Association Between Postpartum Breast Cancer Diagnosis and Metastasis and the Clinical Features Underlying Risk | Breast Cancer | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.129.82. Please contact the publisher to request reinstatement.
1.
Callihan  EB, Gao  D, Jindal  S,  et al.  Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer.  Breast Cancer Res Treat. 2013;138(2):549-559. doi:10.1007/s10549-013-2437-xPubMedGoogle ScholarCrossref
2.
Stensheim  H, Møller  B, van Dijk  T, Fosså  SD.  Cause-specific survival for women diagnosed with cancer during pregnancy or lactation: a registry-based cohort study.  J Clin Oncol. 2009;27(1):45-51. doi:10.1200/JCO.2008.17.4110PubMedGoogle ScholarCrossref
3.
Johansson  AL, Andersson  TM, Hsieh  CC, Cnattingius  S, Lambe  M.  Increased mortality in women with breast cancer detected during pregnancy and different periods postpartum.  Cancer Epidemiol Biomarkers Prev. 2011;20(9):1865-1872. doi:10.1158/1055-9965.EPI-11-0515PubMedGoogle ScholarCrossref
4.
Amant  F, von Minckwitz  G, Han  SN,  et al.  Prognosis of women with primary breast cancer diagnosed during pregnancy: results from an international collaborative study.  J Clin Oncol. 2013;31(20):2532-2539. doi:10.1200/JCO.2012.45.6335PubMedGoogle ScholarCrossref
5.
Daling  JR, Malone  KE, Doody  DR, Anderson  BO, Porter  PL.  The relation of reproductive factors to mortality from breast cancer.  Cancer Epidemiol Biomarkers Prev. 2002;11(3):235-241.PubMedGoogle Scholar
6.
Whiteman  MK, Hillis  SD, Curtis  KM, McDonald  JA, Wingo  PA, Marchbanks  PA.  Reproductive history and mortality after breast cancer diagnosis.  Obstet Gynecol. 2004;104(1):146-154. doi:10.1097/01.AOG.0000128173.01611.ffPubMedGoogle ScholarCrossref
7.
Strasser-Weippl  K, Ramchandani  R, Fan  L,  et al.  Pregnancy-associated breast cancer in women from Shanghai: risk and prognosis.  Breast Cancer Res Treat. 2015;149(1):255-261. doi:10.1007/s10549-014-3219-9PubMedGoogle ScholarCrossref
8.
Borges  VF.  Management of the patient with postpartum breast cancer.  Oncology (Williston Park). 2014;28(9):768-770.PubMedGoogle Scholar
9.
Lund  LR, Rømer  J, Thomasset  N,  et al.  Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways.  Development. 1996;122(1):181-193.PubMedGoogle Scholar
10.
Marti  A, Feng  Z, Altermatt  HJ, Jaggi  R.  Milk accumulation triggers apoptosis of mammary epithelial cells.  Eur J Cell Biol. 1997;73(2):158-165.PubMedGoogle Scholar
11.
Martinson  HA, Jindal  S, Durand-Rougely  C, Borges  VF, Schedin  P.  Wound healing–like immune program facilitates postpartum mammary gland involution and tumor progression.  Int J Cancer. 2015;136(8):1803-1813. doi:10.1002/ijc.29181PubMedGoogle ScholarCrossref
12.
O’Brien  J, Lyons  T, Monks  J,  et al.  Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species.  Am J Pathol. 2010;176(3):1241-1255. doi:10.2353/ajpath.2010.090735PubMedGoogle ScholarCrossref
13.
Betts  CB, Pennock  ND, Caruso  BP, Ruffell  B, Borges  VF, Schedin  P.  Mucosal immunity in the female murine mammary gland.  J Immunol. 2018;201(2):734-746. doi:10.4049/jimmunol.1800023PubMedGoogle ScholarCrossref
14.
Goddard  ET, Hill  RC, Barrett  A,  et al.  Quantitative extracellular matrix proteomics to study mammary and liver tissue microenvironments.  Int J Biochem Cell Biol. 2016;81(pt A):223-232. doi:10.1016/j.biocel.2016.10.014PubMedGoogle ScholarCrossref
15.
Lyons  TR, O’Brien  J, Borges  VF,  et al.  Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2.  Nat Med. 2011;17(9):1109-1115. doi:10.1038/nm.2416PubMedGoogle ScholarCrossref
16.
Lyons  TR, Borges  VF, Betts  CB,  et al.  Cyclooxygenase-2–dependent lymphangiogenesis promotes nodal metastasis of postpartum breast cancer.  J Clin Invest. 2014;124(9):3901-3912. doi:10.1172/JCI73777PubMedGoogle ScholarCrossref
17.
McDaniel  SM, Rumer  KK, Biroc  SL,  et al.  Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis.  Am J Pathol. 2006;168(2):608-620. doi:10.2353/ajpath.2006.050677PubMedGoogle ScholarCrossref
18.
Schedin  P.  Pregnancy-associated breast cancer and metastasis.  Nat Rev Cancer. 2006;6(4):281-291. doi:10.1038/nrc1839PubMedGoogle ScholarCrossref
