Oral Appliance Therapy in Patients With Daytime Sleepiness and Snoring or Mild to Moderate Sleep Apnea: A Randomized Clinical Trial | Medical Devices and Equipment | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Young  T, Palta  M, Dempsey  J, Skatrud  J, Weber  S, Badr  S.  The occurrence of sleep-disordered breathing among middle-aged adults.  N Engl J Med. 1993;328(17):1230-1235.PubMedGoogle ScholarCrossref
Jordan  AS, McSharry  DG, Malhotra  A.  Adult obstructive sleep apnoea.  Lancet. 2014;383(9918):736-747.PubMedGoogle ScholarCrossref
Li  D, Liu  D, Wang  X, He  D.  Self-reported habitual snoring and risk of cardiovascular disease and all-cause mortality.  Atherosclerosis. 2014;235(1):189-195.PubMedGoogle ScholarCrossref
Pepin  JL, Borel  AL, Tamisier  R, Baguet  JP, Levy  P, Dauvilliers  Y.  Hypertension and sleep: overview of a tight relationship.  Sleep Med Rev. 2014;18(6):509-519.PubMedGoogle ScholarCrossref
Sahlin  C, Sandberg  O, Gustafson  Y,  et al.  Obstructive sleep apnea is a risk factor for death in patients with stroke: a 10-year follow-up.  Arch Intern Med. 2008;168(3):297-301.PubMedGoogle ScholarCrossref
Valham  F, Mooe  T, Rabben  T, Stenlund  H, Wiklund  U, Franklin  KA.  Increased risk of stroke in patients with coronary artery disease and sleep apnea: a 10-year follow-up.  Circulation. 2008;118(9):955-960.PubMedGoogle ScholarCrossref
Vrints  H, Shivalkar  B, Hilde  H,  et al.  Cardiovascular mechanisms and consequences of obstructive sleep apnoea.  Acta Clin Belg. 2013;68(3):169-178.PubMedGoogle ScholarCrossref
Roux  FJ.  Restless legs syndrome: impact on sleep-related breathing disorders.  Respirology. 2013;18(2):238-245.PubMedGoogle ScholarCrossref
Weaver  TE, Mancini  C, Maislin  G,  et al.  Continuous positive airway pressure treatment of sleepy patients with milder obstructive sleep apnea: results of the CPAP Apnea Trial North American Program (CATNAP) randomized clinical trial.  Am J Respir Crit Care Med. 2012;186(7):677-683.PubMedGoogle ScholarCrossref
Sawyer  AM, Gooneratne  NS, Marcus  CL, Ofer  D, Richards  KC, Weaver  TE.  A systematic review of CPAP adherence across age groups: clinical and empiric insights for developing CPAP adherence interventions.  Sleep Med Rev. 2011;15(6):343-356.PubMedGoogle ScholarCrossref
Ferguson  KA, Cartwright  R, Rogers  R, Schmidt-Nowara  W.  Oral appliances for snoring and obstructive sleep apnea: a review.  Sleep. 2006;29(2):244-262.PubMedGoogle Scholar
Hoekema  A, Stegenga  B, De Bont  LG.  Efficacy and comorbidity of oral appliances in the treatment of obstructive sleep apnea-hypopnea: a systematic review.  Crit Rev Oral Biol Med. 2004;15(3):137-155.PubMedGoogle ScholarCrossref
Kushida  CA, Morgenthaler  TI, Littner  MR,  et al; American Academy of Sleep.  Practice parameters for the treatment of snoring and Obstructive Sleep Apnea with oral appliances: an update for 2005.  Sleep. 2006;29(2):240-243.PubMedGoogle Scholar
Marklund  M, Verbraecken  J, Randerath  W.  Non-CPAP therapies in obstructive sleep apnoea: mandibular advancement device therapy.  Eur Respir J. 2012;39(5):1241-1247.PubMedGoogle ScholarCrossref
Randerath  WJ, Verbraecken  J, Andreas  S,  et al; European Respiratory Society task force on non-CPAP therapies in sleep apnoea.  Non-CPAP therapies in obstructive sleep apnoea.  Eur Respir J. 2011;37(5):1000-1028.PubMedGoogle ScholarCrossref
Sutherland  K, Vanderveken  OM, Tsuda  H,  et al.  Oral appliance treatment for obstructive sleep apnea: an update.  J Clin Sleep Med. 2014;10(2):215-227.PubMedGoogle Scholar
