[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Denny  FW  Jr The clinical impact of human respiratory virus infections.  Am J Respir Crit Care Med. 1995;152 ((suppl, pt 2)) S4- S12Google ScholarCrossref
Fahey  TStocks  NToby  T Systematic review of the treatment of upper respiratory tract infection.  Arch Dis Child. 1998;79225- 230Google ScholarCrossref
Monto  ASBryan  EROhmit  S Rhinovirus infections in Tecumseh, Michigan: frequency of illness and number of serotypes.  J Infect Dis. 1987;15643- 49Google ScholarCrossref
Arruda  EPitkaranta  AWitek  TJ  JrDoyle  CAHayden  FG Frequency and natural history of rhinovirus infections in adults during autumn.  J Clin Microbiol. 1997;352864- 2868Google Scholar
Monto  ASSullivan  KM Acute respiratory illness in the community: frequency of illness and the agents involved.  Epidemiol Infect. 1993;110145- 160Google ScholarCrossref
Gwaltney  JMHendley  JOSimon  GJordan  WS Rhinovirus infections in an industrial population, II: characteristics of illness and antibody response.  JAMA. 1967;202158- 163Google ScholarCrossref
Monto  AS Viral respiratory infections in the community: epidemiology, agents, and interventions.  Am J Med. 1995;99 ((suppl 6B)) 25S- 27SGoogle ScholarCrossref
Turner  RB The common cold.  Pediatr Ann. 1998;27790- 795Google ScholarCrossref
Adams  PFHendershot  GEMarano  MA Current estimates from the National Health Interview Survey, 1996.  Vital Health Stat 10. 1999;No. 20059- 66Google Scholar
Nicholson  KGKent  JHammersley  VCancio  E Acute viral infections of upper respiratory tract in elderly people living in the community: comparative, prospective, population based study of disease burden.  BMJ. 1997;3151060- 1064Google ScholarCrossref
Wald  TGShult  PKrause  PMiller  BADrinka  PGravenstein  S A rhinovirus outbreak among residents of a long-term care facility.  Ann Intern Med. 1995;123588- 593Google ScholarCrossref
McIntosh  KHalonen  PRuuskanen  O Report of a workshop on respiratory viral infections: epidemiology, diagnosis, treatment, and prevention.  Clin Infect Dis. 1993;16151- 164Google ScholarCrossref
Patel  JAReisner  BVizirinia  NOwen  MChonmaitree  THowie  V Bacteriologic failure of amoxicillin-clavulanate in treatment of acute otitis media caused by nontypeable Haemophilus influenzae J Pediatr. 1995;126 ((5 pt 1)) 799- 806Google ScholarCrossref
Sung  BSChonmaitree  TBroemeling  LD  et al.  Association of rhinovirus infection with poor bacteriologic outcome of bacterial-viral otitis media.  Clin Infect Dis. 1993;1738- 42Google ScholarCrossref
Dingle  JHBadger  GFJordan  WS  Jr Illness in the Home: Study of 25,000 Illnesses in a Group of Cleveland Families.  Cleveland, Ohio Press of Western Reserve University1964;1
Pitkaranta  AArruda  EMalmberg  HHayden  F Detection of rhinovirus by reverse transcription PCR of sinus brushings in patients with acute community acquired sinusitis.  J Clin Microbiol. 1997;351791- 1793Google Scholar
Turner  BWCail  WSHendley  JO  et al.  Physiologic abnormalities in the paranasal sinuses during experimental rhinovirus colds.  J Allergy Clin Immunol. 1992;90474- 478Google ScholarCrossref
Gwaltney  JM  JrPhillips  CDMiller  RDRiker  DK Computed tomographic study of the common cold.  N Engl J Med. 1994;33025- 30Google ScholarCrossref
Chidekel  ASRosen  CLBazzy  AR Rhinovirus infection associated with serious lower respiratory illness in patients with bronchopulmonary dysplasia.  Pediatr Infect Dis J. 1997;1643- 47Google ScholarCrossref
Collinson  JNicholson  KGCancio  E  et al.  Effects of upper respiratory infections in patients with cystic fibrosis.  Thorax. 1996;511115- 1122Google ScholarCrossref
Couch  RBEnglund  JA Respiratory viral infections in immunocompetent and immunocompromised persons.  Am J Med. 1997;102 ((suppl 1)) 2- 9Google ScholarCrossref
Rabella  NRodriguez  PLabeaga  R  et al.  Conventional respiratory viruses recovered from immunocompromised patients: clinical considerations.  Clin Infect Dis. 1999;281043- 1048Google ScholarCrossref
Whimbey  EChamplin  RECouch  RB  et al.  Community respiratory virus infections among hospitalized adult bone marrow transplant recipients.  Clin Infect Dis. 1996;22778- 782Google ScholarCrossref
Ghosh  SChamplin  RCouch  R  et al.  Rhinovirus infections in myelosuppressed adult blood and marrow transplant recipients: trivial or fatal?  Paper presented at: The 8th International Congress on Infectious Disease May 15-18, 1998 Boston, Mass.
Whimbey  EEnglund  JACouch  RB Community respiratory virus infections in immunocompromised patients with cancer.  Am J Med. 1997;102 ((suppl 1)) 10- 18Google ScholarCrossref
Pitkaranta  AHayden  FG Rhinoviruses: important respiratory pathogens.  Ann Med. 1998;30529- 537Google ScholarCrossref
Minor  TEBaker  JWDick  EC  et al.  Greater frequency of viral respiratory infections in asthmatic children as compared with their nonasthmatic siblings.  J Pediatr. 1974;85472- 477Google ScholarCrossref
