Association of Elective and Emergency Cesarean Delivery With Early Childhood Overweight at 12 Months of Age | Obesity | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.173.234.169. Please contact the publisher to request reinstatement.
1.
Betrán  AP, Ye  J, Moller  AB, Zhang  J, Gülmezoglu  AM, Torloni  MR.  The increasing trend in caesarean section rates: global, regional and national estimates: 1990-2014.  PLoS One. 2016;11(2):e0148343. doi:10.1371/journal.pone.0148343PubMedGoogle ScholarCrossref
2.
MacDorman  MF, Menacker  F, Declercq  E.  Cesarean birth in the United States: epidemiology, trends, and outcomes.  Clin Perinatol. 2008;35(2):293-307. doi:10.1016/j.clp.2008.03.007PubMedGoogle ScholarCrossref
3.
Kottmel  A, Hoesli  I, Traub  R,  et al.  Maternal request: a reason for rising rates of cesarean section?  Arch Gynecol Obstet. 2012;286(1):93-98. doi:10.1007/s00404-012-2273-yPubMedGoogle ScholarCrossref
4.
Ionescu  CA, Ples  L, Banacu  M, Poenaru  E, Panaitescu  E, Traian Dimitriu  MC.  Present tendencies of elective caesarean delivery in Romania: geographic, social and economic factors.  J Pak Med Assoc. 2017;67(8):1248-1253.PubMedGoogle Scholar
5.
American College of Obstetricians and Gynecologists.  ACOG committee opinion no. 559: cesarean delivery on maternal request.  Obstet Gynecol. 2013;121(4):904-907. doi:10.1097/01.AOG.0000428647.67925.d3PubMedGoogle ScholarCrossref
6.
Barber  EL, Lundsberg  LS, Belanger  K, Pettker  CM, Funai  EF, Illuzzi  JL.  Indications contributing to the increasing cesarean delivery rate.  Obstet Gynecol. 2011;118(1):29-38. doi:10.1097/AOG.0b013e31821e5f65PubMedGoogle ScholarCrossref
7.
Mylonas  I, Friese  K.  Indications for and risks of elective cesarean section.  Dtsch Arztebl Int. 2015;112(29-30):489-495.PubMedGoogle Scholar
8.
Stjernholm  YV, Petersson  K, Eneroth  E.  Changed indications for cesarean sections.  Acta Obstet Gynecol Scand. 2010;89(1):49-53. doi:10.3109/00016340903418777PubMedGoogle ScholarCrossref
9.
Flemming  K, Woolcott  CG, Allen  AC, Veugelers  PJ, Kuhle  S.  The association between caesarean section and childhood obesity revisited: a cohort study.  Arch Dis Child. 2013;98(7):526-532. doi:10.1136/archdischild-2012-303459PubMedGoogle ScholarCrossref
10.
Li  HT, Zhou  YB, Liu  JM.  The impact of cesarean section on offspring overweight and obesity: a systematic review and meta-analysis.  Int J Obes (Lond). 2013;37(7):893-899. doi:10.1038/ijo.2012.195PubMedGoogle ScholarCrossref
11.
Chen  G, Chiang  WL, Shu  BC, Guo  YL, Chiou  ST, Chiang  TL.  Associations of caesarean delivery and the occurrence of neurodevelopmental disorders, asthma or obesity in childhood based on Taiwan birth cohort study.  BMJ Open. 2017;7(9):e017086. doi:10.1136/bmjopen-2017-017086PubMedGoogle ScholarCrossref
12.
Vinding  RK, Sejersen  TS, Chawes  BL,  et al.  Cesarean delivery and body mass index at 6 months and into childhood.  Pediatrics. 2017;139(6):e20164066. doi:10.1542/peds.2016-4066PubMedGoogle ScholarCrossref
13.
Pei  Z, Heinrich  J, Fuertes  E,  et al; Influences of Lifestyle-Related Factors on the Immune System and the Development of Allergies in Childhood plus Air Pollution and Genetics (LISAplus) Study Group.  Cesarean delivery and risk of childhood obesity.  J Pediatr. 2014;164(5):1068-1073.e2. doi:10.1016/j.jpeds.2013.12.044PubMedGoogle ScholarCrossref
14.
