Diaphragm Pathology in Critically Ill Patients With COVID-19 and Postmortem Findings From 3 Medical Centers | Critical Care Medicine | JAMA Internal Medicine | JAMA Network
[Skip to Content]
[Skip to Content Landing]
Figure.  Angiotensin-Converting Enzyme 2 (ACE-2), SARS-CoV-2, and Fibrosis in the Diaphragms of Patients With COVID-19
Angiotensin-Converting Enzyme 2 (ACE-2), SARS-CoV-2, and Fibrosis in the Diaphragms of Patients With COVID-19

A, Left panel: ACE-2 mRNA in diaphragm specimens determined by quantitative polymerase chain reaction (qPCR) and normalized to housekeeping gene TBP. Right panel: α-ACE-2 antibody localization with fluoresceine microscopy on diaphragm cross-sections; the arrowheads show membrane and cytosolic localization (bar = 50 μm). B, Left panel: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA, determined by qPCR and normalized to housekeeping gene TBP, is detected in the diaphragm of 4 coronavirus disease 2019 (COVID-19)–intensive care unit (ICU) patients (patients 7, 9, 33, and 36). Right panel: in situ hybridization using RNAscope on patient #7 shows intramyofiber SARS-CoV-2 virus particles (red dots, indicated with arrowheads); a myofiber edge is highlighted with dashed line (bar = 30 μm). C, Left panels: representative images of picrosirius red-stained diaphragm cross-sections to highlight fibrosis; patients #22 and 3 are shown (bar = 100 μm). Right panel: quantification of the amount of fibrosis.

Table.  Summary of the Demographic and Clinical Characteristics of the Study Patients
Summary of the Demographic and Clinical Characteristics of the Study Patients
1.
Gupta  A, Madhavan  MV, Sehgal  K,  et al.  Extrapulmonary manifestations of COVID-19.   Nat Med. 2020;26(7):1017-1032. doi:10.1038/s41591-020-0968-3PubMedGoogle ScholarCrossref
2.
Solomon  IH, Normandin  E, Bhattacharyya  S,  et al.  Neuropathological features of Covid-19.   N Engl J Med. 2020;383(10):989-992. doi:10.1056/NEJMc2019373PubMedGoogle ScholarCrossref
3.
Dres  M, Goligher  EC, Heunks  LMA, Brochard  LJ.  Critical illness-associated diaphragm weakness.   Intensive Care Med. 2017;43(10):1441-1452. doi:10.1007/s00134-017-4928-4PubMedGoogle ScholarCrossref
4.
Levine  S, Nguyen  T, Taylor  N,  et al.  Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans.   N Engl J Med. 2008;358(13):1327-1335. doi:10.1056/NEJMoa070447PubMedGoogle ScholarCrossref
5.
Hooijman  PE, Beishuizen  A, Witt  CC,  et al.  Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients.   Am J Respir Crit Care Med. 2015;191(10):1126-1138. doi:10.1164/rccm.201412-2214OCPubMedGoogle ScholarCrossref
6.
Carfì  A, Bernabei  R, Landi  F; Gemelli Against COVID-19 Post-Acute Care Study Group.  Persistent symptoms in patients after acute COVID-19.   JAMA. 2020;324(6):603-605. doi:10.1001/jama.2020.12603PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Views 13,524
    Citations 0
    Research Letter
    November 16, 2020

    Diaphragm Pathology in Critically Ill Patients With COVID-19 and Postmortem Findings From 3 Medical Centers

    Author Affiliations
    • 1Physiology, Amsterdam UMC (location VUmc), Amsterdam, the Netherlands
    • 2Intensive Care Medicine, Amsterdam UMC (location VUmc), Amsterdam, the Netherlands
    • 3Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
    • 4Intensive Care Medicine, Amsterdam UMC (location AMC), Amsterdam, the Netherlands
    • 5Intensive Care Medicine, Radboudumc, Nijmegen, the Netherlands
    • 6Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
    JAMA Intern Med. Published online November 16, 2020. doi:10.1001/jamainternmed.2020.6278