19.
Jindal  S, Gao  D, Bell  P,  et al.  Postpartum breast involution reveals regression of secretory lobules mediated by tissue-remodeling.  Breast Cancer Res. 2014;16(2):R31. doi:10.1186/bcr3633PubMedGoogle ScholarCrossref
20.
American Joint Committee on Cancer. AJCC Cancer Staging System. https://cancerstaging.org. Accessed January 15, 2017.
21.
Dowsett  M, Nielsen  TO, A’Hern  R,  et al; International Ki-67 in Breast Cancer Working Group.  Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group.  J Natl Cancer Inst. 2011;103(22):1656-1664. doi:10.1093/jnci/djr393PubMedGoogle ScholarCrossref
22.
Lin  DY, Wei  LJ, Ying  Z.  Checking the Cox model with cumulative sums of Martingale-based residuals.  Biometrika. 1993;80:557-572. doi:10.1093/biomet/80.3.557Google ScholarCrossref
23.
Parl  FF, Schmidt  BP, Dupont  WD, Wagner  RK.  Prognostic significance of estrogen receptor status in breast cancer in relation to tumor stage, axillary node metastasis, and histopathologic grading.  Cancer. 1984;54(10):2237-2242. doi:10.1002/1097-0142(19841115)54:10<2237::AID-CNCR2820541029>3.0.CO;2-VPubMedGoogle ScholarCrossref
24.
Fisher  B, Redmond  C, Fisher  ER, Caplan  R.  Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06.  J Clin Oncol. 1988;6(7):1076-1087. doi:10.1200/JCO.1988.6.7.1076PubMedGoogle ScholarCrossref
25.
Pathmanathan  N, Balleine  RL, Jayasinghe  UW,  et al.  The prognostic value of Ki67 in systemically untreated patients with node-negative breast cancer.  J Clin Pathol. 2014;67(3):222-228. doi:10.1136/jclinpath-2013-201793PubMedGoogle ScholarCrossref
26.
Cheang  MC, Chia  SK, Voduc  D,  et al.  Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer.  J Natl Cancer Inst. 2009;101(10):736-750. doi:10.1093/jnci/djp082PubMedGoogle ScholarCrossref
27.
Klintman  M, Bendahl  PO, Grabau  D, Lövgren  K, Malmström  P, Fernö  M; South Sweden Breast Cancer Group.  The prognostic value of Ki67 is dependent on estrogen receptor status and histological grade in premenopausal patients with node-negative breast cancer.  Mod Pathol. 2010;23(2):251-259. doi:10.1038/modpathol.2009.167PubMedGoogle ScholarCrossref
28.
Parker  JS, Mullins  M, Cheang  MC,  et al.  Supervised risk predictor of breast cancer based on intrinsic subtypes.  J Clin Oncol. 2009;27(8):1160-1167. doi:10.1200/JCO.2008.18.1370PubMedGoogle ScholarCrossref
29.
Tang  LC, Jin  X, Yang  HY,  et al.  Luminal B subtype: a key factor for the worse prognosis of young breast cancer patients in China.  BMC Cancer. 2015;15:201. doi:10.1186/s12885-015-1207-zPubMedGoogle ScholarCrossref
30.
Morrison  DH, Rahardja  D, King  E, Peng  Y, Sarode  VR.  Tumour biomarker expression relative to age and molecular subtypes of invasive breast cancer.  Br J Cancer. 2012;107(2):382-387. doi:10.1038/bjc.2012.219PubMedGoogle ScholarCrossref
31.
Fredholm  H, Magnusson  K, Lindström  LS,  et al.  Breast cancer in young women and prognosis: how important are proliferation markers?  Eur J Cancer. 2017;84:278-289. doi:10.1016/j.ejca.2017.07.044PubMedGoogle ScholarCrossref
32.
Collins  LC, Gelber  S, Marotti  JD,  et al.  Molecular phenotype of breast cancer according to time since last pregnancy in a large cohort of young women.  Oncologist. 2015;20(7):713-718. doi:10.1634/theoncologist.2014-0412PubMedGoogle ScholarCrossref
33.
Howlader  N, Noone  AM, Krapcho  M,  et al, eds. SEER Cancer Statistics Review: 1975-2013. Bethesda, MD: National Cancer Institute. https://seer.cancer.gov/archive/csr/1975_2013/. Published April 2016. Accessed December 12, 2018.
34.
American Cancer Society.  Cancer Facts and Figures 2015. Atlanta, GA: American Cancer Society; 2015. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2015/cancer-facts-and-figures-2015.pdf. Accessed December 14, 2018.
35.
Lyons  TR, Schedin  PJ, Borges  VF.  Pregnancy and breast cancer: when they collide.  J Mammary Gland Biol Neoplasia. 2009;14(2):87-98. doi:10.1007/s10911-009-9119-7PubMedGoogle ScholarCrossref
36.
Albrektsen  G, Heuch  I, Hansen  S, Kvåle  G.  Breast cancer risk by age at birth, time since birth and time intervals between births: exploring interaction effects.  Br J Cancer. 2005;92(1):167-175. doi:10.1038/sj.bjc.6602302PubMedGoogle ScholarCrossref