Aarab  G, Lobbezoo  F, Hamburger  HL, Naeije  M.  Oral appliance therapy vs nasal continuous positive airway pressure in obstructive sleep apnea: a randomized, placebo-controlled trial.  Respiration. 2011;81(5):411-419.PubMedGoogle ScholarCrossref
Blanco  J, Zamarrón  C, Abeleira Pazos  MT, Lamela  C, Suarez Quintanilla  D.  Prospective evaluation of an oral appliance in the treatment of obstructive sleep apnea syndrome.  Sleep Breath. 2005;9(1):20-25.PubMedGoogle ScholarCrossref
Gotsopoulos  H, Chen  C, Qian  J, Cistulli  PA.  Oral appliance therapy improves symptoms in obstructive sleep apnea: a randomized, controlled trial.  Am J Respir Crit Care Med. 2002;166(5):743-748.PubMedGoogle ScholarCrossref
Hans  MG, Nelson  S, Luks  VG, Lorkovich  P, Baek  SJ.  Comparison of 2 dental devices for treatment of obstructive sleep apnea syndrome (OSAS).  Am J Orthod Dentofacial Orthop. 1997;111(5):562-570.PubMedGoogle ScholarCrossref
Johnston  CD, Gleadhill  IC, Cinnamond  MJ, Gabbey  J, Burden  DJ.  Mandibular advancement appliances and obstructive sleep apnoea: a randomized clinical trial.  Eur J Orthod. 2002;24(3):251-262.PubMedGoogle ScholarCrossref
Mehta  A, Qian  J, Petocz  P, Darendeliler  MA, Cistulli  PA.  A randomized, controlled study of a mandibular advancement splint for obstructive sleep apnea.  Am J Respir Crit Care Med. 2001;163(6):1457-1461.PubMedGoogle ScholarCrossref
Petri  N, Svanholt  P, Solow  B, Wildschiødtz  G, Winkel  P.  Mandibular advancement appliance for obstructive sleep apnoea: results of a randomised placebo controlled trial using parallel group design.  J Sleep Res. 2008;17(2):221-229.PubMedGoogle ScholarCrossref
Barnes  M, McEvoy  RD, Banks  S,  et al.  Efficacy of positive airway pressure and oral appliance in mild to moderate obstructive sleep apnea.  Am J Respir Crit Care Med. 2004;170(6):656-664.PubMedGoogle ScholarCrossref
Schulz  KF, Altman  DG, Moher  D.  CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials.  J Pharmacol Pharmacother. 2010;1(2):100-107.PubMedGoogle ScholarCrossref
Partinen  M, Gislason  T.  Basic Nordic Sleep Questionnaire (BNSQ): a quantitated measure of subjective sleep complaints.  J Sleep Res. 1995;4(S1):150-155.PubMedGoogle ScholarCrossref
Friedman  M, Tanyeri  H, La Rosa  M,  et al.  Clinical predictors of obstructive sleep apnea.  Laryngoscope. 1999;109(12):1901-1907.PubMedGoogle ScholarCrossref
Marklund  M, Stenlund  H, Franklin  KA.  Mandibular advancement devices in 630 men and women with obstructive sleep apnea and snoring: tolerability and predictors of treatment success.  Chest. 2004;125(4):1270-1278.PubMedGoogle ScholarCrossref
Herbst  E.  Dreissigjährige Erfahrungen mit dem Retentions-Scharnier.  Zahnärztl Rundschau. 1934;43:1563–1568, 1515-1524,1563-1568, 1611-1616.Google Scholar
Kaida  K, Takahashi  M, Akerstedt  T,  et al Validation of the Karolinska sleepiness scale against performance and EEG variables.  Clin Neurophysiol.2006;117(7):1574-1581. PubMedGoogle ScholarCrossref
Priest  B, Brichard  C, Aubert  G, Liistro  G, Rodenstein  DO.  Microsleep during a simplified maintenance of wakefulness test: a validation study of the OSLER test.  Am J Respir Crit Care Med. 2001;163(7):1619-1625.PubMedGoogle ScholarCrossref
Johns  MW.  A new method for measuring daytime sleepiness: the Epworth sleepiness scale.  Sleep. 1991;14(6):540-545.PubMedGoogle Scholar
Reyner  LA, Horne  JA.  Falling asleep whilst driving: are drivers aware of prior sleepiness?  Int J Legal Med. 1998;111(3):120-123.PubMedGoogle ScholarCrossref
