The Risk of Long-term Morbidity and Mortality in Patients With Chronic Hepatitis C: Results From an Analysis of Data From a Department of Veterans Affairs Clinical Registry | Infectious Diseases | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Lavanchy  D.  The global burden of hepatitis C.  Liver Int. 2009;29(suppl 1):74-81.PubMedGoogle ScholarCrossref
Chen  SL, Morgan  TR.  The natural history of hepatitis C virus (HCV) infection.  Int J Med Sci. 2006;3(2):47-52.PubMedGoogle ScholarCrossref
Armstrong  GL, Wasley  A, Simard  EP, McQuillan  GM, Kuhnert  WL, Alter  MJ.  The prevalence of hepatitis C virus infection in the United States, 1999 through 2002.  Ann Intern Med. 2006;144(10):705-714.PubMedGoogle ScholarCrossref
Chak  E, Talal  AH, Sherman  KE, Schiff  ER, Saab  S.  Hepatitis C virus infection in USA: an estimate of true prevalence.  Liver Int. 2011;31(8):1090-1101.PubMedGoogle ScholarCrossref
Seeff  LB.  The history of the “natural history” of hepatitis C (1968-2009).  Liver Int. 2009;29(suppl 1):89-99.PubMedGoogle ScholarCrossref
Klevens  RM, Hu  DJ, Jiles  R, Holmberg  SD.  Evolving epidemiology of hepatitis C virus in the United States.  Clin Infect Dis. 2012;55(suppl 1):S3-S9.PubMedGoogle ScholarCrossref
Smith  BD, Morgan  RL, Beckett  GA,  et al; Centers for Disease Control and Prevention.  Recommendations for the identification of chronic hepatitis C virus infection among persons born during 1945-1965.  MMWR Recomm Rep. 2012;61(RR-4):1-32.PubMedGoogle Scholar
Butt  AA, Wang  X, Moore  CG.  Effect of hepatitis C virus and its treatment on survival.  Hepatology. 2009;50(2):387-392.PubMedGoogle ScholarCrossref
El-Serag  HB, Mason  AC.  Risk factors for the rising rates of primary liver cancer in the United States.  Arch Intern Med. 2000;160(21):3227-3230.PubMedGoogle ScholarCrossref
Davis  GL, Albright  JE, Cook  SF, Rosenberg  DM.  Projecting future complications of chronic hepatitis C in the United States.  Liver Transpl. 2003;9(4):331-338.PubMedGoogle ScholarCrossref
Rein  DB, Wittenborn  JS, Weinbaum  CM, Sabin  M, Smith  BD, Lesesne  SB.  Forecasting the morbidity and mortality associated with prevalent cases of pre-cirrhotic chronic hepatitis C in the United States.  Dig Liver Dis. 2011;43(1):66-72.PubMedGoogle ScholarCrossref
Kallwitz  ER, Layden-Almer  J, Dhamija  M,  et al.  Ethnicity and body mass index are associated with hepatitis C presentation and progression.  Clin Gastroenterol Hepatol. 2010;8(1):72-78.PubMedGoogle ScholarCrossref
Lee  MH, Yang  HI, Lu  SN,  et al Chronic hepatitic C virus infection increases mortality from hepatic and extrahepatic diseases: a community-based long-term prospective study .  J Infect Dis. 2012;206(4):469-477.PubMedGoogle ScholarCrossref
van der Meer  AJ, Veldt  BJ, Feld  JJ,  et al.  Association between sustained virological response and all-cause mortality among patients with chronic hepatitis C and advanced hepatic fibrosis.  JAMA. 2012;308(24):2584-2593.PubMedGoogle ScholarCrossref
Backus  LI, Gavrilov  S, Loomis  TP,  et al.  Clinical Case Registries: simultaneous local and national disease registries for population quality management.  J Am Med Inform Assoc. 2009;16(6):775-783.PubMedGoogle ScholarCrossref
Vallet-Pichard  A, Mallet  V, Nalpas  B,  et al.  FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection: comparison with liver biopsy and fibrotest.  Hepatology. 2007;46(1):32-36.PubMedGoogle ScholarCrossref
Sterling  RK, Lissen  E, Clumeck  N,  et al; APRICOT Clinical Investigators.  Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection.  Hepatology. 2006;43(6):1317-1325.PubMedGoogle ScholarCrossref
Ng  V, Saab  S.  Effects of a sustained virologic response on outcomes of patients with chronic hepatitis C.  Clin Gastroenterol Hepatol. 2011;9(11):923-930.PubMedGoogle ScholarCrossref
Kramer  JR, Kanwal  F, Richardson  P, Mei  M, El-Serag  HB.  Gaps in the achievement of effectiveness of HCV treatment in national VA practice.  J Hepatol. 2012;56(2):320-325.PubMedGoogle ScholarCrossref