Lee  YS, Biddle  S, Chan  MF,  et al.  Health Promotion Board-Ministry of Health clinical practice guidelines: obesity.  Singapore Med J. 2016;57(6):292-300. doi:10.11622/smedj.2016103PubMedGoogle ScholarCrossref
15.
Sahoo  K, Sahoo  B, Choudhury  AK, Sofi  NY, Kumar  R, Bhadoria  AS.  Childhood obesity: causes and consequences.  J Family Med Prim Care. 2015;4(2):187-192. doi:10.4103/2249-4863.154628PubMedGoogle ScholarCrossref
16.
Puhl  RM, Heuer  CA.  The stigma of obesity: a review and update.  Obesity (Silver Spring). 2009;17(5):941-964. doi:10.1038/oby.2008.636PubMedGoogle ScholarCrossref
17.
Reilly  JJ, Bonataki  M, Leary  SD,  et al.  Progression from childhood overweight to adolescent obesity in a large contemporary cohort.  Int J Pediatr Obes. 2011;6(2-2):e138-e143. doi:10.3109/17477166.2010.497538PubMedGoogle ScholarCrossref
18.
Li  C, Goran  MI, Kaur  H, Nollen  N, Ahluwalia  JS.  Developmental trajectories of overweight during childhood: role of early life factors.  Obesity (Silver Spring). 2007;15(3):760-771. doi:10.1038/oby.2007.585PubMedGoogle ScholarCrossref
19.
World Health Organization.  Final Report of the Commission on Ending Childhood Obesity. Geneva, Switzerland: World Health Organization; 2016.
20.
Dominguez-Bello  MG, Costello  EK, Contreras  M,  et al.  Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.  Proc Natl Acad Sci U S A. 2010;107(26):11971-11975. doi:10.1073/pnas.1002601107PubMedGoogle ScholarCrossref
21.
Penders  J, Thijs  C, Vink  C,  et al.  Factors influencing the composition of the intestinal microbiota in early infancy.  Pediatrics. 2006;118(2):511-521. doi:10.1542/peds.2005-2824PubMedGoogle ScholarCrossref
22.
Sordillo  JE, Zhou  Y, McGeachie  MJ,  et al.  Factors influencing the infant gut microbiome at age 3-6 months: findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART).  J Allergy Clin Immunol. 2017;139(2):482-491.e14. doi:10.1016/j.jaci.2016.08.045PubMedGoogle ScholarCrossref
23.
Grönlund  MM, Lehtonen  OP, Eerola  E, Kero  P.  Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery.  J Pediatr Gastroenterol Nutr. 1999;28(1):19-25. doi:10.1097/00005176-199901000-00007PubMedGoogle ScholarCrossref
24.
Ridaura  VK, Faith  JJ, Rey  FE,  et al.  Gut microbiota from twins discordant for obesity modulate metabolism in mice.  Science. 2013;341(6150):1241214. doi:10.1126/science.1241214PubMedGoogle ScholarCrossref
25.
Koleva  PT, Bridgman  SL, Kozyrskyj  AL.  The infant gut microbiome: evidence for obesity risk and dietary intervention.  Nutrients. 2015;7(4):2237-2260. doi:10.3390/nu7042237PubMedGoogle ScholarCrossref
26.
Subramanian  S, Huq  S, Yatsunenko  T,  et al.  Persistent gut microbiota immaturity in malnourished Bangladeshi children.  Nature. 2014;510(7505):417-421. doi:10.1038/nature13421PubMedGoogle ScholarCrossref
27.
Dogra  S, Sakwinska  O, Soh  SE,  et al; GUSTO Study Group.  Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity.  MBio. 2015;6(1):e02419-e14. doi:10.1128/mBio.02419-14PubMedGoogle ScholarCrossref
28.
Schlinzig  T, Johansson  S, Gunnar  A, Ekström  TJ, Norman  M.  Epigenetic modulation at birth—altered DNA-methylation in white blood cells after caesarean section.  Acta Paediatr. 2009;98(7):1096-1099. doi:10.1111/j.1651-2227.2009.01371.xPubMedGoogle ScholarCrossref
29.
Miller  NM, Fisk  NM, Modi  N, Glover  V.  Stress responses at birth: determinants of cord arterial cortisol and links with cortisol response in infancy.  BJOG. 2005;112(7):921-926. doi:10.1111/j.1471-0528.2005.00620.xPubMedGoogle ScholarCrossref
30.
