Red Meat Intake and Risk of Breast Cancer Among Premenopausal Women | Breast Cancer | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Boyd  NFStone  JVogt  KNConnelly  BSMartin  LJMinkin  S Dietary fat and breast cancer risk revisited: a meta-analysis of the published literature.  Br J Cancer 2003;891672- 1685PubMedGoogle ScholarCrossref
2.
Armstrong  BDoll  R Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices.  Int J Cancer 1975;15617- 631PubMedGoogle ScholarCrossref
3.
World Cancer Research Fund; American Institute for Cancer Research, Food, Nutrition and the Prevention of Cancer: A Global Perspective.  Washington, DC American Institute for Cancer Research1997;
4.
Missmer  SASmith-Warner  SASpiegelman  D  et al.  Meat and dairy food consumption and breast cancer: a pooled analysis of cohort studies.  Int J Epidemiol 2002;3178- 85PubMedGoogle ScholarCrossref
5.
Li  CIDaling  JRMalone  KE Incidence of invasive breast cancer by hormone receptor status from 1992 to 1998.  J Clin Oncol 2003;2128- 34PubMedGoogle ScholarCrossref
6.
Potter  JDCerhan  JRSellers  TA  et al.  Progesterone and estrogen receptors and mammary neoplasia in the Iowa Women's Health Study: how many kinds of breast cancer are there?  Cancer Epidemiol Biomarkers Prev 1995;4319- 326PubMedGoogle Scholar
7.
Enger  SMRoss  RKPaganini-Hill  ALongnecker  MPBernstein  L Alcohol consumption and breast cancer oestrogen and progesterone receptor status.  Br J Cancer 1999;791308- 1314PubMedGoogle ScholarCrossref
8.
Sellers  TAVierkant  RACerhan  JR  et al.  Interaction of dietary folate intake, alcohol, and risk of hormone receptor-defined breast cancer in a prospective study of postmenopausal women.  Cancer Epidemiol Biomarkers Prev 2002;111104- 1107PubMedGoogle Scholar
9.
Olsen  ATjonneland  AThomsen  BL  et al.  Fruits and vegetables intake differentially affects estrogen receptor negative and positive breast cancer incidence rates.  J Nutr 2003;1332342- 2347PubMedGoogle Scholar
10.
Cotterchio  MKreiger  NTheis  BSloan  MBahl  S Hormonal factors and the risk of breast cancer according to estrogen- and progesterone-receptor subgroup.  Cancer Epidemiol Biomarkers Prev 2003;121053- 1060PubMedGoogle Scholar
11.
McCredie  MRDite  GSSouthey  MCVenter  DJGiles  GGHopper  JL Risk factors for breast cancer in young women by oestrogen receptor and progesterone receptor status.  Br J Cancer 2003;891661- 1663PubMedGoogle ScholarCrossref
12.
Li  CIMalone  KEPorter  PLWeiss  NSTang  MTDaling  JR The relationship between alcohol use and risk of breast cancer by histology and hormone receptor status among women 65-79 years of age.  Cancer Epidemiol Biomarkers Prev 2003;121061- 1066PubMedGoogle Scholar
13.
Felton  JSKnize  MGSalmon  CPMalfatti  MAKulp  KS Human exposure to heterocyclic amine food mutagens/carcinogens: relevance to breast cancer.  Environ Mol Mutagen 2002;39112- 118PubMedGoogle ScholarCrossref
14.
Lauber  SNAli  SGooderham  NJ The cooked food derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine is a potent oestrogen: a mechanistic basis for its tissue-specific carcinogenicity.  Carcinogenesis 2004;252509- 2517PubMedGoogle ScholarCrossref
15.
Qiu  CShan  LYu  MSnyderwine  EG Steroid hormone receptor expression and proliferation in rat mammary gland carcinomas induced by 2-amino-1- methyl-6-phenylimidazo[4,5-b]pyridine.  Carcinogenesis 2005;26763- 769PubMedGoogle ScholarCrossref
16.
Wyllie  SLiehr  JG Enhancement of estrogen-induced renal tumorigenesis in hamsters by dietary iron.  Carcinogenesis 1998;191285- 1290PubMedGoogle ScholarCrossref
17.
Liehr  JGJones  JS Role of iron in estrogen-induced cancer.  Curr Med Chem 2001;8839- 849PubMedGoogle ScholarCrossref
18.
Andersson  AMSkakkebaek  NE Exposure to exogenous estrogens in food: possible impact on human development and health.  Eur J Endocrinol 1999;140477- 485PubMedGoogle ScholarCrossref
19.
Stephany  RW Hormones in meat: different approaches in the EU and in the USA.  APMIS Suppl 2001;(103)S357- S364PubMedGoogle ScholarCrossref
20.
Miller  ABHowe  GRSherman  GJ  et al.  Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis.  N Engl J Med 1989;3211285- 1289PubMedGoogle ScholarCrossref
21.
Cho  ESpiegelman  DHunter  DJ  et al.  Premenopausal fat intake and risk of breast cancer.  J Natl Cancer Inst 2003;951079- 1085PubMedGoogle ScholarCrossref
22.
