Neighborhood Resources for Physical Activity and Healthy Foods and Incidence of Type 2 Diabetes Mellitus: The Multi-Ethnic Study of Atherosclerosis | Lifestyle Behaviors | JAMA Internal Medicine | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Dansinger  MLTatsioni  AWong  JBChung  MBalk  EM Meta-analysis: the effect of dietary counseling for weight loss.  Ann Intern Med 2007;147 (1) 41- 50PubMedGoogle ScholarCrossref
2.
Simons-Morton  DGObarzanek  ECutler  JA Obesity research: limitations of methods, measurements, and medications.  JAMA 2006;295 (7) 826- 828PubMedGoogle ScholarCrossref
3.
Cowie  CCRust  KFFord  ES  et al.  Full accounting of diabetes and pre-diabetes in the U.S. population in 1988-1994 and 2005-2006.  Diabetes Care 2009;32 (2) 287- 294PubMedGoogle ScholarCrossref
4.
Brownson  RCBaker  EAHousemann  RABrennan  LKBacak  SJ Environmental and policy determinants of physical activity in the United States.  Am J Public Health 2001;91 (12) 1995- 2003PubMedGoogle ScholarCrossref
5.
Mujahid  MSDiez Roux  AVShen  M  et al.  Relation between neighborhood environments and obesity in the Multi-Ethnic Study of Atherosclerosis.  Am J Epidemiol 2008;167 (11) 1349- 1357PubMedGoogle ScholarCrossref
6.
Morland  KDiez Roux  AVWing  S Supermarkets, other food stores, and obesity: the Atherosclerosis Risk in Communities Study.  Am J Prev Med 2006;30 (4) 333- 339PubMedGoogle ScholarCrossref
7.
Diez Roux  AVJacobs  DRKiefe  CICoronary Artery Risk Development in Young Adults (CARDIA) Study, Neighborhood characteristics and components of the insulin resistance syndrome in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) study.  Diabetes Care 2002;25 (11) 1976- 1982PubMedGoogle ScholarCrossref
8.
Auchincloss  AHDiez Roux  AVBrown  DGO’Meara  ESRaghunathan  TE Association of insulin resistance with distance to wealthy areas: the Multi-Ethnic Study of Atherosclerosis.  Am J Epidemiol 2007;165 (4) 389- 397PubMedGoogle ScholarCrossref
9.
Auchincloss  AHDiez Roux  AVBrown  DGErdmann  CABertoni  AG Neighborhood resources for physical activity and healthy foods and their association with insulin resistance.  Epidemiology 2008;19 (1) 146- 157PubMedGoogle ScholarCrossref
10.
Cox  MBoyle  PJDavey  PGFeng  ZMorris  AD Locality deprivation and type 2 diabetes incidence: a local test of relative inequalities.  Soc Sci Med 2007;65 (9) 1953- 1964PubMedGoogle ScholarCrossref
11.
Schootman  MAndresen  EMWolinsky  FD  et al.  The effect of adverse housing and neighborhood conditions on the development of diabetes mellitus among middle-aged African Americans.  Am J Epidemiol 2007;166 (4) 379- 387PubMedGoogle ScholarCrossref
12.
Bild  DEBluemke  DABurke  GL  et al.  Multi-Ethnic Study of Atherosclerosis: objectives and design.  Am J Epidemiol 2002;156 (9) 871- 881PubMedGoogle ScholarCrossref
13.
Genuth  SAlberti  KGBennett  P  et al. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus, Follow-up report on the diagnosis of diabetes mellitus.  Diabetes Care 2003;26 (11) 3160- 3167PubMedGoogle ScholarCrossref
14.
Weijnen  CFRich  SSMeigs  JBKrolewski  ASWarram  JH Risk of diabetes in siblings of index cases with type 2 diabetes: implications for genetic studies.  Diabet Med 2002;19 (1) 41- 50PubMedGoogle ScholarCrossref
15.
Ainsworth  BEHaskell  WLWhitt  MC  et al.  Compendium of physical activities: an update of activity codes and MET intensities.  Med Sci Sports Exerc 2000;32 (9) ((suppl)) S498- S504PubMedGoogle ScholarCrossref
16.
Nettleton  JASteffen  LMMayer-Davis  EJ  et al.  Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA).  Am J Clin Nutr 2006;83 (6) 1369- 1379PubMedGoogle Scholar
17.
Pereira  MAJacobs  DR  JrPins  JJ  et al.  Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults.  Am J Clin Nutr 2002;75 (5) 848- 855PubMedGoogle Scholar
18.
Liese  ADRoach  AKSparks  KCMarquart  LD’Agostino  RB  JrMayer-Davis  EJ Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study.  Am J Clin Nutr 2003;78 (5) 965- 971PubMedGoogle Scholar
19.
Mujahid  MSDiez Roux  AVMorenoff  JDRaghunathan  T Assessing the measurement properties of neighborhood scales: from psychometrics to ecometrics.  Am J Epidemiol 2007;165 (8) 858- 867PubMedGoogle ScholarCrossref
