Dietary Sodium Content, Mortality, and Risk for Cardiovascular Events in Older Adults: The Health, Aging, and Body Composition (Health ABC) Study | Cardiology | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Intersalt Cooperative Research Group.  Intersalt: an international study of electrolyte excretion and blood pressure: results for 24 hour urinary sodium and potassium excretion.  BMJ. 1988;297(6644):319-328.PubMedGoogle ScholarCrossref
2.
Midgley  JP, Matthew  AG, Greenwood  CM, Logan  AG.  Effect of reduced dietary sodium on blood pressure: a meta-analysis of randomized controlled trials.  JAMA. 1996;275(20):1590-1597.PubMedGoogle ScholarCrossref
3.
Sacks  FM, Svetkey  LP, Vollmer  WM,  et al; DASH–Sodium Collaborative Research Group.  Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet.  N Engl J Med. 2001;344(1):3-10.PubMedGoogle ScholarCrossref
4.
Cianciaruso  B, Bellizzi  V, Minutolo  R,  et al.  Salt intake and renal outcome in patients with progressive renal disease.  Miner Electrolyte Metab. 1998;24(4):296-301.PubMedGoogle ScholarCrossref
5.
Verhave  JC, Hillege  HL, Burgerhof  JG,  et al; PREVEND Study Group.  Sodium intake affects urinary albumin excretion especially in overweight subjects.  J Intern Med. 2004;256(4):324-330.PubMedGoogle ScholarCrossref
6.
du Cailar  G, Ribstein  J, Mimran  A.  Dietary sodium and target organ damage in essential hypertension.  Am J Hypertens. 2002;15(3):222-229.PubMedGoogle ScholarCrossref
7.
Schmieder  RE, Messerli  FH, Garavaglia  GE, Nunez  BD.  Dietary salt intake: a determinant of cardiac involvement in essential hypertension.  Circulation. 1988;78(4):951-956.PubMedGoogle ScholarCrossref
8.
Liebson  PR, Grandits  G, Prineas  R,  et al.  Echocardiographic correlates of left ventricular structure among 844 mildly hypertensive men and women in the Treatment of Mild Hypertension Study (TOMHS).  Circulation. 1993;87(2):476-486.PubMedGoogle ScholarCrossref
9.
Schmieder  RE, Langenfeld  MR, Friedrich  A, Schobel  HP, Gatzka  CD, Weihprecht  H.  Angiotensin II related to sodium excretion modulates left ventricular structure in human essential hypertension.  Circulation. 1996;94(6):1304-1309.PubMedGoogle ScholarCrossref
10.
Simon  G, Illyes  G, Csiky  B.  Structural vascular changes in hypertension: role of angiotensin II, dietary sodium supplementation, blood pressure, and time.  Hypertension. 1998;32(4):654-660.PubMedGoogle ScholarCrossref
11.
Avolio  AP, Deng  FQ, Li  WQ,  et al.  Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China.  Circulation. 1985;71(2):202-210.PubMedGoogle ScholarCrossref
12.
Avolio  AP, Clyde  KM, Beard  TC, Cooke  HM, Ho  KK, O’Rourke  MF.  Improved arterial distensibility in normotensive subjects on a low salt diet.  Arteriosclerosis. 1986;6(2):166-169.PubMedGoogle ScholarCrossref
13.
Smith-Spangler  CM, Juusola  JL, Enns  EA, Owens  DK, Garber  AM.  Population strategies to decrease sodium intake and the burden of cardiovascular disease: a cost-effectiveness analysis.  Ann Intern Med.2010;152(8):481-487, W170-W173.PubMedGoogle ScholarCrossref
14.
Bibbins-Domingo  K, Chertow  GM, Coxson  PG,  et al.  Projected effect of dietary salt reductions on future cardiovascular disease.  N Engl J Med. 2010;362(7):590-599.PubMedGoogle ScholarCrossref
15.
Mozaffarian  D, Fahimi  S, Singh  GM,  et al; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group.  Global sodium consumption and death from cardiovascular causes.  N Engl J Med. 2014;371(7):624-634.PubMedGoogle ScholarCrossref
16.
Strazzullo  P, D’Elia  L, Kandala  NB, Cappuccio  FP.  Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies.  BMJ. 2009;339:b4567.Google ScholarCrossref
17.
Feldman  RD, Schmidt  ND.  Moderate dietary salt restriction increases vascular and systemic insulin resistance.  Am J Hypertens. 1999;12(6):643-647.PubMedGoogle ScholarCrossref
18.
Petrie  JR, Morris  AD, Minamisawa  K,  et al.  Dietary sodium restriction impairs insulin sensitivity in noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 1998;83(5):1552-1557.PubMedGoogle Scholar
19.
Graudal  NA, Galløe  AM, Garred  P.  Effects of sodium restriction on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride: a meta-analysis.  JAMA. 1998;279(17):1383-1391.PubMedGoogle ScholarCrossref