    Extrapulmonary manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are now widely recognized and have important clinical implications.1,2 To our knowledge, the association of SARS-CoV-2 with the respiratory muscles has not been studied. This is surprising, as the respiratory muscles drive alveolar ventilation and their weakness results in acute respiratory failure. In critically ill patients undergoing ventilation, respiratory muscle weakness prolongs mechanical ventilation and increases mortality.3 The aim of this study was to investigate the association of severe coronavirus disease 2019 (COVID-19) with the respiratory muscles in critically ill patients and compare the findings with those obtained from non-COVID-19 critically ill patients.

    Methods

    Our study focused on the diaphragm, the main muscle of respiration. Consecutive diaphragm muscle specimens were collected during autopsy from the corpses of 26 patients who had been critically ill with COVID-19 in 3 academic medical centers in the Netherlands (referred to as COVID-19–intensive care unit [ICU]) in April and May 2020. As a control group, autopsy diaphragm specimens were collected from corpses of 8 patients who had been critically ill without COVID-19 (referred to as control-ICU). Specimens from the left midcostal diaphragm were used for analyses. Methodological details are described in the eMethods and eTables 2 and 3 in the Supplement. This study was approved by the medical ethical committee at Amsterdam UMC, and written informed consent was provided by the decedents’ next of kin. Data were analyzed using SPSS, version 22 (IBM), and visualized with GraphPad Prism, version 7.0 (GraphPad). Statistical significance was set at P < .05.

    Results

    The median age of COVID-19–ICU patients was 71 years (interquartile range, 61-74 years), and 21 (81%) were men. Twenty-four patients (92.3%) received invasive mechanical ventilation for a median of 12 days (interquartile range, 6-25 days). The number of days receiving invasive mechanical ventilation and ICU length of stay were comparable between COVID-19–ICU and control-ICU patients. COVID-19–ICU patients had higher body mass index (calculated as weight in kilograms divided by height in meters squared) and were less likely to be treated with steroids (Table). No patients in either group had preexisting neuromuscular disease.

    We report angiotensin-converting enzyme 2 (ACE-2) in the diaphragm of COVID-19–ICU and control-ICU patients (Figure, A). The ACE-2 predominantly localizes at the myofiber membrane (Figure, A), providing an entry point for SARS-CoV-2 to infect diaphragm myofibers. Evidence for SARS-CoV-2 viral RNA in the diaphragm was found in 4 patients (15.4%; Figure, B). Further analyses, for which we applied RNA in situ hybridization, indicated that viral RNA localized inside diaphragm myofibers (Figure, B). The RNA sequencing analyses showed that 315 genes were upregulated and 281 were downregulated in the diaphragm of COVID-19–ICU patients compared with control-ICU patients. Subsequent analyses of all upregulated and downregulated genes revealed activation of fibrosis pathways (fibroblast growth factor signaling). In line with these findings, epimysial and perimysial fibrosis was more than 2-fold higher in the diaphragms of COVID-19–ICU patients compared with control-ICU patients (Figure, C).

    Discussion

    In this study, we provide unique evidence for ACE-2 expression in the human diaphragm and SARS-CoV-2 viral infiltration in the diaphragm of a subset of COVID-19–ICU patients. In COVID-19–ICU patients, we report increased expression of genes involved in fibrosis and histological evidence for the development of fibrosis in the diaphragm. This myopathic phenotype was distinctly different from that of control-ICU patients, with comparable duration of mechanical ventilation and ICU length of stay.4,5 It remains to be established whether diaphragm myopathy is a direct effect of SARS-CoV-2. Only 3 patients in the control-ICU group (37.5%) had viral lung disease, and the association of viral pneumonia with diaphragm muscles is unknown. We hypothesize that severe diaphragm myopathy associated with COVID-19, as described in this study, may lead to diaphragm weakness and might contribute to ventilator weaning failure, persistent dyspnea, and fatigue in patients with COVID-19 who survive their ICU stay.6

    Back to top
    Article Information

    Accepted for Publication: September 10, 2020.