Weaver  TE, Laizner  AM, Evans  LK,  et al.  An instrument to measure functional status outcomes for disorders of excessive sleepiness.  Sleep. 1997;20(10):835-843.PubMedGoogle Scholar
Allen  RP, Picchietti  D, Hening  WA, Trenkwalder  C, Walters  AS, Montplaisi  J; Restless Legs Syndrome Diagnosis and Epidemiology workshop at the National Institutes of Health; International Restless Legs Syndrome Study Group.  Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology: a report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health.  Sleep Med. 2003;4(2):101-119.PubMedGoogle ScholarCrossref
Olesen  J, Steiner  TJ.  The International classification of headache disorders, 2nd ed (ICDH-II).  J Neurol Neurosurg Psychiatry. 2004;75(6):808-811.PubMedGoogle ScholarCrossref
 Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research: the report of an American Academy of Sleep Medicine Task Force.  Sleep. 1999;22(5):667-689.PubMedGoogle Scholar
Rechtschaffen  AKA.  A manual of standardized terminology, techniques, and scoring system for sleep stages of human subjects. Los Angeles: Barin Information Service/Brain Research Institute; 1968.
Naismith  SL, Winter  VR, Hickie  IB, Cistulli  PA.  Effect of oral appliance therapy on neurobehavioral functioning in obstructive sleep apnea: a randomized controlled trial.  J Clin Sleep Med. 2005;1(4):374-380.PubMedGoogle Scholar
Garcia-Borreguero  D, Williams  AM.  An update on restless legs syndrome (Willis-Ekbom disease): clinical features, pathogenesis, and treatment.  Curr Opin Neurol. 2014;27(4):493-501.PubMedGoogle ScholarCrossref
Rodrigues  RN, Abreu e Silva Rodrigues  AA, Pratesi  R,  et al.  Outcome of sleepiness and fatigue scores in obstructive sleep apnea syndrome patients with and without restless legs syndrome after nasal CPAP.  Arq Neuropsiquiatr. 2007;65(1):54-58.PubMedGoogle ScholarCrossref
Alberti  A, Mazzotta  G, Gallinella  E, Sarchielli  P.  Headache characteristics in obstructive sleep apnea syndrome and insomnia.  Acta Neurol Scand. 2005;111(5):309-316.PubMedGoogle ScholarCrossref
Kristiansen  HA, Kværner  KJ, Akre  H, Overland  B, Russell  MB.  Tension-type headache and sleep apnea in the general population.  J Headache Pain. 2011;12(1):63-69.PubMedGoogle ScholarCrossref
Johnson  KG, Ziemba  AM, Garb  JL.  Improvement in headaches with continuous positive airway pressure for obstructive sleep apnea: a retrospective analysis.  Headache. 2013;53(2):333-343.PubMedGoogle ScholarCrossref
Bondemark  L, Lindman  R.  Craniomandibular status and function in patients with habitual snoring and obstructive sleep apnoea after nocturnal treatment with a mandibular advancement splint: a 2-year follow-up.  Eur J Orthod. 2000;22(1):53-60.PubMedGoogle ScholarCrossref
Fransson  AM, Tegelberg  A, Johansson  A, Wenneberg  B.  Influence on the masticatory system in treatment of obstructive sleep apnea and snoring with a mandibular protruding device: a 2-year follow-up.  Am J Orthod Dentofacial Orthop. 2004;126(6):687-693.PubMedGoogle ScholarCrossref
Marklund  M, Franklin  KA.  Long-term effects of mandibular repositioning appliances on symptoms of sleep apnoea.  J Sleep Res. 2007;16(4):414-420.PubMedGoogle ScholarCrossref
Oksenberg  A, Silverberg  DS.  The effect of body posture on sleep-related breathing disorders: facts and therapeutic implications.  Sleep Med Rev. 1998;2(3):139-162.PubMedGoogle ScholarCrossref
Original Investigation
August 2015