37.
Lambe  M, Hsieh  C, Trichopoulos  D, Ekbom  A, Pavia  M, Adami  HO.  Transient increase in the risk of breast cancer after giving birth.  N Engl J Med. 1994;331(1):5-9. doi:10.1056/NEJM199407073310102PubMedGoogle ScholarCrossref
38.
Mathews  TJ, Hamilton  BE.  Mean age of mothers is on the rise: United States, 2000-2014.  NCHS Data Brief. 2016;(232):1-8.PubMedGoogle Scholar
39.
Hamilton  BE, Martin  JA, Ventura  SJ.  Births: preliminary data for 2005.  Natl Vital Stat Rep. 2006;55(11):1-18.PubMedGoogle Scholar
40.
Australian Bureau of Statistics. One for the country: recent trends in fertility. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4102.0Main+Features10Dec+2010. Published December 14, 2010. Accessed July 4, 2018.
41.
Andersson  TM, Johansson  AL, Hsieh  CC, Cnattingius  S, Lambe  M.  Increasing incidence of pregnancy-associated breast cancer in Sweden.  Obstet Gynecol. 2009;114(3):568-572. doi:10.1097/AOG.0b013e3181b19154PubMedGoogle ScholarCrossref
42.
Matsuda  T, Marugame  T, Kamo  K, Katanoda  K, Ajiki  W, Sobue  T; Japan Cancer Surveillance Research Group.  Cancer incidence and incidence rates in Japan in 2006: based on data from 15 population-based cancer registries in the monitoring of cancer incidence in Japan (MCIJ) project.  Jpn J Clin Oncol. 2012;42(2):139-147. doi:10.1093/jjco/hyr184PubMedGoogle ScholarCrossref
43.
Lund  MJ, Trivers  KF, Porter  PL,  et al.  Race and triple negative threats to breast cancer survival: a population-based study in Atlanta, GA.  Breast Cancer Res Treat. 2009;113(2):357-370. doi:10.1007/s10549-008-9926-3PubMedGoogle ScholarCrossref
44.
Bauer  KR, Brown  M, Cress  RD, Parise  CA, Caggiano  V.  Descriptive analysis of estrogen receptor (ER)–negative, progesterone receptor (PR)–negative, and HER2–negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry.  Cancer. 2007;109(9):1721-1728. doi:10.1002/cncr.22618PubMedGoogle ScholarCrossref
45.
Parise  CA, Bauer  KR, Caggiano  V.  Variation in breast cancer subtypes with age and race/ethnicity.  Crit Rev Oncol Hematol. 2010;76(1):44-52. doi:10.1016/j.critrevonc.2009.09.002PubMedGoogle ScholarCrossref
46.
Arnes  JB, Bégin  LR, Stefansson  I,  et al.  Expression of epidermal growth factor receptor in relation to BRCA1 status, basal-like markers and prognosis in breast cancer.  J Clin Pathol. 2009;62(2):139-146. doi:10.1136/jcp.2008.056291PubMedGoogle ScholarCrossref
47.
Palmer  JR, Viscidi  E, Troester  MA,  et al.  Parity, lactation, and breast cancer subtypes in African American women: results from the AMBER Consortium.  J Natl Cancer Inst. 2014;106(10):dju237. doi:10.1093/jnci/dju237PubMedGoogle ScholarCrossref
48.
Gatza  ML, Silva  GO, Parker  JS, Fan  C, Perou  CM.  An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer.  Nat Genet. 2014;46(10):1051-1059. doi:10.1038/ng.3073PubMedGoogle ScholarCrossref
49.
Guo  Q, Minnier  J, Burchard  J, Chiotti  K, Spellman  P, Schedin  P.  Physiologically activated mammary fibroblasts promote postpartum mammary cancer.  JCI Insight. 2017;2(6):e89206. doi:10.1172/jci.insight.89206PubMedGoogle ScholarCrossref
50.
Goddard  ET, Hill  RC, Nemkov  T,  et al.  The rodent liver undergoes weaning-induced involution and supports breast cancer metastasis.  Cancer Discov. 2017;7(2):177-187. doi:10.1158/2159-8290.CD-16-0822PubMedGoogle ScholarCrossref
51.
Lund  AW, Wagner  M, Fankhauser  M,  et al.  Lymphatic vessels regulate immune microenvironments in human and murine melanoma.  J Clin Invest. 2016;126(9):3389-3402. doi:10.1172/JCI79434PubMedGoogle ScholarCrossref
52.
Lund  AW, Duraes  FV, Hirosue  S,  et al.  VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics.  Cell Rep. 2012;1(3):191-199. doi:10.1016/j.celrep.2012.01.005PubMedGoogle ScholarCrossref
53.
American Cancer Society. Cancer Facts & Figures 2018. Atlanta, GA: American Cancer Society; 2018. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf. Accessed December 12, 2018.
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Oncology
    January 11, 2019