20.
Grassi  G, Dell’Oro  R, Seravalle  G, Foglia  G, Trevano  FQ, Mancia  G.  Short- and long-term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension.  Circulation. 2002;106(15):1957-1961.PubMedGoogle ScholarCrossref
21.
Stolarz-Skrzypek  K, Kuznetsova  T, Thijs  L,  et al; European Project on Genes in Hypertension (EPOGH) Investigators.  Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion.  JAMA. 2011;305(17):1777-1785.PubMedGoogle ScholarCrossref
22.
O’Donnell  MJ, Yusuf  S, Mente  A,  et al.  Urinary sodium and potassium excretion and risk of cardiovascular events.  JAMA. 2011;306(20):2229-2238.PubMedGoogle Scholar
23.
Pfister  R, Michels  G, Sharp  SJ, Luben  R, Wareham  NJ, Khaw  KT.  Estimated urinary sodium excretion and risk of heart failure in men and women in the EPIC-Norfolk study [published online January 20, 2014].  Eur J Heart Fail. doi:10.1002/ejhf.56.PubMedGoogle Scholar
24.
O’Donnell  M, Mente  A, Rangarajan  S,  et al; PURE Investigators.  Urinary sodium and potassium excretion, mortality, and cardiovascular events.  N Engl J Med. 2014;371(7):612-623.PubMedGoogle ScholarCrossref
25.
Graudal  N, Jürgens  G, Baslund  B, Alderman  MH.  Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: a meta-analysis.  Am J Hypertens. 2014;27(9):1129-1137.PubMedGoogle ScholarCrossref
26.
Nakasato  M, Strunk  CM, Guimarães  G, Rezende  MV, Bocchi  EA.  Is the low-sodium diet actually indicated for all patients with stable heart failure [in Portuguese]?  Arq Bras Cardiol. 2010;94(1):92-101.PubMedGoogle ScholarCrossref
27.
Fray  JC, Johnson  MD, Barger  AC.  Renin release and pressor response to renal arterial hypotension: effect of dietary sodium.  Am J Physiol. 1977;233(2):H191-H195.PubMedGoogle Scholar
28.
Laederach-Hofmann  K, Weidmann  P, Ferrari  P.  Hypovolemia contributes to the pathogenesis of orthostatic hypotension in patients with diabetes mellitus.  Am J Med. 1999;106(1):50-58.PubMedGoogle ScholarCrossref
29.
Bernstein  AM, Willett  WC.  Trends in 24-h urinary sodium excretion in the United States, 1957-2003: a systematic review.  Am J Clin Nutr. 2010;92(5):1172-1180.PubMedGoogle ScholarCrossref
30.
Strom  BL, Yaktine  AL, Oria  M, eds. Committee on the Consequences of Sodium Reduction in Populations, Food and Nutrition Board, Board on Population Health and Public Health Practice, Institute of Medicine.  Sodium Intake in Populations: Assessment of Evidence. Washington, DC: National Academies Press; August 2013.
31.
Mares-Perlman  JA, Klein  BE, Klein  R, Ritter  LL, Fisher  MR, Freudenheim  JL.  A diet history questionnaire ranks nutrient intakes in middle-aged and older men and women similarly to multiple food records.  J Nutr. 1993;123(3):489-501.PubMedGoogle Scholar
32.
Block  G, Wakimoto  P, Jensen  C, Mandel  S, Green  RR.  Validation of a food frequency questionnaire for Hispanics.  Prev Chronic Dis. 2006;3(3):A77.PubMedGoogle Scholar
33.
Cesari  M, Penninx  BW, Newman  AB,  et al.  Inflammatory markers and cardiovascular disease (The Health, Aging and Body Composition [Health ABC] Study).  Am J Cardiol. 2003;92(5):522-528.PubMedGoogle ScholarCrossref
34.
Newman  AB, Simonsick  EM, Naydeck  BL,  et al.  Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability.  JAMA. 2006;295(17):2018-2026.PubMedGoogle ScholarCrossref
35.
Fried  LP, Borhani  NO, Enright  P,  et al.  The Cardiovascular Health Study: design and rationale.  Ann Epidemiol. 1991;1(3):263-276.PubMedGoogle ScholarCrossref
36.
Rodondi  N, Newman  AB, Vittinghoff  E,  et al.  Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death.  Arch Intern Med. 2005;165(21):2460-2466.PubMedGoogle ScholarCrossref
37.
Binder  H, Sauerbrei  W, Royston  P.  Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response.  Stat Med. 2013;32(13):2262-2277.PubMedGoogle ScholarCrossref
38.
Fine  JP, Gray  RJ.  A proportional hazards model for the subdistribution of a competing risk.  J Am Stat Assoc. 1999;94:496-509.Google ScholarCrossref
39.
Butler  J, Rodondi  N, Zhu  Y,  et al; Health ABC Study.  Metabolic syndrome and the risk of cardiovascular disease in older adults.  J Am Coll Cardiol. 2006;47(8):1595-1602.PubMedGoogle ScholarCrossref
40.
