Association of Exposure to Artificial Light at Night While Sleeping With Risk of Obesity in Women | Lifestyle Behaviors | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.153.100.128. Please contact the publisher to request reinstatement.
1.
Nestle  M, Jacobson  MF.  Halting the obesity epidemic: a public health policy approach.  Public Health Rep. 2000;115(1):12-24. doi:10.1093/phr/115.1.12PubMedGoogle ScholarCrossref
2.
Rybnikova  NA, Haim  A, Portnov  BA.  Does artificial light-at-night exposure contribute to the worldwide obesity pandemic?  Int J Obes (Lond). 2016;40(5):815-823. doi:10.1038/ijo.2015.255PubMedGoogle ScholarCrossref
3.
Koo  YS, Song  JY, Joo  EY,  et al.  Outdoor artificial light at night, obesity, and sleep health: cross-sectional analysis in the KoGES study.  Chronobiol Int. 2016;33(3):301-314. doi:10.3109/07420528.2016.1143480PubMedGoogle ScholarCrossref
4.
Fonken  LK, Nelson  RJ.  The effects of light at night on circadian clocks and metabolism.  Endocr Rev. 2014;35(4):648-670. doi:10.1210/er.2013-1051PubMedGoogle ScholarCrossref
5.
Fonken  LK, Aubrecht  TG, Meléndez-Fernández  OH, Weil  ZM, Nelson  RJ.  Dim light at night disrupts molecular circadian rhythms and increases body weight.  J Biol Rhythms. 2013;28(4):262-271. doi:10.1177/0748730413493862PubMedGoogle ScholarCrossref
6.
Touitou  Y, Reinberg  A, Touitou  D.  Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption.  Life Sci. 2017;173:94-106. doi:10.1016/j.lfs.2017.02.008PubMedGoogle ScholarCrossref
7.
Fonken  LK, Workman  JL, Walton  JC,  et al.  Light at night increases body mass by shifting the time of food intake.  Proc Natl Acad Sci U S A. 2010;107(43):18664-18669. doi:10.1073/pnas.1008734107PubMedGoogle ScholarCrossref
8.
Lopez-Minguez  J, Gómez-Abellán  P, Garaulet  M.  Circadian rhythms, food timing and obesity.  Proc Nutr Soc. 2016;75(4):501-511. doi:10.1017/S0029665116000628PubMedGoogle ScholarCrossref
9.
Lunn  RM, Blask  DE, Coogan  AN,  et al.  Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption.  Sci Total Environ. 2017;607-608:1073-1084. doi:10.1016/j.scitotenv.2017.07.056PubMedGoogle ScholarCrossref
10.
McFadden  E, Jones  ME, Schoemaker  MJ, Ashworth  A, Swerdlow  AJ.  The relationship between obesity and exposure to light at night: cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study.  Am J Epidemiol. 2014;180(3):245-250. doi:10.1093/aje/kwu117PubMedGoogle ScholarCrossref
11.
Obayashi  K, Saeki  K, Iwamoto  J,  et al.  Exposure to light at night, nocturnal urinary melatonin excretion, and obesity/dyslipidemia in the elderly: a cross-sectional analysis of the HEIJO-KYO study.  J Clin Endocrinol Metab. 2013;98(1):337-344. doi:10.1210/jc.2012-2874PubMedGoogle ScholarCrossref
12.
Reid  KJ, Santostasi  G, Baron  KG, Wilson  J, Kang  J, Zee  PC.  Timing and intensity of light correlate with body weight in adults.  PLoS One. 2014;9(4):e92251. doi:10.1371/journal.pone.0092251PubMedGoogle ScholarCrossref
13.
Gangwisch  JE.  Invited commentary: nighttime light exposure as a risk factor for obesity through disruption of circadian and circannual rhythms.  Am J Epidemiol. 2014;180(3):251-253. doi:10.1093/aje/kwu119PubMedGoogle ScholarCrossref
14.
Haus  E, Reinberg  A, Mauvieux  B, Le Floc’h  N, Sackett-Lundeen  L, Touitou  Y.  Risk of obesity in male shift workers: a chronophysiological approach.  Chronobiol Int. 2016;33(8):1018-1036. doi:10.3109/07420528.2016.1167079PubMedGoogle ScholarCrossref
15.
Sandler  DP, Hodgson  ME, Deming-Halverson  SL,  et al; Sister Study Research Team.  The Sister Study cohort: baseline methods and participant characteristics.  Environ Health Perspect. 2017;125(12):127003. doi:10.1289/EHP1923PubMedGoogle ScholarCrossref
16.
World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation. Geneva, Switzerland: World Heath Organization; 2003.
