Calorie Restriction and Bone Health in Young, Overweight Individuals | Geriatrics | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
 Osteoporosis prevention, diagnosis, and therapy.  National Institutes of Health Web site. Accessed June 30, 2008Google Scholar
Jensen  LBQuaade  FSorensen  OH Bone loss accompanying voluntary weight loss in obese humans.  J Bone Miner Res 1994;9 (4) 459- 463PubMedGoogle ScholarCrossref
Villareal  DTFontana  LWeiss  EP  et al.  Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial.  Arch Intern Med 2006;166 (22) 2502- 2510PubMedGoogle ScholarCrossref
Heilbronn  LKde Jonge  LFrisard  MI  et al.  Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial.  JAMA 2006;295 (13) 1539- 1548PubMedGoogle ScholarCrossref
Larson-Meyer  DEHeilbronn  LKRedman  LM  et al.  Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, and ectopic lipid in overweight subjects.  Diabetes Care 2006;29 (6) 1337- 1344PubMedGoogle ScholarCrossref
Redman  LMHeilbronn  LKMartin  CKAlfonso  ASmith  SRRavussin  E Effect of calorie restriction with or without exercise on body composition and fat distribution.  J Clin Endocrinol Metab 2007;92 (3) 865- 872PubMedGoogle ScholarCrossref
Martin  CAnton  SYork-Crowe  E  et al.  Empirical evaluation of the ability to learn a calorie counting system and estimate portion size and food intake.  Br J Nutr 2007;98 (2) 439- 444PubMedGoogle ScholarCrossref
Delmas  PDEastell  RGarnero  PSeibel  MJStepan  J The use of biochemical markers of bone turnover in osteoporosis: Committee of Scientific Advisors of the International Osteoporosis Foundation.  Osteoporos Int 2000;11 ((suppl 6)) S2- S17PubMedGoogle ScholarCrossref
Fontana  LMeyer  TEKlein  SHolloszy  JO Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans.  Proc Natl Acad Sci U S A 2004;101 (17) 6659- 6663PubMedGoogle ScholarCrossref
Gossain  VVRao  DSCarella  MJDivine  GRovner  DR Bone mineral density (BMD) in obesity effect of weight loss.  J Med 1999;30 (5-6) 367- 376PubMedGoogle Scholar
Svendsen  OLHassager  CChristiansen  C Effect of an energy-restrictive diet, with or without exercise, on lean tissue mass, resting metabolic rate, cardiovascular risk factors, and bone in overweight postmenopausal women.  Am J Med 1993;95 (2) 131- 140PubMedGoogle ScholarCrossref
Tothill  P Dual-energy x-ray absorptiometry measurements of total-body bone mineral during weight change.  J Clin Densitom 2005;8 (1) 31- 38PubMedGoogle ScholarCrossref
Andersen  REWadden  TAHerzog  RJ Changes in bone mineral content in obese dieting women.  Metabolism 1997;46 (8) 857- 861PubMedGoogle ScholarCrossref
Compston  JELaskey  MACroucher  PICoxon  AKreitzman  S Effect of diet-induced weight loss on total body bone mass.  Clin Sci (Lond) 1992;82 (4) 429- 432PubMedGoogle Scholar
Ricci  TAHeymsfield  SBPierson  RN  JrStahl  TChowdhury  HAShapses  SA Moderate energy restriction increases bone resorption in obese postmenopausal women.  Am J Clin Nutr 2001;73 (2) 347- 352PubMedGoogle Scholar
Hyldstrup  LAndersen  T McNair  PBreum  LTransbol  I Bone metabolism in obesity: changes related to severe overweight and dietary weight reduction.  Acta Endocrinol (Copenh) 1993;129 (5) 393- 398PubMedGoogle Scholar
Rubin  CTLanyon  LE Regulation of bone mass by mechanical strain magnitude.  Calcif Tissue Int 1985;37 (4) 411- 417PubMedGoogle ScholarCrossref
Syed  FKhosla  S Mechanisms of sex steroid effects on bone.  Biochem Biophys Res Commun 2005;328 (3) 688- 696PubMedGoogle ScholarCrossref
Radak  TL Caloric restriction and calcium's effect on bone metabolism and body composition in overweight and obese premenopausal women.  Nutr Rev 2004;62 (12) 468- 481PubMedGoogle ScholarCrossref
Shapses  SAVon Thun  NLHeymsfield  SB  et al.  Bone turnover and density in obese premenopausal women during moderate weight loss and calcium supplementation.  J Bone Miner Res 2001;16 (7) 1329- 1336PubMedGoogle ScholarCrossref
Riedt  CSSchlussel  Yvon Thun  N  et al.  Premenopausal overweight women do not lose bone during moderate weight loss with adequate or higher calcium intake.  Am J Clin Nutr 2007;85 (4) 972- 980PubMedGoogle Scholar
Thomas  TGori  FKhosla  SJensen  MDBurguera  BRiggs  BL Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes.  Endocrinology 1999;140 (4) 1630- 1638PubMedGoogle Scholar
Takeda  S Central control of bone remodeling.  Biochem Biophys Res Commun 2005;328 (3) 697- 699PubMedGoogle ScholarCrossref
Haffner  SMBauer  RL The association of obesity and glucose and insulin concentrations with bone density in premenopausal and postmenopausal women.  Metabolism 1993;42 (6) 735- 738PubMedGoogle ScholarCrossref
Stolk  RPVan Daele  PLPols  HA  et al.  Hyperinsulinemia and bone mineral density in an elderly population: the Rotterdam Study.  Bone 1996;18 (6) 545- 549PubMedGoogle ScholarCrossref
Original Investigation
September 22, 2008