Butler  J, Kalogeropoulos  A, Georgiopoulou  V,  et al; Health ABC Study.  Incident heart failure prediction in the elderly: the Health ABC heart failure score.  Circ Heart Fail. 2008;1(2):125-133.PubMedGoogle ScholarCrossref
41.
Vincent  GK, Velkoff  VA.  The Next Four Decades: The Older Population in the United States: 2010 to 2050, Current Population Reports. Washington, DC: US Census Bureau; 2010:25-1138.
42.
Go  AS, Mozaffarian  D, Roger  VL,  et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee.  Heart disease and stroke statistics: 2014 update: a report from the American Heart Association.  Circulation. 2014;129(3):e28-e292. doi:10.1161/01.cir.0000441139.02102.80.PubMedGoogle ScholarCrossref
43.
Odden  MC, Coxson  PG, Moran  A, Lightwood  JM, Goldman  L, Bibbins-Domingo  K.  The impact of the aging population on coronary heart disease in the United States.  Am J Med.2011;124(9):827-833.e5. doi:10.1016/j.amjmed.2011.04.010.PubMedGoogle ScholarCrossref
44.
Vigen  R, Maddox  TM, Allen  LA.  Aging of the United States population: impact on heart failure.  Curr Heart Fail Rep. 2012;9(4):369-374.PubMedGoogle ScholarCrossref
45.
US Department of Agriculture.  Dietary guidelines for Americans.http://www.cnpp.usda.gov/DGAs2010-PolicyDocument.htm. Accessed October 26, 2011.
46.
Centers for Disease Control and Prevention (CDC).  Usual sodium intakes compared with current dietary guidelines: United States, 2005-2008.  MMWR Morb Mortal Wkly Rep. 2011;60(41):1413-1417. PubMedGoogle Scholar
47.
Fiocco  AJ, Shatenstein  B, Ferland  G,  et al.  Sodium intake and physical activity impact cognitive maintenance in older adults: the NuAge Study  . Neurobiol Aging.2012;33(4):829.e21-829.e28. doi:10.1016/j.neurobiolaging.2011.07.004.PubMedGoogle ScholarCrossref
48.
Tuomilehto  J, Jousilahti  P, Rastenyte  D,  et al.  Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study.  Lancet. 2001;357(9259):848-851.PubMedGoogle ScholarCrossref
49.
Taylor  RS, Ashton  KE, Moxham  T, Hooper  L, Ebrahim  S.  Reduced dietary salt for the prevention of cardiovascular disease.  Cochrane Database Syst Rev. 2011;(7):CD009217.PubMedGoogle Scholar
50.
Shimazu  T, Kuriyama  S, Hozawa  A,  et al.  Dietary patterns and cardiovascular disease mortality in Japan: a prospective cohort study.  Int J Epidemiol. 2007;36(3):600-609.PubMedGoogle ScholarCrossref
51.
O’Donnell  MJ, Mente  A, Smyth  A, Yusuf  S.  Salt intake and cardiovascular disease: why are the data inconsistent?  Eur Heart J. 2013;34(14):1034-1040.PubMedGoogle ScholarCrossref
52.
Cook  NR, Appel  LJ, Whelton  PK.  Lower levels of sodium intake and reduced cardiovascular risk.  Circulation. 2014;129(9):981-989.PubMedGoogle ScholarCrossref
53.
He  FJ, Li  J, Macgregor  GA.  Effect of longer-term modest salt reduction on blood pressure.  Cochrane Database Syst Rev. 2013;4:CD004937.Google Scholar
54.
Cook  NR, Cutler  JA, Obarzanek  E,  et al.  Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the Trials of Hypertension Prevention (TOHP).  BMJ. 2007;334(7599):885-888.PubMedGoogle ScholarCrossref
55.
He  FJ, MacGregor  GA.  Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials.  Lancet. 2011;378(9789):380-382.PubMedGoogle ScholarCrossref
56.
McKeown  NM, Day  NE, Welch  AA,  et al.  Use of biological markers to validate self-reported dietary intake in a random sample of the European Prospective Investigation Into Cancer United Kingdom Norfolk cohort.  Am J Clin Nutr. 2001;74(2):188-196.PubMedGoogle Scholar
57.
Cobb  LK, Anderson  CA, Elliott  P,  et al; American Heart Association Council on Lifestyle and Metabolic Health.  Methodological issues in cohort studies that relate sodium intake to cardiovascular disease outcomes: a science advisory from the American Heart Association.  Circulation. 2014;129(10):1173-1186.PubMedGoogle ScholarCrossref
58.
Whelton  PK, Appel  LJ, Sacco  RL,  et al.  Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations.  Circulation. 2012;126(24):2880-2889.PubMedGoogle ScholarCrossref
59.
Seeman  TE, Merkin  SS, Crimmins  EM, Karlamangla  AS.  Disability trends among older Americans: National Health and Nutrition Examination Surveys, 1988-1994 and 1999-2004.  Am J Public Health. 2010;100(1):100-107.PubMedGoogle ScholarCrossref
Original Investigation
March 2015