Hu  FBStampfer  MJRimm  EB  et al.  Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements.  Am J Epidemiol 1999;149531- 540PubMedGoogle ScholarCrossref
23.
Salvini  SHunter  DJSampson  L  et al.  Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption.  Int J Epidemiol 1989;18858- 867PubMedGoogle ScholarCrossref
24.
Cox  DROakes  D Analysis of Survival Data.  London, England Chapman & Hall1984;
25.
SAS/STAT Software, The PHREG Procedure: Preliminary Documentation.  Cary, NC SAS Institute1991;
26.
Therneau  TM Extending the Cox model. Lin  DYFleming  TR Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis. New York, NY Springer Verlag1997;51- 84Google Scholar
27.
Prentice  RL The analysis of failure times in the presence of competing risks.  Biometrics 1978;34541- 554PubMedGoogle ScholarCrossref
28.
Potischman  NWeiss  HASwanson  CA  et al.  Diet during adolescence and risk of breast cancer among young women.  J Natl Cancer Inst 1998;90226- 233PubMedGoogle ScholarCrossref
29.
Huang  ZHankinson  SEColditz  GA  et al.  Dual effects of weight and weight gain on breast cancer risk.  JAMA 1997;2781407- 1411PubMedGoogle ScholarCrossref
30.
Colditz  GAFrazier  AL Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus.  Cancer Epidemiol Biomarkers Prev 1995;4567- 571PubMedGoogle Scholar
31.
Early Breast Cancer Trialists' Collaborative Group, Tamoxifen for early breast cancer: an overview of the randomised trials.  Lancet 1998;3511451- 1467PubMedGoogle ScholarCrossref
32.
Lower  EEBlau  RGazder  PStahl  DL The effect of estrogen usage on the subsequent hormone receptor status of primary breast cancer.  Breast Cancer Res Treat 1999;58205- 211PubMedGoogle ScholarCrossref
33.
Enger  SMRoss  RKPaganini-Hill  ACarpenter  CLBernstein  L Body size, physical activity, and breast cancer hormone receptor status: results from two case-control studies.  Cancer Epidemiol Biomarkers Prev 2000;9681- 687PubMedGoogle Scholar
34.
Gaudet  MMBritton  JAKabat  GC  et al.  Fruits, vegetables, and micronutrients in relation to breast cancer modified by menopause and hormone receptor status.  Cancer Epidemiol Biomarkers Prev 2004;131485- 1494PubMedGoogle Scholar
35.
Colditz  GARosner  BAChen  WYHolmes  MDHankinson  SE Risk factors for breast cancer according to estrogen and progesterone receptor status.  J Natl Cancer Inst 2004;96218- 228PubMedGoogle ScholarCrossref
36.
Missmer  SAEliassen  AHBarbieri  RLHankinson  SE Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women.  J Natl Cancer Inst 2004;961856- 1865PubMedGoogle ScholarCrossref
37.
Cummings  SRLee  JSLui  LYStone  KLjung  BMCauleys  JA Sex hormones, risk factors, and risk of estrogen receptor-positive breast cancer in older women: a long-term prospective study.  Cancer Epidemiol Biomarkers Prev 2005;141047- 1051PubMedGoogle ScholarCrossref
38.
Tworoger  SSEliassen  AHRosner  BSluss  PHankinson  SE Plasma prolactin concentrations and risk of postmenopausal breast cancer.  Cancer Res 2004;646814- 6819PubMedGoogle ScholarCrossref
39.
Snyderwine  EG Mammary gland carcinogenesis by 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine in rats: possible mechanisms.  Cancer Lett 1999;143211- 215PubMedGoogle ScholarCrossref
40.
Forman  D Dietary exposure to N-nitroso compounds and the risk of human cancer.  Cancer Surv 1987;6719- 738PubMedGoogle Scholar
41.
Zheng  WGustafson  DRSinha  R  et al.  Well-done meat intake and the risk of breast cancer.  J Natl Cancer Inst 1998;901724- 1729PubMedGoogle ScholarCrossref
42.
Sinha  RGustafson  DRKulldorff  MWen  WQCerhan  JRZheng  W 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a carcinogen in high-temperature-cooked meat, and breast cancer risk.  J Natl Cancer Inst 2000;921352- 1354PubMedGoogle ScholarCrossref
43.
De Stefani  ERonco  AMendilaharsu  MGuidobono  MDeneo-Pellegrini  H Meat intake, heterocyclic amines, and risk of breast cancer: a case-control study in Uruguay.  Cancer Epidemiol Biomarkers Prev 1997;6573- 581PubMedGoogle Scholar
44.
Carpenter  CEMahoney  AW Contributions of heme and nonheme iron to human nutrition.  Crit Rev Food Sci Nutr 1992;31333- 367PubMedGoogle ScholarCrossref
45.
Rock  CLFlatt  SWThomson  CA  et al.  Effects of a high-fiber, low-fat diet intervention on serum concentrations of reproductive steroid hormones in women with a history of breast cancer.  J Clin Oncol 2004;222379- 2387PubMedGoogle ScholarCrossref
Original Investigation
November 13, 2006

