[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Viberti  GCWiseman  MJ The kidney in diabetes: significance of the early abnormalities.  Clin Endocrinol Metab. 1986;15753- 782Google ScholarCrossref
Bennet  PHHaffner  SKasiske  BL  et al.  Screening and management of microalbuminuria in patients with diabetes mellitus: recommendations to the Scientific Advisory Board of the National Kidney Foundation from an ad hoc Committee of the Council on Diabetes Mellitus of the National Kidney Foundation.  Am J Kidney Dis. 1995;25107- 112Google ScholarCrossref
Ravid  MSavin  HSLang  RJutrin  IShoshanna  LLishner  M Proteinuria, renal impairment, metabolic control, and blood pressure in type 2 diabetes mellitus.  Arch Intern Med. 1992;1521225- 1229Google ScholarCrossref
Savage  SNagel  NJEstacio  ROLukken  NSchrier  RW Clinical factors associated with urinary albumin excretion in type II diabetes.  Am J Kidney Dis. 1995;25836- 844Google ScholarCrossref
Viberti  GCJarret  RJMahmud  UHill  RDArgyropoulos  AKeen  H Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus.  Lancet. 1982;11430- 1432Google ScholarCrossref
Parving  HHOxenboll  BSvendsen  PAChristiansen  SJAndersen  AR Early detection of patients at risk of developing diabetic nephropathy: a longitudinal study of urinary albumin excretion.  Acta Endocrinol. 1982;100550- 555Google Scholar
Mogensen  CEChristensen  CK Predicting diabetic nephropathy in insulin-dependent patients.  N Engl J Med. 1984;31189- 93Google ScholarCrossref
Mathiensen  EROxenboll  BJohansen  KSvendsen  PADeckert  T Incipient nephropathy in type 1 (insulin-dependent) diabetes.  Diabetologia. 1984;26406- 410Google Scholar
Messent  JWCElliott  TGHill  RDJarret  RJKeen  HViberti  GC Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study.  Kidney Int. 1992;41836- 839Google ScholarCrossref
Klag  MJWhelton  PKRandall  BL  et al.  Blood pressure and end-stage renal disease in men.  N Engl J Med. 1996;33413- 18Google ScholarCrossref
Klag  MJWhelton  PKRandall  BLNeaton  JDBrancati  FLStamler  J End-stage renal disease in African-American and white men.  JAMA. 1997;2771293- 1298Google ScholarCrossref
Klag  MJWhelton  PKRandall  B  et al.  Serum cholesterol and end-stage renal disease in men screened for the MRFIT [abstract].  J Am Soc Nephrol. 1995;6393Abstract 84.Google Scholar
Whelton  PKRandall  BNeaton  JDStamler  JBrancati  FLKlag  MJ Cigarette smoking and end-stage renal disease in men screened for the MRFIT [abstract].  J Am Soc Nephrol. 1995;6408Abstract 88.Google Scholar
Orth  SRStockmann  AConradt  CRitz  E Smoking increases the risk to progress to end-stage renal failure in men with primary renal disease.  Nephrology. 1997;3(suppl)S505Abstract P1734.Google Scholar
Gosling  PBeevers  DG Urinary albumin excretion and blood pressure in the general population.  Clin Sci. 1989;7639- 42Google Scholar
Vestbo  EDamsgaard  EMFroland  AMogensen  CE Microalbuminuria in a population-based cohort: ways of expression of albuminuria (Fredericia Study Second Generation).  J Diabetes Complications. 1994;8176- 177Google ScholarCrossref
Jiang  XSrinivasan  SRRadhakrishnamurthy  BDalferes  ERBao  WBerenson  GS Microalbuminuria in young adults related to blood pressure in a biracial (black-white) population: The Bogalusa Heart Study.  Am J Hypertens. 1994;7794- 800Google Scholar
Tichet  JVol  SHallab  MCaces  EMarre  M Epidemiology of microalbuminuria in a French population.  J Diabetes Complications. 1994;8174- 175Google ScholarCrossref
Metcalf  PABaker  JScott  AJWild  CJScragg  RDryson  E Albuminuria in people at least 40 years old: effect of obesity, hypertension, and hyperlipidemia.  Clin Chem. 1992;381802- 1808Google Scholar
Metcalf  PABaker  JScragg  RDryson  EScott  AJWild  CJ Albuminuria in people at least 40 years old: effect of alcohol consumption, regular exercise, and cigarette smoking.  Clin Chem. 1993;391793- 1797Google Scholar
Laurenzi  MTrevisan  M Sodium-lithium countertransport and blood pressure: the Gubbio Population Study.  Hypertension. 1989;13408- 415Google ScholarCrossref
Trevisan  MLaurenzi  M Correlates of sodium-lithium countertransport: findings from the Gubbio epidemiological study.  Circulation. 1991;842011- 2019Google ScholarCrossref