Li  H, Ye  R, Pei  L, Ren  A, Zheng  X, Liu  J.  Caesarean delivery, caesarean delivery on maternal request and childhood overweight: a Chinese birth cohort study of 181 380 children.  Pediatr Obes. 2014;9(1):10-16. doi:10.1111/j.2047-6310.2013.00151.xPubMedGoogle ScholarCrossref
31.
Rutayisire  E, Wu  X, Huang  K, Tao  S, Chen  Y, Tao  F.  Cesarean section may increase the risk of both overweight and obesity in preschool children.  BMC Pregnancy Childbirth. 2016;16(1):338. doi:10.1186/s12884-016-1131-5PubMedGoogle ScholarCrossref
32.
Huh  SY, Rifas-Shiman  SL, Zera  CA,  et al.  Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study.  Arch Dis Child. 2012;97(7):610-616. doi:10.1136/archdischild-2011-301141PubMedGoogle ScholarCrossref
33.
Taveras  EM, Gillman  MW, Kleinman  K, Rich-Edwards  JW, Rifas-Shiman  SL.  Racial/ethnic differences in early-life risk factors for childhood obesity.  Pediatrics. 2010;125(4):686-695. doi:10.1542/peds.2009-2100PubMedGoogle ScholarCrossref
34.
Willms  JD, Tremblay  MS, Katzmarzyk  PT.  Geographic and demographic variation in the prevalence of overweight Canadian children.  Obes Res. 2003;11(5):668-673. doi:10.1038/oby.2003.95PubMedGoogle ScholarCrossref
35.
Kuhle  S, Tong  OS, Woolcott  CG.  Association between caesarean section and childhood obesity: a systematic review and meta-analysis.  Obes Rev. 2015;16(4):295-303. doi:10.1111/obr.12267PubMedGoogle ScholarCrossref
36.
Sutharsan  R, Mannan  M, Doi  SA, Mamun  AA.  Caesarean delivery and the risk of offspring overweight and obesity over the life course: a systematic review and bias-adjusted meta-analysis.  Clin Obes. 2015;5(6):293-301. doi:10.1111/cob.12114PubMedGoogle ScholarCrossref
37.
Soh  SE, Tint  MT, Gluckman  PD,  et al; GUSTO Study Group.  Cohort profile: Growing Up in Singapore Towards Healthy Outcomes (GUSTO) birth cohort study.  Int J Epidemiol. 2014;43(5):1401-1409. doi:10.1093/ije/dyt125PubMedGoogle ScholarCrossref
38.
WHO Multicentre Growth Reference Study Group.  WHO Child Growth Standards based on length/height, weight and age.  Acta Paediatr Suppl. 2006;450:76-85.PubMedGoogle Scholar
39.
World Health Organization. BMI-for-age cutoffs. http://www.who.int/childgrowth/standards/bmi_for_age/en/. Accessed November 8, 2017.
40.
Rolland-Cachera  MF.  Childhood obesity: current definitions and recommendations for their use.  Int J Pediatr Obes. 2011;6(5-6):325-331. doi:10.3109/17477166.2011.607458PubMedGoogle ScholarCrossref
41.
Mikolajczyk  RT, Zhang  J, Betran  AP,  et al.  A global reference for fetal-weight and birthweight percentiles.  Lancet. 2011;377(9780):1855-1861. doi:10.1016/S0140-6736(11)60364-4PubMedGoogle ScholarCrossref
42.
WHO Expert Consultation.  Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies.  Lancet. 2004;363(9403):157-163. doi:10.1016/S0140-6736(03)15268-3PubMedGoogle ScholarCrossref
43.
Thomas  D, Halawani  M, Phelan  S, Butte  N, Redman  L. Prediction of pre-pregnancy weight from first trimester visit (1031.2). FASEB J. 2014;28(1_supp).
44.
Russell  CG, Taki  S, Laws  R,  et al.  Effects of parent and child behaviours on overweight and obesity in infants and young children from disadvantaged backgrounds: systematic review with narrative synthesis.  BMC Public Health. 2016;16:151. doi:10.1186/s12889-016-2801-yPubMedGoogle ScholarCrossref
45.
