Effect of Macrolides as Part of Initial Empiric Therapy on Length of Stay in Patients Hospitalized With Community-Acquired Pneumonia | Infectious Diseases | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.206.238.77. Please contact the publisher to request reinstatement.
1.
Niederman  MSPeters  SP Update in pulmonary medicine.  Ann Intern Med. 1998;128208- 215Google ScholarCrossref
2.
Rosenthal  GEHarper  DLQuinn  LMCooper  GS Severity-adjusted mortality and length of stay in teaching and nonteaching hospitals: results of a regional study.  JAMA. 1997;278485- 490Google ScholarCrossref
3.
Not Available, Healthcare Management Guidelines (Pneumonia, Community Acquired).  Washington, DC Milliman & Robertson Inc1995;2.82- 2.83
4.
Niederman  MSBass  JBCampbell  GD  et al.  Guidelines for the initial management of adults with community-acquired pneumonia: diagnosis, assessment of severity, and initial antimicrobial therapy, American Thoracic Society.  Am Rev Respir Dis. 1993;1481418- 1426Google ScholarCrossref
5.
Iezzoni  LISchwartz  MAsh  ASMackiernan  YD Using severity measures to predict the likelihood of death for pneumonia inpatients.  J Gen Intern Med. 1996;1123- 31Google ScholarCrossref
6.
Horn  SDSharkey  PDBuckle  JMBackofen  JEAverill  RFHorn  RA The relationship between severity of illness and hospital length of stay and mortality.  Med Care. 1991;29305- 317Google ScholarCrossref
7.
Fine  MJHanusa  BHLave  JR  et al.  Comparison of a disease-specific and a generic severity of illness measure for patients with community-acquired pneumonia.  J Gen Intern Med. 1995;10359- 368Google ScholarCrossref
8.
Fine  MJSinger  DEHanusa  BHLave  JRKapoor  WN Validation of a pneumonia prognostic index using the Medisgroups comparative hospital database.  Am J Med. 1993;94153- 159Google ScholarCrossref
9.
Fine  MJOrloff  JJArisumi  D  et al.  Prognosis of patients hospitalized with community-acquired pneumonia.  Am J Med. 1998;881N- 8NGoogle Scholar
10.
Bates  JHCampbell  GDBarron  AL  et al.  Microbial etiology of acute pneumonia in hospitalized patients.  Chest. 1992;1011005- 1012Google ScholarCrossref
11.
Marrie  TJDurant  HYates  L Community-acquired pneumonia requiring hospitalization: a 5-year prospective study.  Rev Infect Dis. 1989;11586- 599Google ScholarCrossref
12.
Woodhead  MAMacFarlane  JTMcCracken  JSRose  DHFinch  RG Prospective study of the aetiology and outcome of pneumonia in the community.  Lancet. 1987;1671- 674Google ScholarCrossref
13.
Pachon  JPrados  MDCapote  FCuello  JAGarnacho  JVerano  A Severe community-acquired pneumonia: etiology, prognosis, and treatment.  Am Rev Respir Dis. 1990;142369- 373Google ScholarCrossref
14.
Torres  ASerra-Batiles  JFerrer  A  et al.  Severe community-acquired pneumonia: epidemiology and prognostic factors.  Am Rev Respir Dis. 1981;144312- 318Google ScholarCrossref
15.
British Thoracic Society Research Committee and the Public Health Laboratory Service, The aetiology, management and outcome of severe community-acquired pneumonia in the intensive care unit.  Respir Med. 1992;867- 13Google ScholarCrossref
16.
Lieberman  DSchlaeffer  FBoldur  I  et al.  Multiple pathogens in adult patients admitted with community-acquired pneumonia: a one year prospective study of 346 consecutive patients.  Thorax. 1996;51179- 184Google ScholarCrossref
17.
Kauppinen  MTSaikku  PKujala  PHerva  ESyrjala  H Clinical picture of community-acquired Chlamydia pneumoniae pneumonia requiring hospital treatment: a comparison between chlamydial and pneumococcal pneumonia.  Thorax. 1996;51185- 189Google ScholarCrossref
18.
Fang  GDFine  MOrloff  J  et al.  New and emerging etiologies for community-acquired pneumonia with implication for therapy: a prospective multicenter study of 359 cases.  Medicine (Baltimore). 1990;69307- 316Google ScholarCrossref
19.
Marrie  TJPeeling  RWFine  MJSinger  DEColey  CMKapoor  WN Ambulatory patients with community-acquired pneumonia: the frequency of atypical agents and clinical course.  Am J Med. 1996;101508- 515Google ScholarCrossref
20.
Isaacs  D Problems in determining the etiology of community-acquired childhood pneumonia.  J Pediatr Infect Dis. 1989;8145- 148Google Scholar
21.
Woodhead  MAMacFarlane  JT Comparative clinical laboratory features on Legionella with pneumococcal and Mycoplasma pneumonias.  Br J Dis Chest. 1987;81133- 139Google ScholarCrossref
22.
Farr  BMKaiser  DLHarrison  BDWConnolly  CK Prediction of microbial aetiology at admission to hospital for pneumonia from the presenting clinical features.  Thorax. 1989;441031- 1035Google ScholarCrossref
23.
MacFarlane  JTMiller  ACSmith  WHRMorris  AHRose  DH Comparative radiographic features of community-acquired Legionnaires' disease, pneumococcal pneumonia, Mycoplasma pneumonia, and psittacosis.  Thorax. 1984;3928- 33Google ScholarCrossref
24.
Tew  JCalenoff  LBerlin  BS Bacterial or nonbacterial pneumonia: accuracy of radiographic diagnosis.  Radiology. 1977;124607- 612Google Scholar
25.
Chan  CHSCohen  MPang  J A prospective study of community-acquired pneumonia in Hong Kong.  Chest. 1992;101442- 446Google ScholarCrossref
26.
Matsumoto  K New approaches to Pseudomonas aeroginosa lower respiratory tract infections.  Verh K Acad Geneeskd Belg. 1995;57109- 112Google Scholar
27.
Mizukane  RHirakata  YKaku  M  et al.  Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeroginosa Antimicrob Agents Chemother. 1994;38528- 533Google ScholarCrossref
28.
Sakata  KYajima  HTanaka  K  et al.  Erythromycin inhibits the production of elastase by Pseudomonas aeroginosa without affecting its proliferation in vitro.  Am Rev Respir Dis. 1993;1481061- 1065Google ScholarCrossref
29.
Molinari  GGuzman  CAPasce  ASchito  GC Inhibition of Pseudomonas aeroginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics.  J Antimicrob Chemother. 1993;31681- 688Google ScholarCrossref
30.
Ras  GJAnderson  RTaylor  GW  et al.  Clindamycin, erythromycin, and roxithromycin inhibit the proinflammatory interactions of Pseudomonas aeroginosa pigments with human neutrophils in vitro.  Antimicrob Agents Chemother. 1992;361236- 1240Google ScholarCrossref
31.
Hirakata  YKaku  MMizukane  R  et al.  Potential effects of erythromycin on host defense systems and virulence of Pseudomonas aeroginosa Antimicrob Agents Chemother. 1992;361922- 1927Google ScholarCrossref
32.
Gleason  PPKapoor  WNStone  RA  et al.  Medical outcomes and anti-microbial costs with the use of the American Thoracic Society guidelines for outpatients with community-acquired pneumonia.  JAMA. 1997;27832- 39Google ScholarCrossref
33.
Guglielmo  BJDudas  VTran  SLe  SMasuda  THopefl  A Treatment outcomes associated with community-acquired pneumonia (CAP) in US hospitals: a 3000 patient survey.  Program and abstracts of the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy September 1997 Toronto, OntarioAbstract K-146
34.
Genne  DSiegrist  HHHumair  LJanin-Jaquat  Bde Torrente  A Clarithromycin vs. amoxicillin-clavulanic acid in the treatment of community-acquired pneumonia.  Eur J Clin Microbiol Infect Dis. 1997;16783- 788Google ScholarCrossref
35.
Lave  JRFine  MJSankey  SSHanusa  BHWeissfeld  LAKapoor  WN Hospitalized pneumonia: outcomes, treatment patterns, and costs in urban and rural areas.  J Gen Intern Med. 1996;11415- 421Google ScholarCrossref
Original Investigation
November 22, 1999