Cirillo  MTrevisan  MLaurenzi  M Calcium binding capacity of erythrocyte membrane in human hypertension.  Hypertension. 1989;14152- 155Google ScholarCrossref
Laurenzi  MCirillo  MAngeletti  M  et al.  Gubbio Population Study: baseline findings.  Nutr Metab Cardiovasc Dis. 1991;1(suppl)S1- S18Google Scholar
Cirillo  MLaurenzi  MTrevisan  M Hematocrit, blood pressure, and hypertension: the Gubbio Population Study.  Hypertension. 1992;20319- 326Google ScholarCrossref
Cirillo  MLaurenzi  MPanarelli  WStamler  J Urinary sodium to potassium ratio and urinary stone disease.  Kidney Int. 1994;461133- 1139Google ScholarCrossref
Cirillo  MLaurenzi  MTrevisan  MPanarelli  WStamler  J Sodium-lithium countertransport and blood pressure change over time: the Gubbio Study.  Hypertension. 1996;271305- 1311Google ScholarCrossref
Laurenzi  MCirillo  MTrevisan  MPanarelli  WStamler  J Baseline sodium-lithium countertransport and 6-year incidence of hypertension: the Gubbio Population Study.  Circulation. 1997;95581- 587Google ScholarCrossref
Pesce  AJHsu  AKornhauser  CSethi  KOoi  BSPollak  VE Method for measuring the concentration of urinary proteins according to their molecular size category.  Clin Chem. 1976;22667- 672Google Scholar
Ruilope  LMRodicio  JL Microalbuminuria in clinical practice.  Kidney Curr Survey World Lit. 1995;4211- 216Google Scholar
Praga  MHernandez  EAndres  ALeon  MRuilope  LMRodicio  JL Effects of body-weight loss and captopril treatment on proteinuria associated with obesity.  Nephron. 1995;7035- 41Google ScholarCrossref
Bottazzo  SSever  GToffoletto  PFazzin  G Microalbuminuria in primary hypercholesterolemia [abstract in English].  Giorn It Nefrol. 1996;1319- 23Google Scholar
Hutchinson  FN Proteinuria, hyperlipidemia and the kidney.  Miner Electrolyte Metab. 1993;19127- 136Google Scholar
Al-Shebeb  TFrohlich  JMagil  AB Glomerular disease in hypercholesterolemic guinea pigs.  Kidney Int. 1988;33498- 507Google ScholarCrossref
Kasiske  BLO'Donnel  MPSchmitz  PGKim  YKeane  WF Renal injury of diet-induced hypercholesterolemia in rats.  Kidney Int. 1990;37880- 891Google ScholarCrossref
Bank  N Renal hemodynamic consequences of hyperlipidemia.  Miner Electrolyte Metab. 1993;19165- 172Google Scholar
Guijaro  CKasiske  BLKim  YO'Donnel  MPLee  HSKeane  WF Early glomerular changes in rats with dietary-induced hypercholesterolemia.  Am J Kidney Dis. 1995;26152- 161Google ScholarCrossref
Dubois  DChanson  PTimsit  J  et al.  Remission of proteinuria following correction of hyperlipidemia in non–insulin-dependent patients with non-diabetic glomerulopathy.  Diabetes Care. 1994;17906- 908Google ScholarCrossref
Foster  DM Insulin resistance: a secret killer?  N Engl J Med. 1989;320733- 734Google ScholarCrossref
Jensen  JSBorch-Johnsen  KJensen  GRasmussen  BF Atherosclerotic risk factors are increased in clinically healthy subjects with microalbuminuria.  Atherosclerosis. 1995;112245- 252Google ScholarCrossref
Winocour  PHHarland  JOEMillar  JPLaker  MFAlberti  KGMM Microalbuminuria and associated cardiovascular risk factors in the community.  Atherosclerosis. 1992;9371- 81Google ScholarCrossref
Cockroft  DWGault  MH Prediction of creatinine clearance from serum creatinine.  Nephron. 1976;1631- 41Google ScholarCrossref
Damsgaard  EMFroland  AJorgensen  ODMogensen  CR Eight to nine year mortality in known non–insulin dependent diabetics and controls.  Kidney Int. 1992;41731- 735Google ScholarCrossref
Deckert  TYokoyama  HMathiesen  E  et al.  Cohort study of predictive value of urinary albumin excretion for atherosclerotic vascular disease in patients with insulin dependent diabetes.  BMJ. 1996;312871- 874Google ScholarCrossref
Yudkin  JSForrest  RVJackson  CA Microalbuminuria as predictor of vascular disease in non-diabetic subjects.  Lancet. 1988;2530- 533Google ScholarCrossref
Damsgaard  EMFroland  AJorgensen  ODMogensen  CE Microalbuminuria as predictor of increased mortality in elderly people.  BMJ. 1990;300297- 300Google ScholarCrossref
Agewall  SWikstrand  JLjunghman  SHerlitz  HFagerberg  B Does microalbuminuria predict cardiovascular events in nondiabetic men with treated hypertension?  Am J Hypertens. 1995;8337- 342Google ScholarCrossref
Original Investigation
September 28, 1998