Teichtahl  HBuckmaster  NPertnikovs  E The incidence of respiratory tract infection in adults requiring hospitalization for asthma.  Chest. 1997;112591- 596Google ScholarCrossref
Minor  TEDick  ECDeMeo  ANOuellette  JJCohen  MReed  CE Viruses as precipitants of asthmatic attacks in children.  JAMA. 1974;227292- 298Google ScholarCrossref
Rakes  GPEurico  AIngram  JM  et al.  Rhinovirus and respiratory syncytial virus in wheezing children requiring emergency care.  Am J Respir Crit Care Med. 1999;159785- 790Google ScholarCrossref
Johnston  SLPattemore  PKSanderson  G  et al.  Community study of role of viral infections in exacerbations of asthma in 9-11 year old children.  BMJ. 1995;3101225- 1229Google ScholarCrossref
Beasley  RColeman  EDHermon  YHolst  PEO'Donnell  TVTobias  M Viral respiratory tract infection and exacerbations of asthma in adult patients.  Thorax. 1988;43679- 683Google ScholarCrossref
Nicholson  KGKent  JIreland  DC Respiratory viruses and exacerbations of asthma in adults.  BMJ. 1993;307982- 986Google ScholarCrossref
Hayden  FGKim  KHudson  S Pleconaril treatment reduces duration and severity of viral respiratory infection (common cold) due to picornaviruses.  Paper presented at: the 41st Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) December 16-19, 2001 Chicago, Ill.
Mainous III  AGHueston  WJClark  JR Antibiotics and upper respiratory infection: do some folks think there is a cure for the common cold?  J Fam Pract. 1996;42357- 361Google Scholar
Cardinale  Ved Drug Topics Red Book.  Montvale, NJ Medical Economics Books2001;
Bureau of Labor Statistics, Labor force statistics from the current population survey. http://www.bls.gov/home.htm. Accessed June 7, 2001.
Agency for Healthcare Research and Quality, Introduction to MEPS data & publications. http://www.meps.ahrq.gov/data_public.htm. Accessed February 1, 2001.
McIsaac  WJLevine  NGoel  V Visits by adults to family physicians for the common cold.  J Fam Pract. 1998;47366- 369Google Scholar
Lorber  B The common cold.  J Gen Intern Med. 1996;11229- 236Google ScholarCrossref
Malone  DCLawson  KASmith  DHArrighi  MHBattista  C A cost of illness study of allergic rhinitis in the United States.  J Allergy Clin Immunol. 1997;99 ((pt 1)) 22- 27Google Scholar
Gates  GA Cost-effectiveness considerations in otitis media treatment.  Otolaryngol Head Neck Surg. 1996;114525- 530Google ScholarCrossref
Wiess  KBGergen  PJHodgson  TA An economic evaluation of asthma in the United States.  N Engl J Med. 1992;326862- 866Google ScholarCrossref
National Osteoporosis Foundation, New study finds cost of treating osteoporosis significantly underestimated [press release]. Available at: http://www.nof.org/news/. Accessed September 24, 2001.
Hu  HXMarkson  LELipton  RBStewart  WFBerger  ML Burden of migraine in the United States: disability and economic costs.  Arch Intern Med. 1999;159813- 818Google ScholarCrossref
American Heart Association, 2001 Heart and Stroke Statistical Update.  Dallas, Tex American Heart Association2000;
American Lung Association, American Lung Association fact sheet: chronic obstructive pulmonary disease (COPD). Available at: http://www.lungusa.org/diseases/copd_factsheet.html. Accessed September 24, 2001
Varmus  H Disease-Specific Estimates of Direct and Indirect Costs of Illness and NIH Support.  Bethesda, Md Office of the Director, National Institutes of Health, Dept of Health and Human Services1997;
Monto  ASCavallero  JJ The Tecumseh study of respiratory illness, II: patterns of occurrence of infection with respiratory pathogens, 1965-1969.  Am J Epidemiol. 1971;94280- 289Google Scholar
Monto  ASUllman  BM Acute respiratory illness in an American community: the Tecumseh study.  JAMA. 1974;227164- 169Google ScholarCrossref
Nyquist  AGonzales  RSteiner  JFSande  MA Antibiotic prescribing for children with colds, upper respiratory tract infections, and bronchitis.  JAMA. 1998;279875- 877Google ScholarCrossref
Steiner  JFSande  MA Antibiotic prescribing for adults with colds, upper respiratory tract infections, and bronchitis by ambulatory care physicians.  JAMA. 1997;278901- 904Google ScholarCrossref
Fendrick  AMSaint  SBrook  IJacobs  MRPelton  SSethi  S Diagnosis and treatment of upper respiratory tract infections in the primary care setting.  Clin Ther. 2001;231683- 1706Google ScholarCrossref
Hendley  JOGwaltney  JM  JrJordan  WS  Jr Rhinovirus infections in an industrial population, IV: infections within families of employees during two fall peaks of respiratory illness.  Am J Epidemiol. 1969;89184- 196Google Scholar
Not Available, Update: influenza activity—United States and worldwide, 2000-01 season, and composition of the 2001-02 influenza vaccine.  MMWR Morb Mortal Wkly Rep. 2001;50466- 479Google Scholar
Original Investigation
February 24, 2003

