Effects of Calcium Supplementation on Clinical Fracture and Bone Structure: Results of a 5-Year, Double-blind, Placebo-Controlled Trial in Elderly Women | Orthopedics | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Prince  RL Counterpoint: estrogen effects on calcitropic hormones and calcium homeostasis.  Endocr Rev 1994;15301- 309PubMedGoogle ScholarCrossref
2.
Christakos  SPrince  R Estrogen, vitamin D, and calcium transport.  J Bone Miner Res 2003;181737- 1739PubMedGoogle ScholarCrossref
3.
Nordin  BEC Calcium and osteoporosis.  Nutrition 1997;13664- 686PubMedGoogle ScholarCrossref
4.
Prince  RLSmith  MDick  IM  et al.  Prevention of postmenopausal osteoporosis.  N Engl J Med 1991;3251189- 1195PubMedGoogle ScholarCrossref
5.
Prince  RDevine  ADick  I  et al.  The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women.  J Bone Miner Res 1995;101068- 1075PubMedGoogle ScholarCrossref
6.
Reid  IRAmes  RWEvans  MCGamble  GDSharpe  SJ Long-term effects of calcium supplementation on bone loss and fractures in postmenopausal women: a randomized controlled trial.  Am J Med 1995;98331- 335PubMedGoogle ScholarCrossref
7.
Riggs  BLO’Fallon  WMMuhs  JO’Connor  MKKumar  RMelton  J Long-term effects of calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in elderly women.  J Bone Miner Res 1998;13168- 174PubMedGoogle ScholarCrossref
8.
Siris  ESChen  YTAbbott  TA  et al.  Bone mineral density thresholds for pharmacological intervention to prevent fractures.  Arch Intern Med 2004;1641108- 1112PubMedGoogle ScholarCrossref
9.
Bruce  DGDevine  APrince  RL Recreational physical activity levels in healthy older women: the importance of fear of falling.  J Am Geriatr Soc 2002;5084- 89PubMedGoogle ScholarCrossref
10.
Ireland  PJolley  DGiles  G  et al.  Development of the Melbourne FFQ.  Asia Pac J Clin Nutr 1994;119- 31Google Scholar
11.
Hodge  APatterson  AJBrown  WJIreland  PGiles  G The Anti Cancer Council of Victoria FFQ.  Aust N Z J Public Health 2000;24576- 583PubMedGoogle ScholarCrossref
12.
Kallman  DAPlato  CCTobin  JD The role of muscle loss in the age-related decline of grip strength.  J Gerontol 1990;45M82- M88PubMedGoogle ScholarCrossref
13.
Devine  ADhaliwal  SSDick  IMBollerslev  JPrince  RL Physical activity and calcium consumption are important determinants of lower limb bone mass in older women.  J Bone Miner Res 2004;191634- 1639PubMedGoogle ScholarCrossref
14.
McArdle  WDKatch  FIKatch  VL Energy, Nutrition and Human Performance.  Philadelphia, Pa Lea & Febiger1991;
15.
Pollock  MLWilmore  JHFox  SM Health and Fitness Through Physical Activity.  New York, NY John Wiley & Sons Inc1978;
16.
Podsiadlo  DRichardson  S The timed “Up & Go”: a test of basic functional mobility for frail elderly persons.  J Am Geriatr Soc 1991;39142- 148PubMedGoogle Scholar
17.
Guralnik  JMFerrucci  LSimonsick  EMSalive  MEWallace  RB Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability.  N Engl J Med 1995;332556- 561PubMedGoogle ScholarCrossref
18.
Henzell  SDhaliwal  SPontifex  R  et al.  Precision error of fan-beam dual X-ray absorptiometry scans at the spine, hip, and forearm.  J Clin Densitom 2000;3359- 364PubMedGoogle ScholarCrossref
19.
Schoenau  ENeu  CMRauch  FManz  F The development of bone strength at the proximal radius during childhood and adolescence.  J Clin Endocrinol Metab 2001;86613- 618PubMedGoogle ScholarCrossref
20.
St. John  ADavies  CRiley  WJ  et al.  Comparison of the performance and clinical utility of a carboxy-terminal assay and an intact assay for parathyroid hormone.  Clin Chim Acta 1988;178215- 223PubMedGoogle ScholarCrossref
21.
Dean  BKolavcic  MSWark  JDHarrison  LC Chromatography of serum on Sep-pak C18 corrects falsely elevated vitamin D metabolite levels measured by protein binding assay.  Clin Chim Acta 1988;176169- 178PubMedGoogle ScholarCrossref
22.
Britt  H A new coding tool for computerised clinical systems in primary care—ICPC plus.  Aust Fam Physician 1997;26S79- S82PubMedGoogle Scholar
23.
McCloskey  EVSpector  TDEyres  KS  et al.  The assessment of vertebral deformity.  Osteoporos Int 1993;3138- 147PubMedGoogle ScholarCrossref
24.
Shea  BWells  GCranney  A  et al.  Meta-analyses of therapies for postmenopausal osteoporosis, VII: meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis.  Endocr Rev 2002;23552- 559PubMedGoogle ScholarCrossref
25.
Grant  AMAvenell  ACampbell  MK  et al.  Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium or Vitamin D, RECORD).  Lancet 2005;3651621- 1628PubMedGoogle ScholarCrossref
26.
Chapuy  MCArlot  MFDuboeuf  F  et al.  Vitamin D3 and calcium to prevent hip fractures in elderly women.  N Engl J Med 1992;3271637- 1642PubMedGoogle ScholarCrossref
27.
Dawson-Hughes  BHarris  SSKrall  EADallal  GE Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older.  N Engl J Med 1997;337670- 676PubMedGoogle ScholarCrossref
28.
Recker  RRHinders  SDavies  KM  et al.  Correcting calcium nutritional deficiency prevents spine fractures in elderly women.  J Bone Miner Res 1996;111961- 1966PubMedGoogle ScholarCrossref
29.
Riggs  BLSeeman  EHodgson  SFTaves  DRO’Fallon  WM Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis.  N Engl J Med 1982;306446- 450PubMedGoogle ScholarCrossref
30.
Bagger  YZTanko  LBAlexandersen  P  et al.  Two to three years of hormone replacement treatment in healthy women have long-term preventive effects on bone mass and osteoporotic fractures: the PERF study.  Bone 2004;34728- 735PubMedGoogle ScholarCrossref
31.
Cummings  SRBlack  DMThompson  DE  et al.  Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial.  JAMA 1998;2802077- 2082PubMedGoogle ScholarCrossref
32.
McClung  MRGeusens  PMiller  PD  et al. Hip Intervention Program Study Group, Effect of risedronate on the risk of hip fracture in elderly women.  N Engl J Med 2001;344333- 340PubMedGoogle ScholarCrossref
Original Investigation
April 24, 2006