17.
Barros  AJ, Hirakata  VN.  Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio.  BMC Med Res Methodol. 2003;3:21. doi:10.1186/1471-2288-3-21PubMedGoogle ScholarCrossref
18.
Zou  G.  A modified Poisson regression approach to prospective studies with binary data.  Am J Epidemiol. 2004;159(7):702-706. doi:10.1093/aje/kwh090PubMedGoogle ScholarCrossref
19.
Greenland  S, Pearl  J, Robins  JM.  Causal diagrams for epidemiologic research.  Epidemiology. 1999;10(1):37-48. doi:10.1097/00001648-199901000-00008PubMedGoogle ScholarCrossref
20.
Cohen  S, Kamarck  T, Mermelstein  R.  A global measure of perceived stress.  J Health Soc Behav. 1983;24(4):385-396. doi:10.2307/2136404PubMedGoogle ScholarCrossref
21.
Patel  SR.  Reduced sleep as an obesity risk factor.  Obes Rev. 2009;10(suppl 2):61-68. doi:10.1111/j.1467-789X.2009.00664.xPubMedGoogle ScholarCrossref
22.
Taheri  S, Lin  L, Austin  D, Young  T, Mignot  E.  Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index.  PLoS Med. 2004;1(3):e62. doi:10.1371/journal.pmed.0010062PubMedGoogle ScholarCrossref
23.
Dinges  DF, Pack  F, Williams  K,  et al.  Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night.  Sleep. 1997;20(4):267-277.PubMedGoogle Scholar
24.
Hernán  MA, Brumback  B, Robins  JM.  Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men.  Epidemiology. 2000;11(5):561-570. doi:10.1097/00001648-200009000-00012PubMedGoogle ScholarCrossref
25.
Proper  KI, van de Langenberg  D, Rodenburg  W,  et al.  The relationship between shift work and metabolic risk factors: a systematic review of longitudinal studies.  Am J Prev Med. 2016;50(5):e147-e157. doi:10.1016/j.amepre.2015.11.013PubMedGoogle ScholarCrossref
26.
Xiao  Q, Arem  H, Moore  SC, Hollenbeck  AR, Matthews  CE.  A large prospective investigation of sleep duration, weight change, and obesity in the NIH-AARP Diet and Health Study cohort.  Am J Epidemiol. 2013;178(11):1600-1610. doi:10.1093/aje/kwt180PubMedGoogle ScholarCrossref
27.
Park  YJ, Lee  WC, Yim  HW, Park  YM.  The association between sleep and obesity in Korean adults [in Korean].  J Prev Med Public Health. 2007;40(6):454-460. doi:10.3961/jpmph.2007.40.6.454PubMedGoogle ScholarCrossref
28.
St-Onge  MP.  Sleep-obesity relation: underlying mechanisms and consequences for treatment.  Obes Rev. 2017;18(suppl 1):34-39. doi:10.1111/obr.12499PubMedGoogle ScholarCrossref
29.
Chaput  JP.  Sleep patterns, diet quality and energy balance.  Physiol Behav. 2014;134:86-91. doi:10.1016/j.physbeh.2013.09.006PubMedGoogle ScholarCrossref
30.
St-Onge  MP, O’Keeffe  M, Roberts  AL, RoyChoudhury  A, Laferrère  B.  Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women.  Sleep. 2012;35(11):1503-1510. doi:10.5665/sleep.2198PubMedGoogle ScholarCrossref
31.
Schmid  SM, Hallschmid  M, Jauch-Chara  K,  et al.  Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men.  Am J Clin Nutr. 2009;90(6):1476-1482. doi:10.3945/ajcn.2009.27984PubMedGoogle ScholarCrossref
32.
Al Khatib  HK, Harding  SV, Darzi  J, Pot  GK.  The effects of partial sleep deprivation on energy balance: a systematic review and meta-analysis.  Eur J Clin Nutr. 2017;71(5):614-624. doi:10.1038/ejcn.2016.201PubMedGoogle ScholarCrossref
33.
Capers  PL, Fobian  AD, Kaiser  KA, Borah  R, Allison  DB.  A systematic review and meta-analysis of randomized controlled trials of the impact of sleep duration on adiposity and components of energy balance.  Obes Rev. 2015;16(9):771-782. doi:10.1111/obr.12296PubMedGoogle ScholarCrossref
34.
Walton  JC, Weil  ZM, Nelson  RJ.  Influence of photoperiod on hormones, behavior, and immune function.  Front Neuroendocrinol. 2011;32(3):303-319. doi:10.1016/j.yfrne.2010.12.003PubMedGoogle ScholarCrossref
35.
