Hyponatremia and Long-term Mortality in Survivors of Acute ST-Elevation Myocardial Infarction | Acid Base, Electrolytes, Fluids | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Anderson  RJChung  HMKluge  RSchrier  RW Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin.  Ann Intern Med 1985;102164- 168PubMedGoogle ScholarCrossref
2.
Chung  HMKluge  RSchrier  RWAnderson  RJ Postoperative hyponatremia: a prospective study.  Arch Intern Med 1986;146333- 336PubMedGoogle ScholarCrossref
3.
Adrogue  HJMadias  NE Hyponatremia.  N Engl J Med 2000;3421581- 1589PubMedGoogle ScholarCrossref
4.
Kumar  SBerl  T Sodium.  Lancet 1998;352220- 228PubMedGoogle ScholarCrossref
5.
Klein  LO’Connor  CMLeimberger  JD  et al.  Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) Study.  Circulation 2005;1112454- 2460PubMedGoogle ScholarCrossref
6.
Goldberg  AHammerman  HPetcherski  S  et al.  Prognostic importance of hyponatremia in acute ST-elevation myocardial infarction.  Am J Med 2004;117242- 248PubMedGoogle ScholarCrossref
7.
Sigurdsson  AHeld  PSwedberg  K Short- and long-term neurohormonal activation following acute myocardial infarction.  Am Heart J 1993;1261068- 1076PubMedGoogle ScholarCrossref
8.
Foy  SGCrozier  IGRichards  AM  et al.  Neurohormonal changes after acute myocardial infarction: relationships with haemodynamic indices and effects of ACE inhibition.  Eur Heart J 1995;16770- 778PubMedGoogle Scholar
9.
Schaller  MDNussberger  JFeihl  F  et al.  Clinical and hemodynamic correlates of elevated plasma arginine vasopressin after acute myocardial infarction.  Am J Cardiol 1987;601178- 1180PubMedGoogle ScholarCrossref
10.
Cohn  JNFerrari  RSharpe  N Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling.  J Am Coll Cardiol 2000;35569- 582PubMedGoogle ScholarCrossref
11.
Alpert  JSThygesen  KAntman  EBassand  JP Myocardial infarction redefined: a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction.  J Am Coll Cardiol 2000;36959- 969PubMedGoogle ScholarCrossref
12.
Levey  AGreene  TKusek  J  et al.  A simplified equation to predict glomerular filtration rate from serum creatinine [abstract].  J Am Soc Nephrol 2000;d11155AGoogle Scholar
13.
Levey  ASBosch  JPLewis  JBGreene  TRogers  NRoth  DModification of Diet in Renal Disease Study Group, A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation.  Ann Intern Med 1999;130461- 470PubMedGoogle ScholarCrossref
14.
Lewis  EFMoye  LARouleau  JL  et al.  Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE Study.  J Am Coll Cardiol 2003;421446- 1453PubMedGoogle ScholarCrossref
15.
Katz  MA Hyperglycemia-induced hyponatremia: calculation of expected serum sodium depression.  N Engl J Med 1973;289843- 844PubMedGoogle ScholarCrossref
16.
Pfeffer  M Myocardial infarction and heart failure: a dangerous intersection.  Am J Med 2002;113341- 343PubMedGoogle ScholarCrossref
17.
Pfeffer  MABraunwald  E Ventricular remodeling after myocardial infarction: experimental observations and clinical implications.  Circulation 1990;811161- 1172PubMedGoogle ScholarCrossref
18.
Lee  WHPacker  M Prognostic importance of serum sodium concentration and its modification by converting-enzyme inhibition in patients with severe chronic heart failure.  Circulation 1986;73257- 267PubMedGoogle ScholarCrossref
19.
Lilly  LSDzau  VJWilliams  GHRydstedt  LHollenberg  NK Hyponatremia in congestive heart failure: implications for neurohumoral activation and responses to orthostasis.  J Clin Endocrinol Metab 1984;59924- 930PubMedGoogle ScholarCrossref
20.
Mettauer  BRouleau  JLBichet  D  et al.  Sodium and water excretion abnormalities in congestive heart failure: determinant factors and clinical implications.  Ann Intern Med 1986;105161- 167PubMedGoogle ScholarCrossref
21.
Schaer  GLCovit  ABLaragh  JHCody  RJ Association of hyponatremia with increased renin activity in chronic congestive heart failure: impact of diuretic therapy.  Am J Cardiol 1983;511635- 1638PubMedGoogle ScholarCrossref
22.
Kearney  MTFox  KALee  AJ  et al.  Predicting death due to progressive heart failure in patients with mild-to-moderate chronic heart failure.  J Am Coll Cardiol 2002;401801- 1808PubMedGoogle ScholarCrossref
23.
Chin  MHGoldman  L Correlates of major complications or death in patients admitted to the hospital with congestive heart failure.  Arch Intern Med 1996;1561814- 1820PubMedGoogle ScholarCrossref
24.
Saxon  LAStevenson  WGMiddlekauff  HR  et al.  Predicting death from progressive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.  Am J Cardiol 1993;7262- 65PubMedGoogle ScholarCrossref
25.
Rouleau  JLPacker  MMoye  L  et al.  Prognostic value of neurohumoral activation in patients with an acute myocardial infarction: effect of captopril.  J Am Coll Cardiol 1994;24583- 591PubMedGoogle ScholarCrossref
26.
Dzau  VJHollenberg  NK Renal response to captopril in severe heart failure: role of furosemide in natriuresis and reversal of hyponatremia.  Ann Intern Med 1984;100777- 782PubMedGoogle ScholarCrossref
27.
Elisaf  MTheodorou  JPappas  CSiamopoulos  K Successful treatment of hyponatremia with angiotensin-converting enzyme inhibitors in patients with congestive heart failure.  Cardiology 1995;86477- 480PubMedGoogle ScholarCrossref
Original Investigation
April 10, 2006

Hyponatremia and Long-term Mortality in Survivors of Acute ST-Elevation Myocardial Infarction

Author Affiliations

Author Affiliations: Departments of Cardiology, Rambam Medical Center and Rappaport Medical School, Haifa, Israel.

Arch Intern Med. 2006;166(7):781-786. doi:10.1001/archinte.166.7.781
Abstract

Background  Hyponatremia, a marker of neurohormonal activation, is a common electrolyte disorder among patients with acute ST-elevation myocardial infarction. The long-term prognostic value of hyponatremia during the acute phase of infarction is not known.

Methods  We studied 978 patients with acute ST-elevation myocardial infarction and without a history of heart failure who survived the index event. During the hospital stay, sodium levels were obtained on admission and at 24, 48, and 72 hours. The median duration of follow-up after hospital discharge was 31 months (range, 9-61 months).

Results  Hyponatremia, defined as a mean serum sodium level less than 136 mEq/L, was present during admission in 108 patients (11.0%). In a multivariable Cox proportional hazards model adjusting for other potential clinical predictors of mortality and for left ventricular ejection fraction, hyponatremia during admission remained an independent predictor of postdischarge death (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.3-3.2; P = .002). Hyponatremia during admission was also independently associated with postdischarge readmission for heart failure (HR, 1.6; 95% CI, 1.1-2.6; P = .04). When serum sodium level was used as a continuous variable, the adjusted HR for death or heart failure was 1.12 for every 1-mEq/L decrease (95% CI, 1.07-1.18; P<.001).

Conclusion  Hyponatremia in the early phase of ST-elevation myocardial infarction is a predictor of long-term mortality and admission for heart failure after hospital discharge, independent of other clinical predictors of adverse outcome and left ventricular ejection fraction.

×