Calorie Restriction and Bone Health in Young, Overweight Individuals

Leanne M. Redman, PhD; Jennifer Rood, PhD; Stephen D. Anton, PhD; et al Catherine Champagne, PhD; Steven R. Smith, MD; Eric Ravussin, PhD; Pennington Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE) Research Team
Author Affiliations

Author Affiliations: Pennington Biomedical Research Center, Baton Rouge, Louisiana.

Arch Intern Med. 2008;168(17):1859-1866. doi:10.1001/archinte.168.17.1859

Background  Calorie restriction (CR) is promoted to increase longevity, yet this regimen could lead to bone loss and fracture and therefore affect quality of life.

Methods  Forty-six individuals were randomized to 4 groups for 6 months: (1) healthy diet (control group); (2) 25% CR from baseline energy requirements (CR group); (3) 25% energy deficit by a combination of CR and increased aerobic exercise (CR + EX group); and (4) low-calorie diet (890 kcal/d; goal, 15% weight loss) followed by weight maintenance (LCD group). Bone mineral density (total body and hip by dual-energy x-ray absorptiometry) and serum bone markers (bone-specific alkaline phosphatase, osteocalcin, cross-linked C-telopeptide of type I collagen, and cross-linked N-telopeptide of type I collagen) were measured at baseline and after 6 months.

Results  Mean ± SE body weight was reduced by –1.0% ± 1.1% (control), –10.4% ± 0.9% (CR), –10.0% ± 0.8% (CR + EX), and –13.9% ± 0.7% (LCD). Compared with the control group, none of the groups showed any change in bone mineral density for total body or hip. Bone resorption by serum cross-linked C-telopeptide of type I collagen was increased in all 3 intervention groups, with the largest change observed in the LCD group (CR, 23% ± 10%; CR + EX, 22% ± 9%; and LCD, 74% ± 16% vs control, 4% ± 10%). Serum levels of cross-linked N-telopeptide of type I collagen were also increased in the LCD group. With regard to bone formation, bone alkaline phosphatase levels were decreased in the CR group (–23% ± 10%) but were unchanged in the CR + EX, LCD, and control groups.

Conclusions  Moderate CR, with or without exercise, that preserves calcium intake for 6 months leads to large changes in body composition without significant bone loss in young adults. Longer studies with assessments of bone architecture are needed to confirm that CR nutrient-dense diets have no deleterious effect on bone health.

Trial Registration Identifier: NCT00099151