Bartness  TJ, Demas  GE, Song  CK.  Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system.  Exp Biol Med (Maywood). 2002;227(6):363-376. doi:10.1177/153537020222700601PubMedGoogle ScholarCrossref
36.
Griefahn  B, Kuenemund  C, Robens  S.  Shifts of the hormonal rhythms of melatonin and cortisol after a 4 h bright-light pulse in different diurnal types.  Chronobiol Int. 2006;23(3):659-673. doi:10.1080/07420520600650679PubMedGoogle ScholarCrossref
37.
Leproult  R, Colecchia  EF, L’Hermite-Balériaux  M, Van Cauter  E.  Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels.  J Clin Endocrinol Metab. 2001;86(1):151-157.PubMedGoogle Scholar
38.
Exelmans  L, Van den Bulck  J.  Bedtime, shuteye time and electronic media: sleep displacement is a two-step process.  J Sleep Res. 2017;26(3):364-370. doi:10.1111/jsr.12510PubMedGoogle ScholarCrossref
39.
Carter  B, Rees  P, Hale  L, Bhattacharjee  D, Paradkar  MS.  Association between portable screen-based media device access or use and sleep outcomes: a systematic review and meta-analysis.  JAMA Pediatr. 2016;170(12):1202-1208. doi:10.1001/jamapediatrics.2016.2341PubMedGoogle ScholarCrossref
40.
Chang  AM, Aeschbach  D, Duffy  JF, Czeisler  CA.  Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness.  Proc Natl Acad Sci U S A. 2015;112(4):1232-1237. doi:10.1073/pnas.1418490112PubMedGoogle ScholarCrossref
41.
West  KE, Jablonski  MR, Warfield  B,  et al.  Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans.  J Appl Physiol (1985). 2011;110(3):619-626. doi:10.1152/japplphysiol.01413.2009PubMedGoogle ScholarCrossref
42.
Flegal  KM, Kruszon-Moran  D, Carroll  MD, Fryar  CD, Ogden  CL.  Trends in obesity among adults in the United States, 2005 to 2014.  JAMA. 2016;315(21):2284-2291. doi:10.1001/jama.2016.6458PubMedGoogle ScholarCrossref
43.
Jensen  MD, Ryan  DH, Apovian  CM,  et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Obesity Society.  2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society.  J Am Coll Cardiol. 2014;63(25, pt B):2985-3023. doi:10.1016/j.jacc.2013.11.004PubMedGoogle ScholarCrossref
44.
King  DE, Mainous  AG  III, Carnemolla  M, Everett  CJ.  Adherence to healthy lifestyle habits in US adults, 1988-2006.  Am J Med. 2009;122(6):528-534. doi:10.1016/j.amjmed.2008.11.013PubMedGoogle ScholarCrossref
45.
Mosca  L, McGillen  C, Rubenfire  M.  Gender differences in barriers to lifestyle change for cardiovascular disease prevention.  J Womens Health. 1998;7(6):711-715. doi:10.1089/jwh.1998.7.711PubMedGoogle ScholarCrossref
46.
Connor Gorber  S, Tremblay  M, Moher  D, Gorber  B.  A comparison of direct vs self-report measures for assessing height, weight and body mass index: a systematic review.  Obes Rev. 2007;8(4):307-326. doi:10.1111/j.1467-789X.2007.00347.xPubMedGoogle ScholarCrossref
47.
Tylavsky  FA, Sharp  GB.  Misclassification of nutrient and energy intake from use of closed-ended questions in epidemiologic research.  Am J Epidemiol. 1995;142(3):342-352. doi:10.1093/oxfordjournals.aje.a117640PubMedGoogle ScholarCrossref
48.
Jackson  CL, Patel  SR, Jackson  WB  II, Lutsey  PL, Redline  S.  Agreement between self-reported and objectively measured sleep duration among white, black, Hispanic, and Chinese adults in the United States: Multi-Ethnic Study of Atherosclerosis.  Sleep. 2018;41(6). doi:10.1093/sleep/zsy057PubMedGoogle Scholar
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    1 Comment for this article
    short dark night areas
    Diana Chalmers | retired nurse
    I live in the north of Scotland where we have very short dark nights in the summer. How does this affect obesity in such areas?
    It is known that mums have problems getting young children to sleep at 'night' time. Could this be a cause of our obese children - not curry sauce and chips at lunch time?
    CONFLICT OF INTEREST: None Reported
    Original Investigation
    June 10, 2019