Dietary Sodium Content, Mortality, and Risk for Cardiovascular Events in Older Adults: The Health, Aging, and Body Composition (Health ABC) Study

Author Affiliations
  • 1Emory Clinical Cardiovascular Research Institute, Emory University, Atlanta, Georgia
  • 2Intramural Research Program, Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, Maryland
  • 3Center for Aging and Population Health, Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
  • 4Departments of Medicine and Epidemiology & Biostatistics, University of California, San Francisco
  • 5Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, Georgia
  • 6Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina
JAMA Intern Med. 2015;175(3):410-419. doi:10.1001/jamainternmed.2014.6278
Abstract

Importance  Additional information is needed about the role of dietary sodium on health outcomes in older adults.

Objective  To examine the association between dietary sodium intake and mortality, incident cardiovascular disease (CVD), and incident heart failure (HF) in older adults.

Design, Setting, and Participants  We analyzed 10-year follow-up data from 2642 older adults (age range, 71-80 years) participating in a community-based, prospective cohort study (inception between April 1, 1997, and July 31, 1998).

Exposures  Dietary sodium intake at baseline was assessed by a food frequency questionnaire. We examined sodium intake as a continuous variable and as a categorical variable at the following levels: less than 1500 mg/d (291 participants [11.0%]), 1500 to 2300 mg/d (779 participants [29.5%]), and greater than 2300 mg/d (1572 participants [59.5%]).

Main Outcomes and Measures  Adjudicated death, incident CVD, and incident HF during 10 follow-up years. Analysis of incident CVD was restricted to 1981 participants without prevalent CVD at baseline.

Results  The mean (SD) age of participants was 73.6 (2.9) years, 51.2% were female, 61.7% were of white race, and 38.3% were black. After 10 years, 881 participants had died, 572 had developed CVD, and 398 had developed HF. In adjusted Cox proportional hazards regression models, sodium intake was not associated with mortality (hazard ratio [HR] per 1 g, 1.03; 95% CI, 0.98-1.09; P = .27). Ten-year mortality was nonsignificantly lower in the group receiving 1500 to 2300 mg/d (30.7%) than in the group receiving less than 1500 mg/d (33.8%) and the group receiving greater than 2300 mg/d (35.2%) (P = .07). Sodium intake of greater than 2300 mg/d was associated with nonsignificantly higher mortality in adjusted models (HR vs 1500-2300 mg/d, 1.15; 95% CI, 0.99-1.35; P = .07). Indexing sodium intake for caloric intake and body mass index did not materially affect the results. Adjusted HRs for mortality were 1.20 (95% CI, 0.93-1.54; P = .16) per milligram per kilocalorie and 1.11 (95% CI, 0.96-1.28; P = .17) per 100 mg/kg/m2 of daily sodium intake. In adjusted models accounting for the competing risk for death, sodium intake was not associated with risk for CVD (subHR per 1 g, 1.03; 95% CI, 0.95-1.11; P = .47) or HF (subHR per 1 g, 1.00; 95% CI, 0.92-1.08; P = .92). No consistent interactions with sex, race, or hypertensive status were observed for any outcome.

Conclusions and Relevance  In older adults, food frequency questionnaire–assessed sodium intake was not associated with 10-year mortality, incident CVD, or incident HF, and consuming greater than 2300 mg/d of sodium was associated with nonsignificantly higher mortality in adjusted models.

×