Microalbuminuria in Nondiabetic Adults: Relation of Blood Pressure, Body Mass Index, Plasma Cholesterol Levels, and Smoking: The Gubbio Population Study

Author Affiliations

From the Department of Nephrology, Second University of Naples, Naples, Italy (Drs Cirillo, Senigalliesi, and De Santo); the Department of Preventive Medicine, Northwestern University Medical School, Chicago, Ill (Drs Cirillo, Laurenzi, and J. Stamler and Prof R. Stamler); Center for Epidemiologic Research, Merck Sharp and Dohme, Rome, Italy (Dr Laurenzi); the Department of Biochemistry, Federico II University, Naples (Dr Alfieri); and Civil Hospital, Gubbio, Italy (Dr Panarelli). Prof Rose Stamler died February 28, 1998.

Arch Intern Med. 1998;158(17):1933-1939. doi:10.1001/archinte.158.17.1933

Background  Evidence exists that cardiovascular risk factors influence progression toward end-stage renal failure. We tested the hypothesis that in nondiabetic middle-aged adults without macroalbuminuria, cardiovascular risk factors are related to urinary albumin excretion and prevalence of microalbuminuria, a sign of early nephropathy.

Methods  Cross-sectional analysis of data for 1567 participants in The Gubbio Population Study (677 men and 890 women), aged 45 to 64 years, without macroalbuminuria, without diabetes mellitus, and with fasting plasma glucose levels of less than 7.8 mmol/L (140 mg/dL). Data collection included albumin and creatinine excretion in timed overnight urine collection; levels of fasting plasma cholesterol, glucose, triglycerides, creatinine, and uric acid; creatinine clearance; red blood cell sodium-lithium countertransport; blood pressure; weight; height; medical history; smoking status; and alcohol intake. Urinary albumin excretion and prevalence of microalbuminuria were the dependent variables.

Results  Blood pressure, plasma cholesterol levels, smoking, and body mass index significantly related to urinary albumin excretion and prevalence of microalbuminuria. In analyses with control for multiple variables, relative risk for microalbuminuria (urinary albumin excretion, 20-199 µg/min) in men and women was 2.51 and 1.62, respectively, with 18 mm Hg higher (1 SD) systolic blood pressure; 2.25 and 2.10, respectively, with 1.0-mmol/L (40 mg/dL) higher plasma cholesterol level; 1.99 and 1.91, respectively, for smokers vs nonsmokers; and 1.83 and 1.33, respectively, with 4 kg/m2 higher body mass index. Findings were similar for microalbuminuria defined as urinary albumin excretion of at least 25 µg/dL glomerular filtration rate.

Conclusion  Major cardiovascular risk factors are independent correlates of microalbuminuria in nondiabetic middle-aged adults.