Oral Appliance Therapy in Patients With Daytime Sleepiness and Snoring or Mild to Moderate Sleep Apnea: A Randomized Clinical Trial

Author Affiliations
  • 1Department of Odontology, Umeå University, Sweden
  • 2Department of Public Health and Clinical Medicine, Umeå University, Sweden
  • 3Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden
  • 4Surgical and Perioperative Sciences, Department of Surgery, Umeå University, Sweden
JAMA Intern Med. 2015;175(8):1278-1285. doi:10.1001/jamainternmed.2015.2051

Importance  Oral appliances that move the mandible forward during sleep are suggested as treatment for mild to moderate obstructive sleep apnea.

Objective  To test whether an adjustable, custom-made oral appliance improves daytime sleepiness and quality of life in patients with daytime sleepiness and snoring or mild to moderate obstructive sleep apnea.

Design, Setting, and Participants  Ninety-six patients with daytime sleepiness and an apnea-hypopnea index (AHI) lower than 30 were included in a randomized, placebo-controlled, parallel trial in Umeå, Sweden, from May 2007 through August 2011.

Interventions  Four months’ intervention with an oral appliance or a placebo device.

Main Outcomes and Measures  Daytime sleepiness was measured with the Epworth Sleepiness Scale, the Karolinska Sleepiness Scale, and the Oxford Sleep Resistance (OSLER) test. Quality of life was assessed with the Short-Form 36-Item Health Survey (SF-36) and the Functional Outcomes of Sleep Questionnaire (FOSQ). Secondary outcomes included the apnea-hypopnea index, headaches, symptoms of restless legs, and insomnia.

Results  Oral appliance therapy was not associated with improvements in daytime sleepiness from baseline to 4-month follow-up when compared with the placebo device; Epworth score >10: 53% at baseline to 24% at follow-up for the oral appliance group vs 54% at baseline to 40% at follow-up for the placebo device group, P = .11; median (IQR) for Karolinska score ≥7/wk: 10 (8 to 14) at baseline to 7 (4 to 9) at follow-up for the oral appliance group vs 12 (6 to 15) at baseline to 8 (5 to 12) at follow-up for the placebo device group, P = .11; mean between-group difference in OSLER test, −2.4 min (95% CI, −6.3 to 1.4). The mean between-group difference for the total FOSQ score was insignificant (−1.2 [95% CI, −2.5 to 0.1]). No domain of the SF-36 differed significantly between the groups. The AHI was below 5 in 49% of patients using the active appliance and in 11% using placebo, with an odds ratio of 7.8 (95% CI, 2.6-23.5) and a number needed to treat of 3. Snoring (P < .001) and symptoms of restless legs (P = .02) were less frequent when using the oral appliance vs placebo, but this did not apply to headache or insomnia.

Conclusions and Relevance  A custom-made, adjustable oral appliance reduces obstructive sleep apnea, snoring, and possibly restless legs without effects on daytime sleepiness and quality of life among patients with daytime sleepiness and snoring or mild to moderate sleep apnea.

Trial Registration  clinicaltrials.gov Identifier: NCT00477009