    Association Between Postpartum Breast Cancer Diagnosis and Metastasis and the Clinical Features Underlying Risk

    Author Affiliations
    • 1Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
    • 2Translational Research Program and Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
    • 3Knight Cancer Institute, Oregon Health & Science University, Portland
    • 4Young Women’s Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora
    • 5Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora
    • 6Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland
    • 7University of Colorado Cancer Center, Aurora
    • 8School of Public Health, Department of Medical Informatics & Clinical Epidemiology, School of Medicine, Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland
    JAMA Netw Open. 2019;2(1):e186997. doi:10.1001/jamanetworkopen.2018.6997
    Key Points español 中文 (chinese)

    Question  Is there an increased risk for metastasis of breast cancers that are diagnosed in young women post partum that extends beyond 5 years from the last childbirth, and what association do standard clinical prognostic factors have with metastatic risk in these young women when categorized by parity?

    Findings  In a cohort study of 701 women 45 years or younger with breast cancer, those with stage I or II cancer diagnosed up to 10 years post partum had an increased risk for distant metastasis, with both estrogen receptor–positive and estrogen receptor–negative disease significantly affected.

    Meaning  Postpartum status may be a prognostic indicator in young women with breast cancer and should be routinely identified, as up to 45% of women 45 years or younger with breast cancer fall into this category and could be at increased risk for metastasis.

    Abstract

    Importance  In women 45 years or younger, breast cancer diagnosis after childbirth increases the risk for metastasis and death, yet limited data exist to define this window of risk and associated prognostic factors.

    Objective  To assess the window of elevated risk for metastasis following a postpartum breast cancer (PPBC) diagnosis and whether clinical prognostic factors are associated with the increased risk.

    Design, Setting, and Participants  This multicenter cohort study conducted using cases from the Colorado Young Women’s Breast Cancer Cohort diagnosed between January 1, 1981, and December 31, 2014, included 701 women 45 years or younger with stage I to III invasive breast cancer for whom parity data, including time of last childbirth, were available. Data analysis was conducted from July 1 to September 30, 2017. This study involved a tertiary care academic hospital–based breast center and its regional affiliates with cases from the greater Rocky Mountain region.

    Exposures  Primary exposures were prior childbirth or no childbirth, time between most recent childbirth and breast cancer diagnosis, and time between breast cancer diagnosis and metastasis.

    Main Outcomes and Measures  The primary outcome was distant metastasis–free survival.

    Results  A total of 701 women 45 years or younger from the greater Rocky Mountain states region were included in the analysis; mean (SD) age at diagnosis was 37.9 (5.1) years. Breast cancer diagnosis within 10 years after parturition was associated with elevated risk for metastasis, particularly in women with stage I or II disease. In addition, women with PPBC diagnosed within 10 years of a completed pregnancy that was estrogen receptor–positive showed distant metastasis–free survival similar to that of nulliparous patients with estrogen receptor–negative cancer, and women with estrogen receptor–negative PPBC had further reduced metastasis-free survival. Moreover, women with PPBC had increased lymphovascular invasion and lymph node involvement. In addition, tumor-associated Ki67 positivity identified 129 patients with luminal B cancer in the cohort that, independent of parity status, had poorer prognosis compared with patients with luminal A cancer, although it did not reach statistical significance.

    Conclusions and Relevance  Diagnosis of PPBC within 10 years post partum appears to be associated with an increased risk for metastasis. This increased risk was highest in stages I and II cancer at diagnosis and present in both patients with estrogen receptor–positive and estrogen receptor–negative cancer, persisting in estrogen receptor–positive cases for up to 15 years after diagnosis. Postpartum breast cancer diagnoses were not associated with increased Ki67 index but were associated with increased lymphovascular invasion and lymph node involvement compared with breast cancer in nulliparous patients.

    ×