Assessment of Treatment Effect With Multiple Outcomes in 2 Clinical Trials of Patients With Duchenne Muscular Dystrophy

Daniel Li, BS; Craig M. McDonald, MD; Gary L. Elfring, MS; Marcio Souza, PharmD, MBA; Joseph McIntosh, MD; Dae Hyun Kim, MD, ScD; Lee-Jen Wei, PhD

Introduction

Clinical studies routinely collect data on multiple efficacy or safety endpoints. Conventionally, summaries for the treatment effect are presented for each end point separately. This practice is suboptimal, because statistical significance is evaluated for each end point individually, not for multiple end points simultaneously. For studies of rare diseases, nominal statistical significance is often observed for some end points, but not for others, owing to study size limitations. This makes the interpretation of the overall treatment effect difficult. Recently, Ristl et al1 provided an excellent statistical review on this issue. Here, we apply a heuristic, analytical procedure to examine whether ataluren is beneficial vs placebo for treating patients with Duchenne muscular dystrophy using data from multiple end points of 2 independent trials.2,3

Methods

Data for this analysis were obtained from 2 randomized, double-blind, placebo-controlled trials of ataluren (dosage, 40 mg/kg/d) (ClinicalTrials.gov identifier NCT00592553,2 February 2008 to December 2009; and ClinicalTrials.gov identifier NCT01826487,3 March 2013 to August 2015). The primary end point for both studies was change in 6-minute walk distance from baseline to 48 weeks. Three prespecified secondary end points assessing muscle function were changes in time to walk or run 10 m, time to climb 4 stairs, and time to descend 4 stairs. For NCT00592553, 57 patients each were assigned to ataluren and placebo; for NCT01826487, 114 patients each were assigned to ataluren and placebo.

The deidentified data used for the present analysis did not involve any further patient participation or clinical assessments than were originally agreed to through consent and the institutional review boards of the original trials. Thus, there is no need to have additional institutional review board approval for using the data, in accordance with 45 CFR §46.102(f). This study follows the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Data analysis was performed June through September 2019, using computer code we wrote using R statistical software version 3.5.3 (R Project for Statistical Computing). First, we performed a conventional end point–specific analysis via 2-sample t statistics with data observed at week 48. Figure 1 displays those results. For example, in NCT00592553, for 6-minute walk distance, the estimated mean difference between treatment with ataluren and placebo was 31.3 m (95% CI, 0.9 to 61.7 m; P = .04), and for 10-m walk or run, the estimated mean difference between placebo and ataluren was 1.4 seconds (95% CI, −1.0 to 3.7 seconds; P = .25). Although differences for some end points were not statistically significant at α = .05, all 8 estimated mean differences were greater than 0, indicating numerical improvement with ataluren for all end points.

The question is how to combine information across 8 outcomes. Because the units of the end points are different (ie, the first is in meters and the other 3 are in seconds), we standardized the estimated group difference using z score, which is the estimated difference divided by the SE. The mean observed z score was 1.64 across 8 end points. If there were no differences between the 2 groups, each z score would be near 0 randomly. To assess the aggregated strength of evidence for treatment effect, we calculated the chance that the mean observed z score is greater than or equal to
1.64 under the assumption that there is no treatment effect. To generate the null distribution of the mean observed z score, we shuffled patients randomly between 2 groups for each study.

Results

To assess how unlikely it is that one would observe the consistent profile of Figure 1, a permutation test was conducted in which we permuted the patients randomly in each study between 2 groups and calculated the mean observed z score for each iteration. We repeated this process 1 million times and constructed the frequency distribution of these realizations in Figure 2. The darker shaded area greater than the mean observed z score of 1.64 across 8 endpoints indicates 1-sided $P = .004$.

Figure 1. Conventional End Point–Specific Analysis

A 6MWD

<table>
<thead>
<tr>
<th>Study</th>
<th>Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT00592553</td>
<td>31.3 (0.9 to 61.7)</td>
</tr>
<tr>
<td>NCT01826487</td>
<td>15.4 (-9.2 to 40.0)</td>
</tr>
</tbody>
</table>

Figure 2. The Distribution of Simulated Mean Observed z Score Assuming No Treatment Effect

Vertical line marks a mean observed z score of 1.64. The darker-shaded area greater than the mean observed z score of 1.64 indicates 1-sided $P = .004$, meaning that ataluren is statistically significantly better than placebo.
meaning that ataluren is statistically significantly better than placebo. This is the first hurdle to be cleared for any study before discussing the clinical significance of treatment.

Discussion

Similar procedures have been discussed extensively in statistical literature1-4,6 but have not been widely used in medical research owing to a lack of awareness of this approach within the clinical community. The multiple end points considered should be prespecified to avoid post hoc selection of favorable end points. The primary limitation of this analysis is that unless the units of the outcomes are the same (eg, all the end points are binary), it is unclear how to combine estimates to quantify the overall treatment effect size.

ARTICLE INFORMATION

Accepted for Publication: December 8, 2019.

Open Access: This is an open access article distributed under the terms of the CC-BY-NC-ND License. © 2020 Li D et al. JAMA Network Open.

Corresponding Author: Lee-Jen Wei, PhD, Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115 (wei@hsph.harvard.edu).

Author Affiliations: Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts (Li, Wei); Department of Physical Medicine and Rehabilitation, Department of Pediatrics, University of California Davis, Sacramento (McDonald); PTC Therapeutics, South Plainfield, New Jersey (Elfring, Souza, McIntosh); Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, Massachusetts (Kim).

Author Contributions: Mr Li and Mr Elfring had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Li, McDonald, McIntosh, Wei.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Li, McDonald, Souza, Wei.

Critical revision of the manuscript for important intellectual content: Li, McDonald, Elfring, McIntosh, Kim, Wei.

Statistical analysis: Li, Elfring, Souza, McIntosh, Wei.

Obtained funding: Wei.

Administrative, technical, or material support: Li, McDonald, Souza, Wei.

Supervision: McDonald, McIntosh, Wei.

Conflict of Interest Disclosures: Dr McDonald reported receiving grants and personal fees from PTC Therapeutics, Sarepta Therapeutics, Santhera Pharmaceuticals, Catabasis Therapeutics, Capricor Therapeutics, Astellas, and Marathon Pharmaceuticals; and grants from Pfizer, Eli Lilly, Roche, and Italfarmaco outside the submitted work. Dr Kim reported receiving grants from the National Institutes of Health outside the submitted work. No other disclosures were reported.

Funding/Support: This study was partially supported by grants from the National Institutes of Health and contracts from PTC Therapeutics to Dr Wei.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Information: The code for implementing the procedure is available at https://github.com/lidani1234/Totality-of-Evidence.

REFERENCES