    Published Online: November 16, 2020. doi:10.1001/jamainternmed.2020.6278

    Corresponding Author: Coen Ottenheijm, PhD, Department of Physiology, Amsterdam UMC, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands (c.ottenheijm@amsterdamumc.nl).

    Author Contributions: Dr Ottenheijm had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

    Concept and design: Shi, Boon, Heunks, Ottenheijm.

    Acquisition, analysis, or interpretation of data: All authors.

    Drafting of the manuscript: Shi, Heunks, Ottenheijm.

    Critical revision of the manuscript for important intellectual content: All authors.

    Statistical analysis: Shi, de Vries, Ottenheijm.

    Obtained funding: Ottenheijm.

    Administrative, technical, or material support: de Vries, Heunks, Ottenheijm.

    Supervision: Vlaar, Boon, Heunks, Ottenheijm.

    Conflict of Interest Disclosures: Dr de Vries reported grants from Amsterdam Cardiovascular Sciences during the conduct of the study and personal fees from a Dutch ultrasound center outside the submitted work. Dr Heunks reported personal fees from Getinge and grants from Liberate Medical outside the submitted work. No other disclosures were reported.

    Dutch COVID-19 Diaphragm Investigators: Bernadette Schurink, MD, PhD, Eva Roos, MD, PhD, Hans W.M. Niessen, MD, PhD, Sylvia Bogaards, BSc, Stefan Conijn, BSc, Yeszamin L. Onderwater, MSc, Pedro Espinosa, MSc, Anke van Bergen, BSc, Diewertje I. Bink, MSc, Marloes van den Berg, MD (Amsterdam UMC, location VUMC),and Benno Kusters, MD, PhD (Radboudumc).

    Funding/Support: The research reported in this work was supported by a grant from the National Institutes of Health/ Heart Lung and Blood Institute (R01HL121500 to Dr Ottenheijm).

    Role of the Funder/Sponsor: The National Institutes of Health/ Heart Lung and Blood Institute had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

    References
    1.
    Gupta  A, Madhavan  MV, Sehgal  K,  et al.  Extrapulmonary manifestations of COVID-19.   Nat Med. 2020;26(7):1017-1032. doi:10.1038/s41591-020-0968-3PubMedGoogle ScholarCrossref
    2.
    Solomon  IH, Normandin  E, Bhattacharyya  S,  et al.  Neuropathological features of Covid-19.   N Engl J Med. 2020;383(10):989-992. doi:10.1056/NEJMc2019373PubMedGoogle ScholarCrossref
    3.
    Dres  M, Goligher  EC, Heunks  LMA, Brochard  LJ.  Critical illness-associated diaphragm weakness.   Intensive Care Med. 2017;43(10):1441-1452. doi:10.1007/s00134-017-4928-4PubMedGoogle ScholarCrossref
    4.
    Levine  S, Nguyen  T, Taylor  N,  et al.  Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans.   N Engl J Med. 2008;358(13):1327-1335. doi:10.1056/NEJMoa070447PubMedGoogle ScholarCrossref
    5.
    Hooijman  PE, Beishuizen  A, Witt  CC,  et al.  Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients.   Am J Respir Crit Care Med. 2015;191(10):1126-1138. doi:10.1164/rccm.201412-2214OCPubMedGoogle ScholarCrossref
    6.
    Carfì  A, Bernabei  R, Landi  F; Gemelli Against COVID-19 Post-Acute Care Study Group.  Persistent symptoms in patients after acute COVID-19.   JAMA. 2020;324(6):603-605. doi:10.1001/jama.2020.12603PubMedGoogle ScholarCrossref
    ×