Alberti  KG, Zimmet  PZ.  Definition, diagnosis and classification of diabetes mellitus and its complications. part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation.  Diabet Med. 1998;15(7):539-553. doi:10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-SPubMedGoogle ScholarCrossref
46.
Royston  P.  Multiple imputation of missing values.  Stata J. 2004;4(3):227-241.Google ScholarCrossref
47.
Rubin  DB.  Multiple Imputation for Nonresponse in Surveys. Hoboken, NJ: John Wiley & Sons, Inc; 2008.
48.
Barros  FC, Matijasevich  A, Hallal  PC,  et al.  Cesarean section and risk of obesity in childhood, adolescence, and early adulthood: evidence from 3 Brazilian birth cohorts.  Am J Clin Nutr. 2012;95(2):465-470. doi:10.3945/ajcn.111.026401PubMedGoogle ScholarCrossref
49.
Carrillo-Larco  RM, Miranda  JJ, Bernabé-Ortiz  A.  Delivery by caesarean section and risk of childhood obesity: analysis of a Peruvian prospective cohort.  PeerJ. 2015;3:e1046. doi:10.7717/peerj.1046PubMedGoogle ScholarCrossref
50.
Azad  MB, Konya  T, Maughan  H,  et al; CHILD Study Investigators.  Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months.  CMAJ. 2013;185(5):385-394. doi:10.1503/cmaj.121189PubMedGoogle ScholarCrossref
51.
Mears  K, McAuliffe  F, Grimes  H, Morrison  JJ.  Fetal cortisol in relation to labour, intrapartum events and mode of delivery.  J Obstet Gynaecol. 2004;24(2):129-132. doi:10.1080/01443610410001645389PubMedGoogle ScholarCrossref
52.
Hyde  MJ, Mostyn  A, Modi  N, Kemp  PR.  The health implications of birth by caesarean section.  Biol Rev Camb Philos Soc. 2012;87(1):229-243. doi:10.1111/j.1469-185X.2011.00195.xPubMedGoogle ScholarCrossref
53.
Tun  HM, Bridgman  SL, Chari  R,  et al; Canadian Healthy Infant Longitudinal Development (CHILD) Study Investigators.  Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring.  JAMA Pediatr. 2018;172(4):368-377. doi:10.1001/jamapediatrics.2017.5535PubMedGoogle ScholarCrossref
54.
Mueller  NT, Mao  G, Bennet  WL,  et al.  Does vaginal delivery mitigate or strengthen the intergenerational association of overweight and obesity? findings from the Boston Birth Cohort.  Int J Obes (Lond). 2017;41(4):497-501. doi:10.1038/ijo.2016.219PubMedGoogle ScholarCrossref
55.
Yuan  C, Gaskins  AJ, Blaine  AI,  et al.  Association between cesarean birth and risk of obesity in offspring in childhood, adolescence, and early adulthood.  JAMA Pediatr. 2016;170(11):e162385.PubMedGoogle ScholarCrossref
56.
Rifas-Shiman  SL, Gillman  MW, Hawkins  SS, Oken  E, Taveras  EM, Kleinman  KP.  Association of cesarean delivery with body mass index z score at age 5 years.  JAMA Pediatr. 2018;172(8):777-779. doi:10.1001/jamapediatrics.2018.0674PubMedGoogle ScholarCrossref
57.
Gaillard  R, Durmuş  B, Hofman  A, Mackenbach  JP, Steegers  EA, Jaddoe  VW.  Risk factors and outcomes of maternal obesity and excessive weight gain during pregnancy.  Obesity (Silver Spring). 2013;21(5):1046-1055. doi:10.1002/oby.20088PubMedGoogle ScholarCrossref
58.
Ganesan  G. Deliveries in Singapore; volume and resources. Singapore: Ministry of Health, Singapore; 2004.
59.
Betran  AP, Torloni  MR, Zhang  J,  et al.  What is the optimal rate of caesarean section at population level? a systematic review of ecologic studies.  Reprod Health. 2015;12:57. doi:10.1186/s12978-015-0043-6PubMedGoogle ScholarCrossref
60.
National Institutes of Health.  NIH State-of-the-Science Conference Statement on cesarean delivery on maternal request.  NIH Consens State Sci Statements. 2006;23(1):1-29.PubMedGoogle Scholar
61.
