Association of Altered Liver Enzymes With Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers | Dementia and Cognitive Impairment | JAMA Network Open | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Toledo  JB, Arnold  M, Kastenmüller  G,  et al; Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium.  Metabolic network failures in Alzheimer’s disease: a biochemical road map.  Alzheimers Dement. 2017;13(9):965-984. doi:10.1016/j.jalz.2017.01.020PubMedGoogle ScholarCrossref
2.
Clarke  JR, Ribeiro  FC, Frozza  RL, De Felice  FG, Lourenco  MV.  Metabolic dysfunction in Alzheimer’s disease: from basic neurobiology to clinical approaches.  J Alzheimers Dis. 2018;64(s1):S405-S426. doi:10.3233/JAD-179911PubMedGoogle ScholarCrossref
3.
Kapogiannis  D, Mattson  MP.  Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease.  Lancet Neurol. 2011;10(2):187-198. doi:10.1016/S1474-4422(10)70277-5PubMedGoogle ScholarCrossref
4.
Craft  S.  The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged.  Arch Neurol. 2009;66(3):300-305. doi:10.1001/archneurol.2009.27PubMedGoogle ScholarCrossref
5.
Sookoian  S, Castaño  GO, Scian  R,  et al.  Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level.  Am J Clin Nutr. 2016;103(2):422-434. doi:10.3945/ajcn.115.118695PubMedGoogle ScholarCrossref
6.
Sookoian  S, Pirola  CJ.  Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome.  World J Gastroenterol. 2012;18(29):3775-3781. doi:10.3748/wjg.v18.i29.3775PubMedGoogle ScholarCrossref
7.
Goessling  W, Massaro  JM, Vasan  RS, D’Agostino  RB  Sr, Ellison  RC, Fox  CS.  Aminotransferase levels and 20-year risk of metabolic syndrome, diabetes, and cardiovascular disease.  Gastroenterology. 2008;135(6):1935-1944. doi:10.1053/j.gastro.2008.09.018PubMedGoogle ScholarCrossref
8.
Sattar  N, Scherbakova  O, Ford  I,  et al; West of Scotland Coronary Prevention Study.  Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the West of Scotland Coronary Prevention Study.  Diabetes. 2004;53(11):2855-2860. doi:10.2337/diabetes.53.11.2855PubMedGoogle ScholarCrossref
9.
Santos  CY, Snyder  PJ, Wu  W-C, Zhang  M, Echeverria  A, Alber  J.  Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: a review and synthesis.  Alzheimers Dement (Amst). 2017;7:69-87.PubMedGoogle Scholar
10.
Fillit  H, Nash  DT, Rundek  T, Zuckerman  A.  Cardiovascular risk factors and dementia.  Am J Geriatr Pharmacother. 2008;6(2):100-118. doi:10.1016/j.amjopharm.2008.06.004PubMedGoogle ScholarCrossref
11.
Jack  CR  Jr, Bennett  DA, Blennow  K,  et al; Contributors.  NIA-AA research framework: toward a biological definition of Alzheimer’s disease.  Alzheimers Dement. 2018;14(4):535-562. doi:10.1016/j.jalz.2018.02.018PubMedGoogle ScholarCrossref
12.
Alzheimer’s Disease Neuroimaging Initiative (ADNI) website. http://adni.loni.usc.edu/. Accessed July 8, 2019.
13.
Saykin  AJ, Shen  L, Yao  X,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Genetic studies of quantitative MCI and AD phenotypes in ADNI: progress, opportunities, and plans.  Alzheimers Dement. 2015;11(7):792-814. doi:10.1016/j.jalz.2015.05.009PubMedGoogle ScholarCrossref
14.
Weiner  MW, Veitch  DP, Aisen  PS,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials.  Alzheimers Dement. 2017;13(4):e1-e85. doi:10.1016/j.jalz.2016.11.007PubMedGoogle ScholarCrossref
15.
Petersen  RC, Aisen  PS, Beckett  LA,  et al.  Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization.  Neurology. 2010;74(3):201-209. doi:10.1212/WNL.0b013e3181cb3e25PubMedGoogle ScholarCrossref
16.
Rattanabannakit  C, Risacher  SL, Gao  S,  et al.  The Cognitive Change Index as a measure of self and informant perception of cognitive decline: relation to neuropsychological tests.  J Alzheimers Dis. 2016;51(4):1145-1155. doi:10.3233/JAD-150729PubMedGoogle ScholarCrossref
17.
McKhann  G, Drachman  D, Folstein  M, Katzman  R, Price  D, Stadlan  EM.  Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease.  Neurology. 1984;34(7):939-944. doi:10.1212/WNL.34.7.939PubMedGoogle ScholarCrossref
18.
Aisen  PS, Petersen  RC, Donohue  MC,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Clinical core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans.  Alzheimers Dement. 2010;6(3):239-246. doi:10.1016/j.jalz.2010.03.006PubMedGoogle ScholarCrossref
19.
