Midlife Fitness and the Development of Chronic Conditions in Later Life | Geriatrics | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Britton A, Shipley M, Singh-Manoux A, Marmot MG. Successful aging: the contribution of early-life and midlife risk factors.  J Am Geriatr Soc. 2008;56(6):1098-110518482302PubMedGoogle ScholarCrossref
Burke GL, Arnold AM, Bild DE,  et al; CHS Collaborative Research Group.  Factors associated with healthy aging: the Cardiovascular Health Study.  J Am Geriatr Soc. 2001;49(3):254-26211300235PubMedGoogle ScholarCrossref
Daviglus ML, Liu K, Pirzada A,  et al.  Favorable cardiovascular risk profile in middle age and health-related quality of life in older age.  Arch Intern Med. 2003;163(20):2460-246814609782PubMedGoogle ScholarCrossref
Sun Q, Townsend MK, Okereke OI, Franco OH, Hu FB, Grodstein F. Adiposity and weight change in mid-life in relation to healthy survival after age 70 in women: prospective cohort study.  BMJ. 2009;339:b379619789407PubMedGoogle ScholarCrossref
Terry DF, Pencina MJ, Vasan RS,  et al.  Cardiovascular risk factors predictive for survival and morbidity-free survival in the oldest-old Framingham Heart Study participants.  J Am Geriatr Soc. 2005;53(11):1944-195016274376PubMedGoogle ScholarCrossref
Willcox BJ, He Q, Chen R,  et al.  Midlife risk factors and healthy survival in men.  JAMA. 2006;296(19):2343-235017105797PubMedGoogle ScholarCrossref
Yates LB, Djoussé L, Kurth T, Buring JE, Gaziano JM. Exceptional longevity in men: modifiable factors associated with survival and function to age 90 years.  Arch Intern Med. 2008;168(3):284-29018268169PubMedGoogle ScholarCrossref
Blair SN, Kohl HW III, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality: a prospective study of healthy men and women.  JAMA. 1989;262(17):2395-24012795824PubMedGoogle ScholarCrossref
Blair SN, Kohl HW III, Barlow CE, Paffenbarger RS Jr, Gibbons LW, Macera CA. Changes in physical fitness and all-cause mortality: a prospective study of healthy and unhealthy men.  JAMA. 1995;273(14):1093-10987707596PubMedGoogle ScholarCrossref
Ekelund LG, Haskell WL, Johnson JL, Whaley FS, Criqui MH, Sheps DS. Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men: the Lipid Research Clinics Mortality Follow-up Study.  N Engl J Med. 1988;319(21):1379-13843185648PubMedGoogle ScholarCrossref
Kodama S, Saito K, Tanaka S,  et al.  Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis.  JAMA. 2009;301(19):2024-203519454641PubMedGoogle ScholarCrossref
Kokkinos P, Myers J, Kokkinos JP,  et al.  Exercise capacity and mortality in black and white men.  Circulation. 2008;117(5):614-62218212278PubMedGoogle ScholarCrossref
Mora S, Redberg RF, Sharrett AR, Blumenthal RS. Enhanced risk assessment in asymptomatic individuals with exercise testing and Framingham risk scores.  Circulation. 2005;112(11):1566-157216144993PubMedGoogle ScholarCrossref
Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing.  N Engl J Med. 2002;346(11):793-80111893790PubMedGoogle ScholarCrossref
Myers J, Kaykha A, George S,  et al.  Fitness versus physical activity patterns in predicting mortality in men.  Am J Med. 2004;117(12):912-91815629729PubMedGoogle ScholarCrossref
Talbot LA, Morrell CH, Metter EJ, Fleg JL. Comparison of cardiorespiratory fitness versus leisure time physical activity as predictors of coronary events in men aged ≤65 years and >65 years.  Am J Cardiol. 2002;89(10):1187-119212008173PubMedGoogle ScholarCrossref
Willis BL, Morrow JR Jr, Jackson AW, DeFina LF, Cooper KH. Secular change in cardiorespiratory fitness of men: Cooper Center Longitudinal Study.  Med Sci Sports Exerc. 2011;43(11):2134-213921448076PubMedGoogle ScholarCrossref
Pollock ML, Bohannon RL, Cooper KH,  et al.  A comparative analysis of four protocols for maximal treadmill stress testing.  Am Heart J. 1976;92(1):39-46961576PubMedGoogle ScholarCrossref
Pollock ML, Foster C, Schmidt D, Hellman C, Linnerud AC, Ward A. Comparative analysis of physiologic responses to three different maximal graded exercise test protocols in healthy women.  Am Heart J. 1982;103(3):363-3737064770PubMedGoogle ScholarCrossref
Franklin BA, Whaley MH, Howley ET, Balady GJ. ACSM's Guidelines for Exercise Testing and Prescription. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2000
Blair SN, Kampert JB, Kohl HW III,  et al.  Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women.  JAMA. 1996;276(3):205-2108667564PubMedGoogle ScholarCrossref
Blair SN, Kannel WB, Kohl HW, Goodyear N, Wilson PW. Surrogate measures of physical activity and physical fitness: evidence for sedentary traits of resting tachycardia, obesity, and low vital capacity.  Am J Epidemiol. 1989;129(6):1145-11562729253PubMedGoogle Scholar
Kohl HW, Blair SN, Paffenbarger RS Jr, Macera CA, Kronenfeld JJ. A mail survey of physical activity habits as related to measured physical fitness.  Am J Epidemiol. 1988;127(6):1228-12393369421PubMedGoogle Scholar
Chronic Condition Data Warehouse User Guide.  CMS Chronic Condition Warehouse. 2011:1-22. http://www.ccwdata.org. Accessed September 19, 2011
Gorina Y, Kramarow EA. Identifying chronic conditions in Medicare claims data: evaluating the Chronic Condition Data Warehouse algorithm.  Health Serv Res. 2011;46(5):1610-162721649659PubMedGoogle ScholarCrossref
Virnig BA, McBean M. Administrative data for public health surveillance and planning.  Annu Rev Public Health. 2001;22:213-23011274519PubMedGoogle ScholarCrossref