Effects of Calcium Supplementation on Clinical Fracture and Bone Structure: Results of a 5-Year, Double-blind, Placebo-Controlled Trial in Elderly Women

Author Affiliations

Author Affiliations: School of Medicine and Pharmacology, University of Western Australia (Drs Prince, Devine, and Dick), Western Australian Institute of Medical Research (Drs Prince, Devine, and Dick), School of Public Health, Curtin University of Technology (Mr Dhaliwal), and School of Exercise, Biomedical and Health Science, Edith Cowan University (Dr Devine), Perth, and Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands (Drs Prince, Devine, and Dick), Australia.

Arch Intern Med. 2006;166(8):869-875. doi:10.1001/archinte.166.8.869
Abstract

Background  Increased dietary calcium intake has been proposed as a population-based public health intervention to prevent osteoporotic fractures. We have examined whether calcium supplementation decreases clinical fracture risk in elderly women and its mechanism of action.

Methods  Five-year, double-blind, placebo-controlled study of 1460 women recruited from the population and older than 70 years (mean age, 75 years) who were randomized to receive calcium carbonate, 600 mg twice per day, or identical placebo. The primary end points included clinical incident osteoporotic fractures, vertebral deformity, and adverse events ascertained in 5 years. Bone structure was also measured using dual x-ray absorptiometry of the hip and whole body, quantitative ultrasonography of the heel, and peripheral quantitative computed tomography of the distal radius.

Results  Among our patients, 16.1% sustained 1 or more clinical osteoporotic fractures. In the intention-to-treat analysis, calcium supplementation did not significantly reduce fracture risk (hazard ratio, 0.87; 95% confidence interval, 0.67-1.12). However, 830 patients (56.8%) who took 80% or more of their tablets (calcium or placebo) per year had reduced fracture incidence in the calcium compared with the placebo groups (10.2% vs 15.4%; hazard ratio, 0.66; 95% confidence interval, 0.45-0.97). Calcium-treated patients had improved quantitative ultrasonography findings of the heel, femoral neck and whole-body dual x-ray absorptiometry data, and bone strength compared with placebo-treated patients. Of the 92 000 adverse events recorded, constipation was the only event increased by the treatment (calcium group, 13.4%; placebo group, 9.1%).

Conclusion  Supplementation with calcium carbonate tablets supplying 1200 mg/d is ineffective as a public health intervention in preventing clinical fractures in the ambulatory elderly population owing to poor long-term compliance, but it is effective in those patients who are compliant.

×