Crane  PK, Carle  A, Gibbons  LE,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI).  Brain Imaging Behav. 2012;6(4):502-516. doi:10.1007/s11682-012-9186-zPubMedGoogle ScholarCrossref
20.
Gibbons  LE, Carle  AC, Mackin  RS,  et al; Alzheimer’s Disease Neuroimaging Initiative.  A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment.  Brain Imaging Behav. 2012;6(4):517-527. doi:10.1007/s11682-012-9176-1PubMedGoogle ScholarCrossref
21.
Jack  CR  Jr, Bernstein  MA, Borowski  BJ,  et al; Alzheimer’s Disease Neuroimaging Initiative.  Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative.  Alzheimers Dement. 2010;6(3):212-220. doi:10.1016/j.jalz.2010.03.004PubMedGoogle ScholarCrossref
22.
Jack  CR  Jr, Bernstein  MA, Fox  NC,  et al.  The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods.  J Magn Reson Imaging. 2008;27(4):685-691. doi:10.1002/jmri.21049PubMedGoogle ScholarCrossref
23.
Kim  S, Swaminathan  S, Inlow  M,  et al; Alzheimer’s Disease Neuroimaging Initiative (ADNI).  Influence of genetic variation on plasma protein levels in older adults using a multi-analyte panel.  PLoS One. 2013;8(7):e70269. doi:10.1371/journal.pone.0070269PubMedGoogle ScholarCrossref
24.
Nho  K, Corneveaux  JJ, Kim  S,  et al; Multi-Institutional Research on Alzheimer Genetic Epidemiology (MIRAGE) Study; AddNeuroMed Consortium; Indiana Memory and Aging Study; Alzheimer’s Disease Neuroimaging Initiative (ADNI).  Whole-exome sequencing and imaging genetics identify functional variants for rate of change in hippocampal volume in mild cognitive impairment.  Mol Psychiatry. 2013;18(7):781-787. doi:10.1038/mp.2013.24PubMedGoogle ScholarCrossref
25.
Nho  K, Kim  S, Risacher  SL,  et al; MIRAGE (Multi-Institutional Research on Alzheimer Genetic Epidemiology) Study; AddNeuroMed Consortium; Indiana Memory and Aging Study; Alzheimer’s Disease Neuroimaging Initiative.  Protective variant for hippocampal atrophy identified by whole exome sequencing.  Ann Neurol. 2015;77(3):547-552. doi:10.1002/ana.24349PubMedGoogle ScholarCrossref
26.
Fischl  B, Sereno  MI, Dale  AM.  Cortical surface-based analysis, II: inflation, flattening, and a surface-based coordinate system.  Neuroimage. 1999;9(2):195-207. doi:10.1006/nimg.1998.0396PubMedGoogle ScholarCrossref
27.
Dale  AM, Fischl  B, Sereno  MI.  Cortical surface-based analysis, I: segmentation and surface reconstruction.  Neuroimage. 1999;9(2):179-194. doi:10.1006/nimg.1998.0395PubMedGoogle ScholarCrossref
28.
Chung  MK, Worsley  KJ, Nacewicz  BM, Dalton  KM, Davidson  RJ.  General multivariate linear modeling of surface shapes using SurfStat.  Neuroimage. 2010;53(2):491-505. doi:10.1016/j.neuroimage.2010.06.032PubMedGoogle ScholarCrossref
29.
Risacher  SL, Kim  S, Nho  K,  et al; Alzheimer’s Disease Neuroimaging Initiative (ADNI).  APOE effect on Alzheimer’s disease biomarkers in older adults with significant memory concern.  Alzheimers Dement. 2015;11(12):1417-1429. doi:10.1016/j.jalz.2015.03.003PubMedGoogle ScholarCrossref
30.
Bittner  T, Zetterberg  H, Teunissen  CE,  et al.  Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1-42) in human cerebrospinal fluid.  Alzheimers Dement. 2016;12(5):517-526. doi:10.1016/j.jalz.2015.09.009PubMedGoogle ScholarCrossref
31.
Hansson  O, Seibyl  J, Stomrud  E,  et al; Swedish BioFINDER study group; Alzheimer’s Disease Neuroimaging Initiative.  CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts.  Alzheimers Dement. 2018;14(11):1470-1481. doi:10.1016/j.jalz.2018.01.010PubMedGoogle ScholarCrossref
32.
Noble  KG, Grieve  SM, Korgaonkar  MS,  et al.  Hippocampal volume varies with educational attainment across the life-span.  Front Hum Neurosci. 2012;6:307. doi:10.3389/fnhum.2012.00307PubMedGoogle ScholarCrossref
33.
Worsley KJ. SurfStat. http://www.math.mcgill.ca/keith/surfstat/. Accessed July 8, 2019.
34.
SPM: Statistical Parametric Mapping. https://www.fil.ion.ucl.ac.uk/spm/. Accessed July 8, 2019.
35.
Hagler  DJ  Jr, Saygin  AP, Sereno  MI.  Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data.  Neuroimage. 2006;33(4):1093-1103. doi:10.1016/j.neuroimage.2006.07.036PubMedGoogle ScholarCrossref
36.