Sun Q, Townsend MK, Okereke OI, Franco OH, Hu FB, Grodstein F. Physical activity at midlife in relation to successful survival in women at age 70 years or older.  Arch Intern Med. 2010;170(2):194-20120101015PubMedGoogle ScholarCrossref
Wei LJ, Lin DY, Weissfeld L. Regression analysis of multivariate incomplete failure time data by modeling marginal distribution.  J Am Stat Assoc. 1989;84:1065-1073Google ScholarCrossref
Lin DY, Wei LJ. The robust inference for the Cox proportional hazards model.  J Am Stat Assoc. 1989;84:1074-1078Google ScholarCrossref
Duncan JJ, Gordon NF, Scott CB. Women walking for health and fitness: how much is enough?  JAMA. 1991;266(23):3295-32991960829PubMedGoogle ScholarCrossref
Oja P. Dose response between total volume of physical activity and health and fitness.  Med Sci Sports Exerc. 2001;33(6):(suppl)  S428-S43711427767PubMedGoogle Scholar
Skinner JS, Jaskólski A, Jaskólska A,  et al; HERITAGE Family Study.  Age, sex, race, initial fitness, and response to training: the HERITAGE Family Study.  J Appl Physiol. 2001;90(5):1770-177611299267PubMedGoogle Scholar
Roos NP, Havens B. Predictors of successful aging: a twelve-year study of Manitoba elderly.  Am J Public Health. 1991;81(1):63-681898500PubMedGoogle ScholarCrossref
Guralnik JM, Kaplan GA. Predictors of healthy aging: prospective evidence from the Alameda County study.  Am J Public Health. 1989;79(6):703-7082729467PubMedGoogle ScholarCrossref
Lee DC, Sui X, Ortega FB,  et al.  Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women.  Br J Sports Med. 2011;45(6):504-51020418526PubMedGoogle ScholarCrossref
Fries JF. Aging, natural death, and the compression of morbidity.  N Engl J Med. 1980;303(3):130-1357383070PubMedGoogle ScholarCrossref
Fries JF. Physical activity, the compression of morbidity, and the health of the elderly.  J R Soc Med. 1996;89(2):64-688683502PubMedGoogle Scholar
Fries JF. Measuring and monitoring success in compressing morbidity.  Ann Intern Med. 2003;139(5, pt 2):455-45912965976PubMedGoogle Scholar
Fries JF. Frailty, heart disease, and stroke: the Compression of Morbidity paradigm.  Am J Prev Med. 2005;29(5):(suppl 1)  164-16816389144PubMedGoogle ScholarCrossref
Gruenberg EM. The failures of success: 1977.  Milbank Q. 2005;83(4):779-80016279967PubMedGoogle ScholarCrossref
Vogeli C, Shields AE, Lee TA,  et al.  Multiple chronic conditions: prevalence, health consequences, and implications for quality, care management, and costs.  J Gen Intern Med. 2007;22:(suppl 3)  391-39518026807PubMedGoogle ScholarCrossref
Graham P, Blakely T, Davis P, Sporle A, Pearce N. Compression, expansion, or dynamic equilibrium? the evolution of health expectancy in New Zealand.  J Epidemiol Community Health. 2004;58(8):659-66615252068PubMedGoogle ScholarCrossref
Fries JF, Koop CE, Beadle CE,  et al; Health Project Consortium.  Reducing health care costs by reducing the need and demand for medical services.  N Engl J Med. 1993;329(5):321-3258321260PubMedGoogle ScholarCrossref
Hubert HB, Bloch DA, Fries JF. Risk factors for physical disability in an aging cohort: the NHANES I Epidemiologic Follow-up Study.  J Rheumatol. 1993;20(3):480-4888478855PubMedGoogle Scholar
Hubert HB, Bloch DA, Oehlert JW, Fries JF. Lifestyle habits and compression of morbidity.  J Gerontol A Biol Sci Med Sci. 2002;57(6):M347-M35112023263PubMedGoogle ScholarCrossref
Chakravarty EF, Hubert HB, Lingala VB, Fries JF. Reduced disability and mortality among aging runners: a 21-year longitudinal study.  Arch Intern Med. 2008;168(15):1638-164618695077PubMedGoogle ScholarCrossref
Wolff JL, Starfield B, Anderson G. Prevalence, expenditures, and complications of multiple chronic conditions in the elderly.  Arch Intern Med. 2002;162(20):2269-227612418941PubMedGoogle ScholarCrossref
Virnig B, Durham SB, Folsom AR, Cerhan J. Linking the Iowa Women's Health Study cohort to Medicare data: linkage results and application to hip fracture.  Am J Epidemiol. 2010;172(3):327-33320573839PubMedGoogle ScholarCrossref
Daviglus ML, Liu K, Yan LL,  et al.  Relation of body mass index in young adulthood and middle age to Medicare expenditures in older age.  JAMA. 2004;292(22):2743-274915585734PubMedGoogle ScholarCrossref
Daviglus ML. Health care costs in old age are related to overweight and obesity earlier in life.  Health Aff (Millwood). 2005;24:(suppl 2)  W5R97-W5R10016186159PubMedGoogle Scholar
Daviglus ML, Liu K, Pirzada A,  et al.  Cardiovascular risk profile earlier in life and Medicare costs in the last year of life.  Arch Intern Med. 2005;165(9):1028-103415883242PubMedGoogle ScholarCrossref
Daviglus ML, Liu K, Pirzada A,  et al.  Relationship of fruit and vegetable consumption in middle-aged men to Medicare expenditures in older age: the Chicago Western Electric Study.  J Am Diet Assoc. 2005;105(11):1735-174416256757PubMedGoogle ScholarCrossref
Britton A, Shipley M, Singh-Manoux A, Marmot MG. Successful aging: the contribution of early-life and midlife risk factors.  J Am Geriatr Soc. 2008;56(6):1098-110518482302PubMedGoogle ScholarCrossref
Berry JD, Willis B, Gupta S,  et al.  Lifetime risks for cardiovascular disease mortality by cardiorespiratory fitness levels measured at ages 45, 55, and 65 years in men: the Cooper Center Longitudinal Study.  J Am Coll Cardiol. 2011;57(15):1604-161021474041PubMedGoogle ScholarCrossref
Original Investigation
Sep 24, 2012