Bager  P, Wohlfahrt  J, Westergaard  T.  Caesarean delivery and risk of atopy and allergic disease: meta-analyses.  Clin Exp Allergy. 2008;38(4):634-642. doi:10.1111/j.1365-2222.2008.02939.xPubMedGoogle ScholarCrossref
62.
Cardwell  CR, Stene  LC, Joner  G,  et al.  Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies.  Diabetologia. 2008;51(5):726-735. doi:10.1007/s00125-008-0941-zPubMedGoogle ScholarCrossref
63.
Zanardo  V, Simbi  AK, Franzoi  M, Soldà  G, Salvadori  A, Trevisanuto  D.  Neonatal respiratory morbidity risk and mode of delivery at term: influence of timing of elective caesarean delivery.  Acta Paediatr. 2004;93(5):643-647. doi:10.1111/j.1651-2227.2004.tb02990.xPubMedGoogle ScholarCrossref
64.
Festin  MR, Laopaiboon  M, Pattanittum  P, Ewens  MR, Henderson-Smart  DJ, Crowther  CA; SEA-ORCHID Study Group.  Caesarean section in four South East Asian countries: reasons for, rates, associated care practices and health outcomes.  BMC Pregnancy Childbirth. 2009;9:17. doi:10.1186/1471-2393-9-17PubMedGoogle ScholarCrossref
65.
Bragg  F, Cromwell  DA, Edozien  LC,  et al.  Variation in rates of caesarean section among English NHS trusts after accounting for maternal and clinical risk: cross sectional study.  BMJ. 2010;341:c5065. doi:10.1136/bmj.c5065PubMedGoogle ScholarCrossref
66.
de Onis  M, Blössner  M, Borghi  E.  Global prevalence and trends of overweight and obesity among preschool children.  Am J Clin Nutr. 2010;92(5):1257-1264. doi:10.3945/ajcn.2010.29786PubMedGoogle ScholarCrossref
67.
Pwint  MK, Lee  YS, Wong  TY, Saw  SM.  Prevalence of overweight and obesity in Chinese preschoolers in Singapore.  Ann Acad Med Singapore. 2013;42(2):66-72.PubMedGoogle Scholar
68.
Wang  Y, Lim  H.  The global childhood obesity epidemic and the association between socio-economic status and childhood obesity.  Int Rev Psychiatry. 2012;24(3):176-188. doi:10.3109/09540261.2012.688195PubMedGoogle ScholarCrossref
69.
Keski-Nisula  L, Kyynäräinen  HR, Kärkkäinen  U, Karhukorpi  J, Heinonen  S, Pekkanen  J.  Maternal intrapartum antibiotics and decreased vertical transmission of Lactobacillus to neonates during birth.  Acta Paediatr. 2013;102(5):480-485. doi:10.1111/apa.12186PubMedGoogle ScholarCrossref
70.
Bammann  K, Peplies  J, De Henauw  S,  et al; IDEFICS Consortium.  Early life course risk factors for childhood obesity: the IDEFICS case-control study.  PLoS One. 2014;9(2):e86914. doi:10.1371/journal.pone.0086914PubMedGoogle ScholarCrossref
71.
Aris  IM, Bernard  JY, Chen  LW,  et al.  Modifiable risk factors in the first 1000 days for subsequent risk of childhood overweight in an Asian cohort: significance of parental overweight status.  Int J Obes (Lond). 2018;42(1):44-51. doi:10.1038/ijo.2017.178PubMedGoogle ScholarCrossref
72.
Johannsen  DL, Johannsen  NM, Specker  BL.  Influence of parents’ eating behaviors and child feeding practices on children’s weight status.  Obesity (Silver Spring). 2006;14(3):431-439. doi:10.1038/oby.2006.57PubMedGoogle ScholarCrossref
73.
Wake  M, Nicholson  JM, Hardy  P, Smith  K.  Preschooler obesity and parenting styles of mothers and fathers: Australian national population study.  Pediatrics. 2007;120(6):e1520-e1527. doi:10.1542/peds.2006-3707PubMedGoogle ScholarCrossref
74.
Carnell  S, Haworth  CM, Plomin  R, Wardle  J.  Genetic influence on appetite in children.  Int J Obes (Lond). 2008;32(10):1468-1473. doi:10.1038/ijo.2008.127PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Pediatrics
    November 21, 2018