The Economic Burden of Non–Influenza-Related Viral Respiratory Tract Infection in the United States

Author Affiliations

From the Division of General Internal Medicine, Department of Internal Medicine, School of Medicine (Dr Fendrick), Departments of Health Management and Policy (Dr Fendrick) and Epidemiology (Dr Monto), School of Public Health, and the Consortium for Health Outcomes, Innovation, and Cost Effectiveness Studies (Dr Fendrick), University of Michigan, Ann Arbor; and Applied Health Outcomes, Tampa, Fla (Drs Nightengale and Sarnes). All authors serve as consultants to ViroPharma, Inc, Exton, Penn; Dr Monto has also received research funding from ViroPharma, Inc.

Arch Intern Med. 2003;163(4):487-494. doi:10.1001/archinte.163.4.487

Background  Viral respiratory tract infection (VRTI) is the most common illness in humans. Despite the high incidence, the economic impact of non–influenza-related VRTI has not been rigorously explored. Our objectives were to obtain an updated incidence of non–influenza-related VRTI in the United States and to quantify the health care resource use (direct costs) and productivity losses (indirect costs) associated with these infections.

Methods  A nationwide telephone survey of US households (N = 4051) was conducted between November 3, 2000, and February 12, 2001 to obtain a representative estimate of the self-reported incidence of non–influenza-related VRTI and related treatment patterns. Direct treatment costs measured included outpatient clinician encounters, use of over-the-counter and prescription drugs, and associated infectious complications of non–influenza-related VRTI. Absenteeism estimates for infected individuals and parents of infected children were extrapolated from National Health Interview Survey data.

Results  Of survey respondents, 72% reported a non–influenza-related VRTI within the past year. Respondents who experienced a self-reported non–influenza-related VRTI averaged 2.5 episodes annually. When these rates are extrapolated to the entire US population, approximately 500 million non–influenza-related VRTI episodes occur per year. Similarly, if the treatment patterns reported by the respondents are extended to the population, the total economic impact of non–influenza-related VRTI approaches $40 billion annually (direct costs, $17 billion per year; and indirect costs, $22.5 billion per year).

Conclusions  Largely because of the high attack rate, non–influenza-related VRTI imposes a greater economic burden than many other clinical conditions. The pending availability of effective antiviral therapies warrants increased attention be paid to this common and expensive illness.