[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Original Investigation
July 13, 2009

Active Commuting and Cardiovascular Disease Risk: The CARDIA Study

Author Affiliations

Author Affiliations: Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill (Drs Gordon-Larsen and Boone-Heinonen); Epidemiology and Prevention Section, Division of Research, Kaiser Permanente, Oakland, California (Drs Sidney and Sternfeld); Division of Epidemiology and Community Health, University of Minnesota, Minneapolis (Dr Jacobs); Department of Nutrition, University of Oslo, Oslo, Norway (Dr Jacobs); and Division of Preventive Medicine, University of Alabama at Birmingham (Dr Lewis).

Arch Intern Med. 2009;169(13):1216-1223. doi:10.1001/archinternmed.2009.163

Background  There is little research on the association of lifestyle exercise, such as active commuting (walking or biking to work), with obesity, fitness, and cardiovascular disease (CVD) risk factors.

Methods  This cross-sectional study included 2364 participants enrolled in the Coronary Artery Risk Development in Young Adults (CARDIA) study who worked outside the home during year 20 of the study (2005-2006). Associations between walking or biking to work (self-reported time, distance, and mode of commuting) with body weight (measured height and weight); obesity (body mass index [BMI], calculated as weight in kilograms divided by height in meters squared, ≥30); fitness (symptom-limited exercise stress testing); objective moderate-vigorous physical activity (accelerometry); CVD risk factors (blood pressure [oscillometric systolic and diastolic]); and serum measures (fasting measures of lipid, glucose, and insulin levels) were separately assessed by sex-stratified multivariable linear (or logistic) regression modeling.

Results  A total of 16.7% of participants used any means of active commuting to work. Controlling for age, race, income, education, smoking, examination center, and physical activity index excluding walking, men with any active commuting (vs none) had reduced likelihood of obesity (odds ratio [OR], 0.50; 95% confidence interval [CI], 0.33-0.76), reduced CVD risk: ratio of geometric mean triglyceride levels (trigactive)/(trignonactive) = 0.88 (95% CI, 0.80 to 0.98); ratio of geometric mean fasting insulin (FIactive)/(FInonactive) = 0.86 (95% CI, 0.78 to 0.93); difference in mean diastolic blood pressure (millimeters of mercury) (DBPactive) − (DBPnonactive) = −1.67 (95% CI, −3.20 to −0.15); and higher fitness: mean difference in treadmill test duration (in seconds) in men (TTactive) − (TTnonactive) = 50.0 (95% CI, 31.45 to 68.59) and women (TTactive) − (TTnonactive) = 28.77 (95% CI, 11.61 to 45.92).

Conclusions  Active commuting was positively associated with fitness in men and women and inversely associated with BMI, obesity, triglyceride levels, blood pressure, and insulin level in men. Active commuting should be investigated as a modality for maintaining or improving health.