20.
Duncan  GJRaudenbush  S Neighborhoods and adolescent development: how can we determine the links? Booth  ACrouter  AC Does It Take a Village? Community Effects on Children, Adolescents, and Families. State College Pennsylvania State University Press2001;105- 136Google Scholar
21.
Raudenbush  SW The quantitative assessment of neighborhood social environments. Kawachi  IBerkman  LB Neighborhoods and Health. New York, NY Oxford University Press2003;132- 146Google Scholar
22.
Clayton  DKaldor  J Empirical Bayes estimates of age-standardized relative risks for use in disease mapping.  Biometrics 1987;43 (3) 671- 681PubMedGoogle ScholarCrossref
23.
Joffe  MMGreenland  S Standardized estimates from categorical regression models.  Stat Med 1995;14 (19) 2131- 2141PubMedGoogle ScholarCrossref
24.
Zhao  D Poisson regression adjustment of event rates and its macro procedure ADJ_POIS.  Paper presented at: SAS Users Group 24th International Annual Conference April 11, 1999 Miami Beach, FL
25.
Glymour  MMWeuve  JBerkman  LFKawachi  IRobins  JM When is baseline adjustment useful in analyses of change? an example with education and cognitive change.  Am J Epidemiol 2005;162 (3) 267- 278PubMedGoogle ScholarCrossref
26.
Li  RChambless  L Test for additive interaction in proportional hazards models.  Ann Epidemiol 2007;17 (3) 227- 236PubMedGoogle ScholarCrossref
27.
Breslow  NEDay  NE Statistical methods in cancer research, volume I: the analysis of case-control studies.  IARC Sci Publ 1980; (32) 5- 338PubMedGoogle Scholar
28.
Blakely  T Commentary: estimating direct and indirect effects—fallible in theory, but in the real world?  Int J Epidemiol 2002;31 (1) 166- 167PubMedGoogle ScholarCrossref
29.
Cole  SRHernan  MA Fallibility in estimating direct effects.  Int J Epidemiol 2002;31 (1) 163- 165PubMedGoogle ScholarCrossref
30.
Giles-Corti  BBroomhall  MHKnuiman  M  et al.  Increasing walking: how important is distance to, attractiveness, and size of public open space?  Am J Prev Med 2005;28 (2) ((suppl 2)) 169- 176PubMedGoogle ScholarCrossref
31.
Lee  CMoudon  AV Physical activity and environment research in the health field: implications for urban and transportation planning practice and research.  J Plann Lit 2004;19147- 181Google ScholarCrossref
32.
Sloane  DNascimento  LFlynn  G  et al.  Assessing resource environments to target prevention interventions in community chronic disease control.  J Health Care Poor Underserved 2006;17 (2) ((suppl)) 146- 158PubMedGoogle ScholarCrossref
33.
Winship  CMorgan  SL The estimation of causal effects from observational data.  Annu Rev Sociol 1999;25659- 706Google ScholarCrossref
34.
Handy  S Community design and physical activity: what do we know and what don't we know?  Obesity and the Built Environment: Improving Public Health Through Community Design. National Institute of Environmental Health Sciences web site. http://www.niehs.nih.gov/news/events/pastmtg/2004/built/information.cfm. Accessed June 1, 2009Google Scholar
35.
Handy  SCao  XMokhtarian  P Correlation or causality between the built environment and travel behavior? evidence from Northern California.  Transp Res Part D Transp Environ 2005;10427- 444Google ScholarCrossref
36.
Fleischer  NLDiez Roux  AVAlazraqui  MSpinelli  H Social patterning of chronic disease risk factors in a Latin American city.  J Urban Health 2008;85 (6) 923- 937PubMedGoogle ScholarCrossref
37.
Subramanian  SV The relevance of multilevel statistical methods for identifying causal neighborhood effects.  Soc Sci Med 2004;58 (10) 1961- 1967PubMedGoogle ScholarCrossref
38.
Sustainable Communities Network,http://www.smartgrowth.org/library/projects.asp. Accessed August 1, 2009
39.
Glanz  KYaroch  AL Strategies for increasing fruit and vegetable intake in grocery stores and communities: policy, pricing, and environmental change.  Prev Med 2004;39 ((suppl 2)) S75- S80PubMedGoogle ScholarCrossref
40.
The Food Trust,http://www.thefoodtrust.org/. Accessed August 1, 2009
Original Investigation
Health Care Reform
Octomber 12, 2009

