Rapid Bacterial Whole-Genome Sequencing to Enhance Diagnostic and Public Health Microbiology | Genetics and Genomics | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Spellberg  B, Bartlett  JG, Gilbert  DN.  The future of antibiotics and resistance.  N Engl J Med. 2013;368(4):299-302.PubMedGoogle ScholarCrossref
2.
Hall  BG, Ehrlich  GD, Hu  FZ.  Pan-genome analysis provides much higher strain typing resolution than multi-locus sequence typing.  Microbiology. 2010;156(Pt 4):1060-1068.PubMedGoogle ScholarCrossref
3.
Hiller  NL, Ahmed  A, Powell  E,  et al.  Generation of genic diversity among Streptococcus pneumoniae strains via horizontal gene transfer during a chronic polyclonal pediatric infection.  PLoS Pathog. 2010;6(9):e1001108.PubMedGoogle ScholarCrossref
4.
Gardy  JL, Johnston  JC, Ho Sui  SJ,  et al.  Whole-genome sequencing and social-network analysis of a tuberculosis outbreak.  N Engl J Med. 2011;364(8):730-739.PubMedGoogle ScholarCrossref
5.
Didelot  X, Bowden  R, Wilson  DJ, Peto  TE, Crook  DW.  Transforming clinical microbiology with bacterial genome sequencing.  Nat Rev Genet. 2012;13(9):601-612.PubMedGoogle ScholarCrossref
6.
Hu  FZ, Eutsey  R, Ahmed  A,  et al.  In vivo capsular switch in Streptococcus pneumoniae: analysis by whole genome sequencing.  PLoS One. 2012;7(11):e47983.PubMedGoogle ScholarCrossref
7.
Köser  CU, Holden  MT, Ellington  MJ,  et al.  Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak.  N Engl J Med. 2012;366(24):2267-2275.PubMedGoogle ScholarCrossref
8.
Köser  CU, Ellington  MJ, Cartwright  EJ,  et al.  Routine use of microbial whole genome sequencing in diagnostic and public health microbiology.  PLoS Pathog. 2012;8(8):e1002824.PubMedGoogle ScholarCrossref
9.
McAdam  PR, Templeton  KE, Edwards  GF,  et al.  Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus.  Proc Natl Acad Sci U S A. 2012;109(23):9107-9112.PubMedGoogle ScholarCrossref
10.
Young  BC, Golubchik  T, Batty  EM,  et al.  Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease.  Proc Natl Acad Sci U S A. 2012;109(12):4550-4555.PubMedGoogle ScholarCrossref
11.
Harris  SR, Cartwright  EJ, Török  ME,  et al.  Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study.  Lancet Infect Dis. 2013;13(2):130-136.PubMedGoogle ScholarCrossref
12.
Rohde  H, Qin  J, Cui  Y,  et al; E. coli O104:H4 Genome Analysis Crowd-Sourcing Consortium.  Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4.  N Engl J Med. 2011;365(8):718-724.PubMedGoogle ScholarCrossref
13.
British Society of Antimicrobial Chemotherapy. BSAC Methods for Antimicrobial Susceptibility Testing, Version 11.1, May 2012. http://bsac.org.uk/. Accessed May 14, 2013.
14.
Jacoby  GA.  AmpC beta-lactamases.  Clin Microbiol Rev. 2009;22(1):161-182.PubMedGoogle ScholarCrossref
15.
Walsh  TR.  Emerging carbapenemases: a global perspective.  Int J Antimicrob Agents. 2010;36(suppl 3):S8-S14.PubMedGoogle ScholarCrossref
16.
Shet  V, Gouliouris  T, Brown  NM, Turton  JF, Zhang  J, Woodford  N.  IMP metallo-β-lactamase-producing clinical isolates of Enterobacter cloacae in the UK.  J Antimicrob Chemother. 2011;66(6):1408-1409.PubMedGoogle ScholarCrossref
17.
Ren  Y, Ren  Y, Zhou  Z,  et al.  Complete genome sequence of Enterobacter cloacae subsp. cloacae type strain ATCC 13047.  J Bacteriol. 2010;192(9):2463-2464.PubMedGoogle ScholarCrossref
18.
Mathers  AJ, Cox  HL, Kitchel  B,  et al.  Molecular dissection of an outbreak of carbapenem-resistant Enterobacteriaceae reveals intergenus KPC carbapenemase transmission through a promiscuous plasmid.  MBio. 2011;2(6):e00204-e00211.PubMedGoogle ScholarCrossref
19.
Willems  RJ, van Schaik  W.  Transition of Enterococcus faecium from commensal organism to nosocomial pathogen.  Future Microbiol. 2009;4(9):1125-1135.PubMedGoogle ScholarCrossref
20.
Qin  X, Galloway-Peña  JR, Sillanpaa  J,  et al.  Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes.  BMC Microbiol. 2012;12(1):135.PubMedGoogle ScholarCrossref
21.
Health Protection Agency. Advice on carbapenemase producers: recognition, infection control and treatment. http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1294740725984. Accessed March 17, 2013.
22.
Ellington  MJ, Kistler  J, Livermore  DM, Woodford  N.  Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases.  J Antimicrob Chemother. 2007;59(2):321-322.PubMedGoogle ScholarCrossref
23.
Doumith  M, Ellington  MJ, Livermore  DM, Woodford  N.  Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK.  J Antimicrob Chemother. 2009;63(4):659-667.PubMedGoogle ScholarCrossref
24.
Hanson  ND, Sanders  CC.  Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae.  Curr Pharm Des. 1999;5(11):881-894.PubMedGoogle Scholar
25.
Chang  Q, Tzeng  YL, Stephens  DS.  Meningococcal disease: changes in epidemiology and prevention.  Clin Epidemiol. 2012;4:237-245.PubMedGoogle Scholar
26.
Stephens  DS, Greenwood  B, Brandtzaeg  P.  Epidemic meningitis, meningococcaemia, and Neisseria meningitidis.  Lancet. 2007;369(9580):2196-2210.PubMedGoogle ScholarCrossref
27.
Stephens  DS.  Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis.  Vaccine. 2009;27(suppl 2):B71-B77.PubMedGoogle ScholarCrossref
28.
Maiden  MC, Bygraves  JA, Feil  E,  et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms.  Proc Natl Acad Sci U S A. 1998;95(6):3140-3145.PubMedGoogle ScholarCrossref
29.
Vogel  U, Szczepanowski  R, Claus  H, Jünemann  S, Prior  K, Harmsen  D.  Ion torrent personal genome machine sequencing for genomic typing of Neisseria meningitidis for rapid determination of multiple layers of typing information.  J Clin Microbiol. 2012;50(6):1889-1894.PubMedGoogle ScholarCrossref
30.
Jolley  KA, Hill  DM, Bratcher  HB,  et al.  Resolution of a meningococcal disease outbreak from whole-genome sequence data with rapid web-based analysis methods.  J Clin Microbiol. 2012;50(9):3046-3053.PubMedGoogle ScholarCrossref
31.
Mosammaparast  N, McAdam  AJ, Nolte  FS.  Molecular testing for infectious diseases should be done in the clinical microbiology laboratory.  J Clin Microbiol. 2012;50(6):1836-1840.PubMedGoogle ScholarCrossref
32.
Health Protection Agency. Meningococcal reference unit user manual (April 2012). http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1194947367872. Accessed March 17, 2013.
33.
Health Protection Agency. Department of healthcare associated infection and antibiotic resistance user manual (effective date: 13.02.13). http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1194947406124. Accessed March 17, 2013.
34.
Kumarasamy  KK, Toleman  MA, Walsh  TR,  et al.  Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study.  Lancet Infect Dis. 2010;10(9):597-602.PubMedGoogle ScholarCrossref
35.
Adey  A, Morrison  HG, Asan,  et al.  Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition.  Genome Biol. 2010;11(12):R119.PubMedGoogle ScholarCrossref
36.
Eyre  DW, Golubchik  T, Gordon  NC,  et al.  A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance.  BMJ Open. 2012;2(3):e001124..PubMedGoogle ScholarCrossref
Original Investigation
August 12/26, 2013