Red Meat Intake and Risk of Breast Cancer Among Premenopausal Women

Author Affiliations

Author Affiliations: Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School (Drs Cho, Chen, Hunter, Stampfer, Colditz, Hankinson, and Willett); Departments of Nutrition (Drs Hunter, Stampfer, and Willett) and Epidemiology (Drs Hunter, Stampfer, Colditz, and Willett), Harvard School of Public Health; and Department of Medical Oncology, Dana-Farber Cancer Institute (Dr Chen), and Harvard Center for Cancer Prevention (Drs Hunter and Colditz), Boston, Mass.

Arch Intern Med. 2006;166(20):2253-2259. doi:10.1001/archinte.166.20.2253
Abstract

Background  The association between red meat intake and breast cancer is unclear, but most studies have assessed diet in midlife or later. Although breast tumors differ clinically and biologically by hormone receptor status, few epidemiologic studies of diet have made this distinction.

Methods  Red meat intake and breast cancer risk were assessed among premenopausal women aged 26 to 46 years in the Nurses' Health Study II. Red meat intake was assessed with a food frequency questionnaire administered in 1991, 1995, and 1999, with respondents followed up through 2003. Breast cancers were self-reported and confirmed by review of pathologic reports.

Results  During 12 years of follow-up of 90 659 premenopausal women, we documented 1021 cases of invasive breast carcinoma. Greater red meat intake was strongly related to elevated risk of breast cancers that were estrogen and progesterone receptor positive (ER+/PR+; n = 512) but not to those that were estrogen and progesterone receptor negative (ER−/PR−; n = 167). Compared with those eating 3 or fewer servings per week of red meat, the multivariate relative risks (95% confidence intervals) for ER+/PR+ breast cancer with increasing servings of red meat intake were 1.14 (0.90-1.45) for more than 3 to 5 or fewer servings per week, 1.42 (1.06-1.90) for more than 5 per week to 1 or fewer servings per day, 1.20 (0.89-1.63) for more than 1 to 1.5 or fewer servings per day, and 1.97 (1.35-2.88) for more than 1.5 servings per day (test for trend, P = .001). The corresponding relative risks for ER−/PR− breast cancer were 1.34 (0.89-2.00), 1.21 (0.73-2.00), 0.69 (0.39-1.23), and 0.89 (0.43-1.84) (test for trend, P = .28). Higher intakes of several individual red meat items were also strongly related to elevated risk of ER+/PR+ breast cancer.

Conclusion  Higher red meat intake may be a risk factor for ER+/PR+ breast cancer among premenopausal women.

×