    Association of Exposure to Artificial Light at Night While Sleeping With Risk of Obesity in Women

    Author Affiliations
    • 1Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
    • 2Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
    JAMA Intern Med. 2019;179(8):1061-1071. doi:10.1001/jamainternmed.2019.0571
    Key Points

    Question  Is artificial light at night while sleeping associated with weight gain and obesity?

    Findings  In this cohort study of 43 722 women, artificial light at night while sleeping was significantly associated with increased risk of weight gain and obesity, especially in women who had a light or a television on in the room while sleeping. Associations do not appear to be explained by sleep duration and quality or other factors influenced by poor sleep.

    Meaning  Exposure to artificial light at night while sleeping appears to be associated with increased weight, which suggests that artificial light exposure at night should be addressed in obesity prevention discussions.

    Abstract

    Importance  Short sleep has been associated with obesity, but to date the association between exposure to artificial light at night (ALAN) while sleeping and obesity is unknown.

    Objective  To determine whether ALAN exposure while sleeping is associated with the prevalence and risk of obesity.

    Design, Setting, and Participants  This baseline and prospective analysis included women aged 35 to 74 years enrolled in the Sister Study in all 50 US states and Puerto Rico from July 2003 through March 2009. Follow-up was completed on August 14, 2015. A total of 43 722 women with no history of cancer or cardiovascular disease who were not shift workers, daytime sleepers, or pregnant at baseline were included in the analysis. Data were analyzed from September 1, 2017, through December 31, 2018.

    Exposures  Artificial light at night while sleeping reported at enrollment, categorized as no light, small nightlight in the room, light outside the room, and light or television in the room.

    Main Outcomes and Measures  Prevalent obesity at baseline was based on measured general obesity (body mass index [BMI] ≥30.0) and central obesity (waist circumference [WC] ≥88 cm, waist-to-hip ratio [WHR] ≥0.85, or waist-to-height ratio [WHtR]≥0.5). To evaluate incident overweight and obesity, self-reported BMI at enrollment was compared with self-reported BMI at follow-up (mean [SD] follow-up, 5.7 [1.0] years). Generalized log-linear models with robust error variance were used to estimate multivariable-adjusted prevalence ratios (PRs) and relative risks (RRs) with 95% CIs for prevalent and incident obesity.

    Results  Among the population of 43 722 women (mean [SD] age, 55.4 [8.9] years), having any ALAN exposure while sleeping was positively associated with a higher prevalence of obesity at baseline, as measured using BMI (PR, 1.03; 95% CI, 1.02-1.03), WC (PR, 1.12; 95% CI, 1.09-1.16), WHR (PR, 1.04; 95% CI, 1.00-1.08), and WHtR (PR, 1.07; 95% CI, 1.04-1.09), after adjusting for confounding factors, with P < .001 for trend for each measure. Having any ALAN exposure while sleeping was also associated with incident obesity (RR, 1.19; 95% CI, 1.06-1.34). Compared with no ALAN, sleeping with a television or a light on in the room was associated with gaining 5 kg or more (RR, 1.17; 95% CI, 1.08-1.27; P < .001 for trend), a BMI increase of 10% or more (RR, 1.13; 95% CI, 1.02-1.26; P = .04 for trend), incident overweight (RR, 1.22; 95% CI,1.06-1.40; P = .03 for trend), and incident obesity (RR, 1.33; 95% CI, 1.13-1.57; P < .001 for trend). Results were supported by sensitivity analyses and additional multivariable analyses including potential mediators such as sleep duration and quality, diet, and physical activity.

    Conclusions and Relevance  These results suggest that exposure to ALAN while sleeping may be a risk factor for weight gain and development of overweight or obesity. Further prospective and interventional studies could help elucidate this association and clarify whether lowering exposure to ALAN while sleeping can promote obesity prevention.

    ×