Association Between Unconventional Natural Gas Development in the Marcellus Shale and Asthma Exacerbations | Asthma | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Moorman  JE, Akinbami  LJ, Bailey  CM,  et al; National Center for Health Statistics. National surveillance of asthma: United States, 2001-2010. http://www.cdc.gov/nchs/data/series/sr_03/sr03_035.pdf. Accessed June 14, 2016.
2.
US Department of Health and Human Services; National Institutes of Health; National Heart, Lung, and Blood Institute. National Asthma Education Program: Expert Panel on the Management of Asthma: Expert panel report 3: Guidelines for the diagnosis and management of asthma: Full report. 2007. http://www.nhlbi.nih.gov/health-pro/guidelines/current/asthma-guidelines/full-report. Accessed June 14, 2016.
3.
Dougherty  RH, Fahy  JV.  Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype.  Clin Exp Allergy. 2009;39(2):193-202.PubMedGoogle ScholarCrossref
4.
Guarnieri  M, Balmes  JR.  Outdoor air pollution and asthma.  Lancet. 2014;383(9928):1581-1592.PubMedGoogle ScholarCrossref
5.
Gent  JF, Triche  EW, Holford  TR,  et al.  Association of low-level ozone and fine particles with respiratory symptoms in children with asthma.  JAMA. 2003;290(14):1859-1867.PubMedGoogle ScholarCrossref
6.
Peel  JL, Tolbert  PE, Klein  M,  et al.  Ambient air pollution and respiratory emergency department visits.  Epidemiology. 2005;16(2):164-174.PubMedGoogle ScholarCrossref
7.
Ostro  B, Lipsett  M, Mann  J, Braxton-Owens  H, White  M.  Air pollution and exacerbation of asthma in African-American children in Los Angeles.  Epidemiology. 2001;12(2):200-208.PubMedGoogle ScholarCrossref
8.
Dominici  F, Peng  RD, Bell  ML,  et al.  Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases.  JAMA. 2006;295(10):1127-1134.PubMedGoogle ScholarCrossref
9.
Ko  FW, Tam  W, Wong  TW,  et al.  Effects of air pollution on asthma hospitalization rates in different age groups in Hong Kong.  Clin Exp Allergy. 2007;37(9):1312-1319.PubMedGoogle ScholarCrossref
10.
Schildcrout  JS, Sheppard  L, Lumley  T, Slaughter  JC, Koenig  JQ, Shapiro  GG.  Ambient air pollution and asthma exacerbations in children: an eight-city analysis.  Am J Epidemiol. 2006;164(6):505-517.PubMedGoogle ScholarCrossref
11.
Halonen  JI, Lanki  T, Yli-Tuomi  T, Kulmala  M, Tiittanen  P, Pekkanen  J.  Urban air pollution, and asthma and COPD hospital emergency room visits.  Thorax. 2008;63(7):635-641.PubMedGoogle ScholarCrossref
12.
Yonas  MA, Lange  NE, Celedón  JC.  Psychosocial stress and asthma morbidity.  Curr Opin Allergy Clin Immunol. 2012;12(2):202-210.PubMedGoogle ScholarCrossref
13.
Chen  E, Miller  GE.  Stress and inflammation in exacerbations of asthma.  Brain Behav Immun. 2007;21(8):993-999.PubMedGoogle ScholarCrossref
14.
Wisnivesky  JP, Lorenzo  J, Feldman  JM, Leventhal  H, Halm  EA.  The relationship between perceived stress and morbidity among adult inner-city asthmatics.  J Asthma. 2010;47(1):100-104.PubMedGoogle ScholarCrossref
15.
New York State Department of Environmental Conservation. New York State Department of Health completes review of high-volume hydraulic fracturing [press release]. Albany, NY: New York State Department of Enviornmental Conservation; December 17, 2014.
16.
Cox  E.  Assembly votes to ban fracking for two years.  Baltimore Sun. April 10, 2015.Google Scholar
17.
Werner  AK, Vink  S, Watt  K, Jagals  P.  Environmental health impacts of unconventional natural gas development: a review of the current strength of evidence.  Sci Total Environ. 2015;505:1127-1141.PubMedGoogle ScholarCrossref
18.
Mitka  M.  Rigorous evidence slim for determining health risks from natural gas fracking.  JAMA. 2012;307(20):2135-2136.PubMedGoogle ScholarCrossref
19.
Gaines  M. PennDOT’s posting and bonding program and impact of unconventional oil & gas [webinar, May 16, 2013]. http://extension.psu.edu/natural-resources/natural-gas/webinars/shale-energy-developments-effect-on-the-posting-bonding-and-maintenance-of-roads-in-rural-pa/mark-gaines-may-16-2013-powerpoint. Accessed June 14, 2016.
20.
Maloney  KO, Yoxtheimer  DA.  Production and disposal of waste materials from gas and oil extraction from the Marcellus shale play in Pennsylvania.  Environ Pract. 2012;14(04):278-287.Google ScholarCrossref
21.
Pennsylvania Code. Subchapter E, Well reporting § 78.121-§ 78.125. http://www.pacode.com/secure/data/025/chapter78/subchapEtoc.html. Accessed June 14, 2016.
22.
Roy  AA, Adams  PJ, Robinson  AL.  Air pollutant emissions from the development, production, and processing of Marcellus Shale natural gas.  J Air Waste Manag Assoc. 2014;64(1):19-37.PubMedGoogle ScholarCrossref
23.
Litovitz  A, Curtright  A, Abramzon  S, Burger  N, Samaras  C.  Estimation of regional air-quality damages from Marcellus shale natural gas extraction in Pennsylvania.  Environ Res Lett. 2013;8(1):014017.Google ScholarCrossref
24.
McKenzie  LM, Witter  RZ, Newman  LS, Adgate  JL.  Human health risk assessment of air emissions from development of unconventional natural gas resources.  Sci Total Environ. 2012;424:79-87.PubMedGoogle ScholarCrossref
25.