Effect of Macrolides as Part of Initial Empiric Therapy on Length of Stay in Patients Hospitalized With Community-Acquired Pneumonia

Author Affiliations

From the Divisions of Clinical Decision Making (Drs Stahl and Eckman), Informatics and Telemedicine (Drs Stahl and Eckman), Geographic Medicine and Infectious Diseases (Drs Barza and DesJardin), General Medicine (Drs Stahl and Eckman), and Quality Support Services (Ms Martin), Department of Medicine, New England Medical Center and Tupper Research Institute, Tufts University School of Medicine, Boston, Mass.

Arch Intern Med. 1999;159(21):2576-2580. doi:10.1001/archinte.159.21.2576
Abstract

Background  The choice of antibiotics to treat community-acquired pneumonia (CAP) is primarily empiric, and the effect of this choice on length of stay (LOS) and mortality is largely unknown.

Objective  To examine the impact of antibiotic choice on these outcomes in general medical patients hospitalized with CAP.

Methods  One hundred patients hospitalized with CAP were prospectively identified. Seventy-six met inclusion criteria and were entered into the study. After hospital discharge, each medical chart was examined by 2 independent physicians who verified the admitting diagnosis and entered the data for antimicrobial regimens, a CAP mortality prediction tool, a social and disposition index, and other health outcomes. Patients were stratified according to the antibiotic received. Simple regression techniques were used to examine the correlation between initial therapy, specifically, ceftriaxone sodium or a macrolide, and LOS and mortality.

Results  Patients who received macrolides within the first 24 hours of admission had a markedly shorter LOS (2.8 days) than those not so treated (5.3 days; P=.01). This effect diminished as the interval before administering macrolides increased. Including ceftriaxone as part of the initial therapy did not appear to affect LOS. Patients given a macrolide for initial treatment did not differ significantly from those not treated in terms of mean age, mortality prediction tool score, or Social and Disposition Index score. Eleven of the 12 patients who received macrolides also received a β-lactam antibiotic.

Conclusion  Use of macrolides as part of an initial therapeutic regimen appears to be associated with shorter LOS.

×