Zhou  S, Terrault  NA, Ferrell  L,  et al.  Severity of liver disease in liver transplantation recipients with hepatitis C virus infection: relationship to genotype and level of viremia.  Hepatology. 1996;24(5):1041-1046.PubMedGoogle ScholarCrossref
Gordon  FD, Poterucha  JJ, Germer  J,  et al.  Relationship between hepatitis C genotype and severity of recurrent hepatitis C after liver transplantation.  Transplantation. 1997;63(10):1419-1423.PubMedGoogle ScholarCrossref
Larsen  C, Bousquet  V, Delarocque-Astagneau  E, Pioche  C, Roudot-Thoraval  F, Desenclos  JC; HCV Surveillance Steering Committee; HCV Surveillance Group.  Hepatitis C virus genotype 3 and the risk of severe liver disease in a large population of drug users in France.  J Med Virol. 2010;82(10):1647-1654. doi:10.1002/jmv.21850.PubMedGoogle ScholarCrossref
Crosse  K, Umeadi  OG, Anania  FA,  et al.  Racial differences in liver inflammation and fibrosis related to chronic hepatitis C.  Clin Gastroenterol Hepatol. 2004;2(6):463-468.PubMedGoogle ScholarCrossref
Sterling  RK, Stravitz  RT, Luketic  VA,  et al.  A comparison of the spectrum of chronic hepatitis C virus between Caucasians and African Americans.  Clin Gastroenterol Hepatol. 2004;2(6):469-473.PubMedGoogle ScholarCrossref
Castéra  L, Hézode  C, Roudot-Thoraval  F,  et al.  Effect of antiviral treatment on evolution of liver steatosis in patients with chronic hepatitis C: indirect evidence of a role of hepatitis C virus genotype 3 in steatosis.  Gut. 2004;53(3):420-424.PubMedGoogle ScholarCrossref
Nkontchou  G, Ziol  M, Aout  M,  et al.  HCV genotype 3 is associated with a higher hepatocellular carcinoma incidence in patients with ongoing viral C cirrhosis.  J Viral Hepat. 2011;18(10):e516-e522.PubMedGoogle ScholarCrossref
Tapper  EB, Afdhal  NH.  Is 3 the new 1: perspectives on virology, natural history and treatment for hepatitis C genotype 3.  J Viral Hepat. 2013;20(10):669-677.PubMedGoogle ScholarCrossref
Gaetano  JN, Reau  N.  Hepatitis C: management of side effects in the era of direct-acting antivirals.  Curr Gastroenterol Rep. 2013;15(1):305.PubMedGoogle ScholarCrossref
McHutchison  JG, Everson  GT, Gordon  SC,  et al; PROVE1 Study Team.  Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection.  N Engl J Med. 2009;360(18):1827-1838.PubMedGoogle ScholarCrossref
Poordad  F, McCone  J  Jr, Bacon  BR,  et al; SPRINT-2 Investigators.  Boceprevir for untreated chronic HCV genotype 1 infection.  N Engl J Med. 2011;364(13):1195-1206.PubMedGoogle ScholarCrossref
Bacon  BR, Gordon  SC, Lawitz  E,  et al; HCV RESPOND-2 Investigators.  Boceprevir for previously treated chronic HCV genotype 1 infection.  N Engl J Med. 2011;364(13):1207-1217.PubMedGoogle ScholarCrossref
Jacobson  IM, McHutchison  JG, Dusheiko  G,  et al; ADVANCE Study Team.  Telaprevir for previously untreated chronic hepatitis C virus infection.  N Engl J Med. 2011;364(25):2405-2416.PubMedGoogle ScholarCrossref
Zeuzem  S, Andreone  P, Pol  S,  et al; REALIZE Study Team.  Telaprevir for retreatment of HCV infection.  N Engl J Med. 2011;364(25):2417-2428.PubMedGoogle ScholarCrossref
Fusfeld  L, Aggarwal  J, Dougher  C,  et al.  Assessment of motivating factors associated with the initiation and completion of treatment for chronic hepatitis C virus (HCV) infection.  BMC Infect Dis. 2013;13(1):234-245.PubMedGoogle ScholarCrossref
Center for Quality Management in Public Health.  The State of Care for Veterans With Chronic Hepatitis C. Palo Alto, California: US Dept of Veteran Affairs, Public Health Strategic Health Care Group, Center for Quality Management in Public Health; 2010.
McCombs  JS, Shin  J, Hines  P, Yuan  Y, Saab  S.  Impact of drug therapy adherence in patients with hepatitis C.  Am J Pharmacy Benefits.2012;4(special issue):SP19-SP27.Google Scholar
Original Investigation
February 2014