Midlife Fitness and the Development of Chronic Conditions in Later Life

Author Affiliations

Author Affiliations: The Cooper Institute (Drs Willis and DeFina), Division of Cardiology, Department of Internal Medicine (Ms Gao and Dr Berry), and Department of Clinical Science, Division of Biostatistics (Dr Leonard), The University of Texas Southwestern Medical Center, Dallas.

Arch Intern Med. 2012;172(17):1333-1340. doi:10.1001/archinternmed.2012.3400

Background The association between cardiorespiratory fitness (fitness) and mortality is well described. However, the association between midlife fitness and the development of nonfatal chronic conditions in older age has not been studied.

Methods To examine the association between midlife fitness and chronic disease outcomes in later life, participant data from the Cooper Center Longitudinal Study were linked with Medicare claims. We studied 18 670 healthy participants (21.1% women; median age, 49 years) who survived to receive Medicare coverage from January 1, 1999, to December 31, 2009. Fitness estimated by Balke treadmill time was analyzed as a continuous variable (in metabolic equivalents [METs]) and according to age- and sex-specific quintiles. Eight common chronic conditions were defined using validated algorithms, and associations between midlife fitness and the number of conditions were assessed using a modified Cox proportional hazards model that stratified the at-risk population by the number of conditions while adjusting for age, body mass index, blood pressure, cholesterol and glucose levels, alcohol use, and smoking.

Results After 120 780 person-years of Medicare exposure with a median follow-up of 26 years, the highest quintile of fitness (quintile 5) was associated with a lower incidence of chronic conditions compared with the lowest quintile (quintile 1) in men (15.6 [95% CI, 15.0-16.2] vs 28.2 [27.4-29.0] per 100 person-years) and women (11.4 [10.5-12.3] vs 20.1 [18.7 vs 21.6] per 100 person-years). After multivariate adjustment, higher fitness (in METs) was associated with a lower risk of developing chronic conditions in men (hazard ratio, 0.95 [95% CI, 0.94-0.96] per MET) and women (0.94 [0.91-0.96] per MET). Among decedents (2406 [12.9%]), higher fitness was associated with lower risk of developing chronic conditions relative to survival (compression hazard ratio, 0.90 [95% CI, 0.88-0.92] per MET), suggesting morbidity compression.

Conclusions In this cohort of healthy middle-aged adults, fitness was significantly associated with a lower risk of developing chronic disease outcomes during 26 years of follow-up. These findings suggest that higher midlife fitness may be associated with the compression of morbidity in older age.