Sangaramoorthy  T, Jamison  AM, Boyle  MD,  et al.  Place-based perceptions of the impacts of fracking along the Marcellus Shale.  Soc Sci Med. 2016;151:27-37.PubMedGoogle ScholarCrossref
26.
Adgate  JL, Goldstein  BD, McKenzie  LM.  Potential public health hazards, exposures and health effects from unconventional natural gas development.  Environ Sci Technol. 2014;48(15):8307-8320.PubMedGoogle ScholarCrossref
27.
Vinciguerra  T, Yao  S, Dadzie  J,  et al.  Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from ambient VOC observations.  Atmos Environ. 2015;110:144-150.Google ScholarCrossref
28.
Gopalakrishnan  S, Klaiber  HA.  Is the shale energy boom a bust for nearby residents? evidence from housing values in Pennsylvania.  Am J Agric Econ. 2014;96(1):43-66.Google ScholarCrossref
29.
Muehlenbachs  L, Spiller  E, Timmins  C.  The housing market impacts of shale gas development.  Am Econ Rev. 2015;105(12):3633-3659.Google ScholarCrossref
30.
Brunekreef  B, Holgate  ST.  Air pollution and health.  Lancet. 2002;360(9341):1233-1242.PubMedGoogle ScholarCrossref
31.
Salam  MT, Islam  T, Gilliland  FD.  Recent evidence for adverse effects of residential proximity to traffic sources on asthma.  Curr Opin Pulm Med. 2008;14(1):3-8.PubMedGoogle ScholarCrossref
32.
Hanson  MD, Chen  E.  The temporal relationships between sleep, cortisol, and lung functioning in youth with asthma.  J Pediatr Psychol. 2008;33(3):312-316.PubMedGoogle ScholarCrossref
33.
Daniel  LC, Boergers  J, Kopel  SJ, Koinis-Mitchell  D.  Missed sleep and asthma morbidity in urban children.  Ann Allergy Asthma Immunol. 2012;109(1):41-46.PubMedGoogle ScholarCrossref
34.
Griswold  SK, Nordstrom  CR, Clark  S, Gaeta  TJ, Price  ML, Camargo  CA  Jr.  Asthma exacerbations in North American adults: who are the “frequent fliers” in the emergency department?  Chest. 2005;127(5):1579-1586.PubMedGoogle ScholarCrossref
35.
Casey  JA, Cosgrove  SE, Stewart  WF, Pollak  J, Schwartz  BS.  A population-based study of the epidemiology and clinical features of methicillin-resistant Staphylococcus aureus infection in Pennsylvania, 2001-2010.  Epidemiol Infect. 2013;141(6):1166-1179.PubMedGoogle ScholarCrossref
36.
Pacheco  JA, Avila  PC, Thompson  JA,  et al.  A highly specific algorithm for identifying asthma cases and controls for genome-wide association studies.  AMIA Annu Symp Proc. 2009;2009:497-501.PubMedGoogle Scholar
37.
Schwartz  BS, Stewart  WF, Godby  S,  et al.  Body mass index and the built and social environments in children and adolescents using electronic health records.  Am J Prev Med. 2011;41(4):e17-e28.PubMedGoogle ScholarCrossref
38.
US Department of Transportation Federal Highway Administration. Highway Performance Monitoring System website. http://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm. Updated 2013. Accessed March 27, 2015.
39.
Liu  AY, Curriero  FC, Glass  TA, Stewart  WF, Schwartz  BS.  The contextual influence of coal abandoned mine lands in communities and type 2 diabetes in Pennsylvania.  Health Place. 2013;22:115-122.PubMedGoogle ScholarCrossref
40.
National Climatic Data Center. Climate Data Online website. http://www.ncdc.noaa.gov/cdo-web/. Accessed May 11, 2011.
41.
SkyTruth. TADPOLE Pennsylvania results: Published Feb 12, 2014, updated 2014. http://frack.skytruth.org/frackfinder/frackfinder-news/tadpolepennsylvaniaresults. Accessed June 30, 2014.
42.
SkyTruth. Fracking chemical database. http://frack.skytruth.org/fracking-chemical-database. Updated 2013. Accessed November 27, 2013.
43.
Ogden  CL, Carroll  MD, Kit  BK, Flegal  KM.  Prevalence of childhood and adult obesity in the United States, 2011-2012.  JAMA. 2014;311(8):806-814.PubMedGoogle ScholarCrossref
44.
Lipsitch  M, Tchetgen Tchetgen  E, Cohen  T.  Negative controls: a tool for detecting confounding and bias in observational studies.  Epidemiology. 2010;21(3):383-388.PubMedGoogle ScholarCrossref
45.
Vanderweele  TJ, Arah  OA.  Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders.  Epidemiology. 2011;22(1):42-52.PubMedGoogle ScholarCrossref
46.
Strickland  MJ, Darrow  LA, Klein  M,  et al.  Short-term associations between ambient air pollutants and pediatric asthma emergency department visits.  Am J Respir Crit Care Med. 2010;182(3):307-316.PubMedGoogle ScholarCrossref
47.
Sandberg  S, Järvenpää  S, Penttinen  A, Paton  JY, McCann  DC.  Asthma exacerbations in children immediately following stressful life events: a Cox’s hierarchical regression.  Thorax. 2004;59(12):1046-1051.PubMedGoogle ScholarCrossref
48.
Apter  AJ, Garcia  LA, Boyd  RC, Wang  X, Bogen  DK, Ten Have  T.  Exposure to community violence is associated with asthma hospitalizations and emergency department visits.  J Allergy Clin Immunol. 2010;126(3):552-557.PubMedGoogle ScholarCrossref
49.
McKenzie  LM, Guo  R, Witter  RZ, Savitz  DA, Newman  LS, Adgate  JL.  Birth outcomes and maternal residential proximity to natural gas development in rural Colorado.  Environ Health Perspect. 2014;122(4):412-417.PubMedGoogle Scholar
50.
Rabinowitz  PM, Slizovskiy  IB, Lamers  V,  et al.  Proximity to natural gas wells and reported health status: results of a household survey in Washington County, Pennsylvania.  Environ Health Perspect. 2015;123(1):21-26.PubMedGoogle ScholarCrossref
Original Investigation
September 2016