Rapid Bacterial Whole-Genome Sequencing to Enhance Diagnostic and Public Health Microbiology

Author Affiliations
  • 1Wellcome Trust Sanger Institute, Hinxton, England
  • 2Clinical Microbiology and Public Health Laboratory, Cambridge, England
  • 3Department of Medicine, University of Cambridge, Cambridge, England
  • 4Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
  • 5Illumina Ltd, Great Chesterford, England
JAMA Intern Med. 2013;173(15):1397-1404. doi:10.1001/jamainternmed.2013.7734
Abstract

Importance  The latest generation of benchtop DNA sequencing platforms can provide an accurate whole-genome sequence (WGS) for a broad range of bacteria in less than a day. These could be used to more effectively contain the spread of multidrug-resistant pathogens.

Objective  To compare WGS with standard clinical microbiology practice for the investigation of nosocomial outbreaks caused by multidrug-resistant bacteria, the identification of genetic determinants of antimicrobial resistance, and typing of other clinically important pathogens.

Design, Setting, and Participants  A laboratory-based study of hospital inpatients with a range of bacterial infections at Cambridge University Hospitals NHS Foundation Trust, a secondary and tertiary referral center in England, comparing WGS with standard diagnostic microbiology using stored bacterial isolates and clinical information.

Main Outcomes and Measures  Specimens were taken and processed as part of routine clinical care, and cultured isolates stored and referred for additional reference laboratory testing as necessary. Isolates underwent DNA extraction and library preparation prior to sequencing on the Illumina MiSeq platform. Bioinformatic analyses were performed by persons blinded to the clinical, epidemiologic, and antimicrobial susceptibility data.

Results  We investigated 2 putative nosocomial outbreaks, one caused by vancomycin-resistant Enterococcus faecium and the other by carbapenem-resistant Enterobacter cloacae; WGS accurately discriminated between outbreak and nonoutbreak isolates and was superior to conventional typing methods. We compared WGS with standard methods for the identification of the mechanism of carbapenem resistance in a range of gram-negative bacteria (Acinetobacter baumannii, E cloacae, Escherichia coli, and Klebsiella pneumoniae). This demonstrated concordance between phenotypic and genotypic results, and the ability to determine whether resistance was attributable to the presence of carbapenemases or other resistance mechanisms. Whole-genome sequencing was used to recapitulate reference laboratory typing of clinical isolates of Neisseria meningitidis and to provide extended phylogenetic analyses of these.

Conclusions and Relevance  The speed, accuracy, and depth of information provided by WGS platforms to confirm or refute outbreaks in hospitals and the community, and to accurately define transmission of multidrug-resistant and other organisms, represents an important advance.

×