elevation myocardial infarction.  Heart. 2010;96(6):453-45920299414PubMedGoogle Scholar
Wolk R, Berger P, Lennon RJ, Brilakis ES, Somers VK. Body mass index: a risk factor for unstable angina and myocardial infarction in patients with angiographically confirmed coronary artery disease.  Circulation. 2003;108(18):2206-221114557360PubMedGoogle Scholar
Gaston MS, Amin AK, Clayton RA, Brenkel IJ. Does a history of cardiac disease or hypertension increase mortality following primary elective total hip arthroplasty?  Surgeon. 2007;5(5):260-26517958222PubMedGoogle Scholar
Report of the Sixty Plus Reinfarction Study Research Group.  A double-blind trial to assess long-term oral anticoagulant therapy in elderly patients after myocardial infarction.  Lancet. 1980;2(8202):989-9946107674PubMedGoogle Scholar
Parker MJ, Unwin SC, Handoll HH, Griffiths R. General versus spinal/epidural anaesthesia for surgery for hip fracture in adults.  Cochrane Database Syst Rev. 2001;(4):CD00052111034688PubMedGoogle Scholar
Original Investigation
Sep 10, 2012

Timing of Acute Myocardial Infarction in Patients Undergoing Total Hip or Knee Replacement: A Nationwide Cohort Study

Author Affiliations

Author Affiliations: Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands (Mr Lalmohamed, Ms Klop, and Drs de Boer, Leufkens, van Staa, and de Vries); Departments of Endocrinology and Internal Medicine (Dr Vestergaard) and Cardiology (Dr Grove), Aarhus University Hospital, Aarhus, Denmark; MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, England (Drs van Staa and de Vries); and Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre, Maastricht, the Netherlands (Dr de Vries). Dr Vestergaard is now with the Medical Faculty, Aalborg University, Aalborg, Denmark.

Arch Intern Med. 2012;172(16):1229-1235. doi:10.1001/archinternmed.2012.2713

Background Limited evidence suggests that the risk of acute myocardial infarction (AMI) may be increased shortly after total hip replacement (THR) and total knee replacement (TKR) surgery. However, risk of AMI in these patients has not been compared against matched controls who have not undergone surgery. The objective of this study was to evaluate the timing of AMI in patients undergoing THR or TKR surgery compared with matched controls.

Methods Retrospective, nationwide cohort study within the Danish national registries. All patients who underwent a primary THR or TKR (n = 95 227) surgery from January 1, 1998, through December 31, 2007, were selected and matched to 3 controls (no THR or TKR) by age, sex, and geographic region. All study participants were followed up for AMI, and disease- and medication history–adjusted hazard ratios (HRs) were calculated.

Results During the first 2 postoperative weeks, the risk of AMI was substantially increased in THR patients compared with controls (adjusted HR, 25.5; 95% CI, 17.1-37.9). The risk remained elevated for 2 to 6 weeks after surgery (adjusted HR, 5.05; 95% CI, 3.58-7.13) and then decreased to baseline levels. For TKR patients, AMI risk was also increased during the first 2 weeks (adjusted HR, 30.9; 95% CI, 11.1-85.5) but did not differ from controls after the first 2 weeks. The absolute 6-week risk of AMI was 0.51% in THR patients and 0.21% in TKR patients.

Conclusions Risk of AMI is substantially increased in the first 2 weeks after THR (25-fold) and TKR (31-fold) surgery compared with controls. Risk assessment of AMI should be considered during the first 6 weeks after THR surgery and during the first 2 weeks after TKR surgery.