The Risk of Long-term Morbidity and Mortality in Patients With Chronic Hepatitis C: Results From an Analysis of Data From a Department of Veterans Affairs Clinical Registry

Author Affiliations
  • 1Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, Leonard Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles
  • 2Veterans Affairs Long Beach Healthcare System, Long Beach, California
  • 3Departments of Medicine and Surgery, David Geffen School of Medicine, University of California, Los Angeles
  • 4Global Health Economics and Outcomes Research, Bristol-Myers Squibb, Plainsboro New Jersey
JAMA Intern Med. 2014;174(2):204-212. doi:10.1001/jamainternmed.2013.12505

Importance  The impact of viral load suppression, genotype, race, and other factors on the risk of late-stage liver-related events in patients with hepatitis C (HCV) has been assessed previously using data from small observational cohorts or clinical trials. Data from large real-world practice samples are needed to improve risk factor estimates for late-stage liver events and death in HCV.

Objective  To describe the natural history of HCV in real-world clinical practice.

Design, Setting, and Participants  Observational cohort study. Patients with a detectable viral load (>25 IU/mL) and a recorded baseline genotype were selected from the Veterans Affairs (VA) HCV clinical registry (CCR), which compiles electronic medical records data from 1999 to present.

Exposures  Risk factors included genotype, race, age, sex, and time to achieving an observed undetected viral load.

Main Outcomes and Measures  The primary outcomes were time to death and time to a composite of liver-related clinical events. Secondary outcomes included the components of the composite clinical outcome. Outcomes were measured using a time-to-event format and were analyzed using Cox proportional hazards models.

Results  A total of 28 769 of 360 857 unique HCV CCR patients met all study criteria. Only 24.3% of patients received treatment, and 16.4% of treated patients (4.0% of all patients) achieved an undetectable viral load. The unadjusted death rates were 6.8 (95% CI, 6.0-7.7) per 1000 person-years for patients who achieved viral load suppression vs 21.8 (95% CI, 21.5-22.2) deaths per 1000 person-years in patients who did not achieve this goal. Cox model results found that achieving viral suppression reduced risk of the composite clinical end point by 27% (hazard ratio [HR], 0.73 [95% CI, 0.66-0.82]) and the risk of death by 45% (HR, 0.55 [95% CI, 0.47-0.64]). Genotype 2 patients were at significantly lower risk, and genotype 3 patients were at higher risk for all study outcomes relative to genotype 1. Black patients were at lower risk for all liver events than white patients.

Conclusion and Relevance  Achieving an undetectable viral load was associated with decreased hepatic morbidity and mortality. It remains to be determined whether newer treatment regimens can offer higher response rates with fewer adverse effects in real-world settings.