    Association of Elective and Emergency Cesarean Delivery With Early Childhood Overweight at 12 Months of Age

    Author Affiliations
    • 1Duke-NUS Medical School, Singapore, Singapore
    • 2Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
    • 3Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
    • 4Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
    • 5National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
    • 6Liggins Institute, University of Auckland, Auckland, New Zealand
    • 7Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
    • 8Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
    • 9Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
    • 10Khoo Teck Puat-National University Children’s Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
    • 11Center for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
    • 12Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
    • 13Department of Paediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore
    • 14Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    • 15Yong Loo Lin School of Medicine, National University of Singapore, Singapore
    • 16Family Medicine Service, KK Women’s and Children’s Hospital, Singapore, Singapore
    JAMA Netw Open. 2018;1(7):e185025. doi:10.1001/jamanetworkopen.2018.5025
    Key Points español 中文 (chinese)

    Question  Are elective and emergency cesarean delivery both associated with risk of childhood overweight at age 12 months?

    Findings  In this cohort study that analyzed 727 mother-child pairs, elective cesarean delivery was significantly associated with high body mass index–for–age z score at 12 months. Emergency cesarean delivery was not significantly associated with high body mass index–for–age z score at 12 months.

    Meaning  Choice of delivery mode may influence risk of early childhood overweight, which is a concern clinicians may discuss with patients who intend to have children.

    Abstract

    Importance  Global cesarean delivery (CD) rates have more than doubled over the past 2 decades, with an increasing contribution from elective CDs. Cesarean delivery has been linked to early childhood overweight and obesity, but limited studies have examined elective and emergency CDs separately.

    Objective  To investigate whether elective or emergency CD was associated with risk of early childhood overweight.

    Design, Setting, and Participants  Data were drawn from the Growing Up in Singapore Toward Healthy Outcomes (GUSTO) study, an ongoing prospective mother-child birth cohort study. Participants were pregnant women aged 18 years or older with homogeneous parental ethnic background in their first trimester recruited between June 2009 and September 2010 (n = 1237) at 2 major public hospitals in Singapore. Those with type 1 diabetes or undergoing chemotherapy or psychotropic drug treatment were excluded. Data analysis commenced in October 2017.

    Exposures  Delivery mode obtained from clinical records. Elective and emergency CD examined separately against vaginal delivery as reference.

    Main Outcomes and Measures  Body mass index–for–age z scores at age 12 months calculated based on 2006 World Health Organization Child Growth Standards from infant weight and recumbent crown-heel length measurements taken between December 2010 and April 2012. High body mass index status at risk of overweight was defined as a z score of more than 1 SD and less than or equal to 2 SDs. Overweight was defined as a z score of more than 2 SDs.

    Results  Among 727 infants analyzed (51.2% [372] male), 30.5% (222) were born via CD, of which 33.3% (74) were elective. Prevalence of at risk of overweight and overweight at age 12 months was 12.2% (89) and 2.3% (17), respectively. Elective CD was significantly associated with at risk of overweight or overweight at age 12 months after adjusting for maternal ethnicity, age, education, parity, body mass index, antenatal smoking, hypertensive disorders of pregnancy, gestational diabetes, and sex-adjusted birth weight–for–gestational age (odds ratio, 2.05; 95% CI, 1.08-3.90; P = .03). The association persisted after further adjustment for intrapartum antibiotics and first 6 months infant feeding, 2 potential mediators of early childhood overweight and obesity (odds ratio, 2.02; 95% CI, 1.05-3.89; P = .04). No significant associations were found for emergency CD. Analysis with multiple imputation for missing covariates yielded similar results.

    Conclusions and Relevance  Choice of delivery mode may influence risk of early childhood overweight. Clinicians are encouraged to discuss potential long-term implications of elective CD on child metabolic outcomes with patients who intend to have children.

    ×