Neighborhood Resources for Physical Activity and Healthy Foods and Incidence of Type 2 Diabetes Mellitus: The Multi-Ethnic Study of Atherosclerosis

Author Affiliations

Author Affiliations: Department of Epidemiology and Biostatistics, School of Public Health, Drexel University, Philadelphia, Pennsylvania (Dr Auchincloss); Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor (Dr Diez Roux and Ms Shen); Department of Epidemiology, School of Public Health, University of California, Berkeley (Dr Mujahid); Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina (Dr Bertoni); and Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois (Dr Carnethon).

Arch Intern Med. 2009;169(18):1698-1704. doi:10.1001/archinternmed.2009.302
Abstract

Background  Despite increasing interest in the extent to which features of residential environments contribute to incidence of type 2 diabetes mellitus, no multisite prospective studies have investigated this question. We hypothesized that neighborhood resources supporting physical activity and healthy diets are associated with a lower incidence of type 2 diabetes.

Methods  Person-level data came from 3 sites of the Multi-Ethnic Study of Atherosclerosis, a population-based, prospective study of adults aged 45 to 84 years at baseline. Neighborhood data were derived from a population-based residential survey. Type 2 diabetes was defined as a fasting glucose level of 126 mg/dL or higher (≥7 mmol/L) or taking insulin or oral hypoglycemic agents. We estimated the hazard ratio of type 2 diabetes incidence associated with neighborhood (US Census tract) resources.

Results  Among 2285 participants, 233 new type 2 diabetes cases occurred during a median of 5 follow-up years. Better neighborhood resources, determined by a combined score for physical activity and healthy foods, were associated with a 38% lower incidence of type 2 diabetes (hazard ratio corresponding to a difference between the 90th and 10th percentiles for resource distribution, 0.62; 95% confidence interval, 0.43-0.88 adjusted for age, sex, family history of diabetes, race/ethnicity, income, assets, educational level, alcohol use, and smoking status). The association remained statistically significant after further adjustment for individual dietary factors, physical activity level, and body mass index.

Conclusion  Better neighborhood resources were associated with lower incidence of type 2 diabetes, which suggests that improving environmental features may be a viable population-level strategy for addressing this disease.

×