Marcus et al\(^1\) report on an encouraging coronavirus disease 2019 (COVID-19) control success story that public health officials serving similar high-risk populations may wish to emulate. From May 11 to August 24, 2020, 263 consecutive cohorts (30-50 persons each) of healthy young adults arrived at US Air Force Joint Base San Antonio–Lackland for recruit training. The trainees were screened twice during a 14-day quarantine period and closely monitored for COVID-19 infections. The multifaceted control plan was associated with a reduction in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission among the 10,613 trainees, and the authors used the complex surveillance data to identify some unique findings that might have been missed in studying smaller populations. The authors found that patients with more symptoms and lower SARS-CoV-2-positive cycle threshold assay values were associated with more viral transmission among their peers. The authors found that the multiple COVID-19 interventions at Joint Base San Antonio–Lackland worked well, and there was sparse evidence of asymptomatic superspreaders. This successful control program, which took place in such a historically high-risk setting (ie, a military training camp), may be a useful guide for public health officials working to halt transmission in confined settings.

Military training camps have historically been associated with respiratory epidemics, both bacterial and viral.\(^2\) Every week, trainees arrive from diverse geographical areas, and some may be infected with or carrying respiratory pathogens. The young men and women are assigned to training groups and share the same living quarters, bathrooms, classrooms, field activities, and transportation but often mix with other cohorts in shared areas such as dining halls and medical clinics. They are stressed physically, emotionally, and mentally as part of their military service orientation. Such stress is thought to increase their susceptibility to infectious diseases. So great is the risk of respiratory pathogen transmission that military training camps have often been the subject of respiratory pathogen research. Military trainees are among the first to have been prescribed novel interventions, such as long-acting penicillin injections,\(^3\) oral azithromycin prophylaxis,\(^4\) and an entire battery of vaccines.\(^2\) In these settings, it is almost impossible for trainees who are susceptible to avoid infection from an endemic pathogen. For instance, in a 2006 report of adenovirus infections, Russell et al\(^5\) found adenovirus was ubiquitous in a US military training camp, documenting many infections with an end-of-training adenovirus type 4 seroprevalence of 97% (243 of 251).

Marcus et al\(^1\) are to be commended for the detail they have recorded regarding the COVID-19 control plan in the current article and their previous report.\(^6\) In addition to the SARS-CoV-2 screenings at 0 and 14 days during the initial 2-week quarantine, trainees and staff practiced universal masking and social distancing. Access to the basic training areas was also restricted. After training began, trainees diagnosed with COVID-19 were isolated for 10 days regardless of symptoms and did not return to training until they had been afebrile for 24 hours. Training cohorts with an outbreak involving more than 30% of group members triggered additional mass screening of the entire cohort for the virus.

While the plan did not entirely stop disease transmission in the camp, it was associated with a lower number of infections than would be expected. Overall, 129 of the 263 cohorts (49%) had at least 1 COVID-19 case detected. Among the 403 total COVID-19 cases detected, most (260 [65%]) were detected during the 14-day quarantine and with only 143 (35%) detected later in training. This 1.3% SARS-CoV-2 infection rate (143 cases were detected after arrival among 10,613 trainees) during the 9 weeks (2 weeks of quarantine plus 7 weeks of recruit training) is in contrast to the experience of...
the USS Theodore Roosevelt, where 1331 of 4779 crew members (27.9%) developed suspected or confirmed COVID-19 during a 5-week period.7

The authors reported a vulnerability in the control plan, noting the importance of maintaining nonpharmaceutical interventions among all camp personnel. While recruit trainees could not leave the camp, other camp personnel could visit the surrounding community, which could cause new viral incursions among the trainees.

Although intensive and likely expensive in both medical services and costs, the Joint Base San Antonio–Lackland COVID-19 control plan could be used as a model for other high-risk, largely confined populations, such as those residing in long-term health care settings, nursing homes, cruise ships, prisons, colleges, and military training camps.

\textbf{ARTICLE INFORMATION}

\textbf{Open Access}: This is an open access article distributed under the terms of the CC-BY License. © 2021 Gray GC. JAMA Network Open.

\textbf{Corresponding Author}: Gregory C. Gray, MD, MPH, Duke University School of Medicine, DUMC Box I02359, Durham, NC 27710 (gregory.gray@duke.edu).

\textbf{Author Affiliations}: Division of Infectious Diseases, Duke Global Health Institute, Durham, North Carolina (Gray); Duke University School of Medicine, Durham, North Carolina (Gray).

\textbf{Conflict of Interest Disclosures}: None reported.

\textbf{REFERENCES}