Association Between Unconventional Natural Gas Development in the Marcellus Shale and Asthma Exacerbations

Author Affiliations
  • 1Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
  • 2Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
  • 3Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
  • 4Robert Wood Johnson Foundation Health and Society Scholars Program, University of California, San Francisco, and University of California, Berkeley
  • 5Center for Health Research, Geisinger Health System, Danville, Pennsylvania
JAMA Intern Med. 2016;176(9):1334-1343. doi:10.1001/jamainternmed.2016.2436
Abstract

Importance  Asthma is common and can be exacerbated by air pollution and stress. Unconventional natural gas development (UNGD) has community and environmental impacts. In Pennsylvania, UNGD began in 2005, and by 2012, 6253 wells had been drilled. There are no prior studies of UNGD and objective respiratory outcomes.

Objective  To evaluate associations between UNGD and asthma exacerbations.

Design  A nested case-control study comparing patients with asthma with and without exacerbations from 2005 through 2012 treated at the Geisinger Clinic, which provides primary care services to over 400 000 patients in Pennsylvania. Patients with asthma aged 5 to 90 years (n = 35 508) were identified in electronic health records; those with exacerbations were frequency matched on age, sex, and year of event to those without.

Exposures  On the day before each patient’s index date (cases, date of event or medication order; controls, contact date), we estimated activity metrics for 4 UNGD phases (pad preparation, drilling, stimulation [hydraulic fracturing, or “fracking”], and production) using distance from the patient’s home to the well, well characteristics, and the dates and durations of phases.

Main Outcomes and Measures  We identified and defined asthma exacerbations as mild (new oral corticosteroid medication order), moderate (emergency department encounter), or severe (hospitalization).

Results  We identified 20 749 mild, 1870 moderate, and 4782 severe asthma exacerbations, and frequency matched these to 18 693, 9350, and 14 104 control index dates, respectively. In 3-level adjusted models, there was an association between the highest group of the activity metric for each UNGD phase compared with the lowest group for 11 of 12 UNGD-outcome pairs: odds ratios (ORs) ranged from 1.5 (95% CI, 1.2-1.7) for the association of the pad metric with severe exacerbations to 4.4 (95% CI, 3.8-5.2) for the association of the production metric with mild exacerbations. Six of the 12 UNGD-outcome associations had increasing ORs across quartiles. Our findings were robust to increasing levels of covariate control and in sensitivity analyses that included evaluation of some possible sources of unmeasured confounding.

Conclusions and Relevance  Residential UNGD activity metrics were statistically associated with increased risk of mild, moderate, and severe asthma exacerbations. Whether these associations are causal awaits further investigation, including more detailed exposure assessment.

×