Hayasaka  S, Phan  KL, Liberzon  I, Worsley  KJ, Nichols  TE.  Nonstationary cluster-size inference with random field and permutation methods.  Neuroimage. 2004;22(2):676-687. doi:10.1016/j.neuroimage.2004.01.041PubMedGoogle ScholarCrossref
37.
Worsley  KJ, Taylor  JE, Tomaiuolo  F, Lerch  J.  Unified univariate and multivariate random field theory.  Neuroimage. 2004;23(suppl 1):S189-S195. doi:10.1016/j.neuroimage.2004.07.026PubMedGoogle ScholarCrossref
38.
Benjamini  Y, Hochberg  Y.  Controlling the false discovery rate: a practical and powerful approach to multiple testing.  J R Stat Soc Series B Stat Methdol. 1995;57(1):289-300. doi:10.2307/2346101Google Scholar
39.
Jack  CR  Jr, Bennett  DA, Blennow  K,  et al. NIA-AA research framework: towards a biological definition of Alzheimer's disease. Paper presented at: Alzheimer's Association International Conference; November 27, 2017; London, England.
40.
Giambattistelli  F, Bucossi  S, Salustri  C,  et al.  Effects of hemochromatosis and transferrin gene mutations on iron dyshomeostasis, liver dysfunction and on the risk of Alzheimer’s disease.  Neurobiol Aging. 2012;33(8):1633-1641. doi:10.1016/j.neurobiolaging.2011.03.005PubMedGoogle ScholarCrossref
41.
Pietzner  M, Budde  K, Homuth  G,  et al.  Hepatic steatosis is associated with adverse molecular signatures in subjects without diabetes.  J Clin Endocrinol Metab. 2018;103(10):3856-3868. doi:10.1210/jc.2018-00999PubMedGoogle ScholarCrossref
42.
Varma  VR, Oommen  AM, Varma  S,  et al.  Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study.  PLoS Med. 2018;15(1):e1002482. doi:10.1371/journal.pmed.1002482PubMedGoogle ScholarCrossref
43.
Kaddurah-Daouk  R, Doraiswamy  PM, Zhu  H,  et al.  Alterations in metabolic pathways and networks in mild cognitive impairment and early Alzheimer’s disease.  Alzheimers Dement. 2013;9(4)(suppl):P571. doi:10.1016/j.jalz.2013.05.1126Google ScholarCrossref
44.
Kaddurah-Daouk  R, Rozen  S, Matson  W,  et al.  Metabolomic changes in autopsy-confirmed Alzheimer’s disease.  Alzheimers Dement. 2011;7(3):309-317. doi:10.1016/j.jalz.2010.06.001PubMedGoogle ScholarCrossref
45.
Botros  M, Sikaris  KA.  The de ritis ratio: the test of time.  Clin Biochem Rev. 2013;34(3):117-130.PubMedGoogle Scholar
46.
Mosconi  L, Sorbi  S, de Leon  MJ,  et al.  Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease.  J Nucl Med. 2006;47(11):1778-1786.PubMedGoogle Scholar
47.
Drzezga  A, Lautenschlager  N, Siebner  H,  et al.  Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study.  Eur J Nucl Med Mol Imaging. 2003;30(8):1104-1113. doi:10.1007/s00259-003-1194-1PubMedGoogle ScholarCrossref
48.
Rui  L.  Energy metabolism in the liver.  Compr Physiol. 2014;4(1):177-197. doi:10.1002/cphy.c130024PubMedGoogle ScholarCrossref
49.
Ellinger  JJ, Lewis  IA, Markley  JL.  Role of aminotransferases in glutamate metabolism of human erythrocytes.  J Biomol NMR. 2011;49(3-4):221-229. doi:10.1007/s10858-011-9481-9PubMedGoogle ScholarCrossref
50.
Qian  K, Zhong  S, Xie  K, Yu  D, Yang  R, Gong  D-W.  Hepatic ALT isoenzymes are elevated in gluconeogenic conditions including diabetes and suppressed by insulin at the protein level.  Diabetes Metab Res Rev. 2015;31(6):562-571. doi:10.1002/dmrr.2655PubMedGoogle ScholarCrossref
51.
Reis  HJ, Guatimosim  C, Paquet  M,  et al.  Neuro-transmitters in the central nervous system & their implication in learning and memory processes.  Curr Med Chem. 2009;16(7):796-840. doi:10.2174/092986709787549271PubMedGoogle ScholarCrossref
52.
Fleck  MW, Henze  DA, Barrionuevo  G, Palmer  AM.  Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus.  J Neurosci. 1993;13(9):3944-3955. doi:10.1523/JNEUROSCI.13-09-03944.1993PubMedGoogle ScholarCrossref
53.
Francis  PT.  Glutamatergic systems in Alzheimer’s disease.  Int J Geriatr Psychiatry. 2003;18(suppl 1):S15-S21. doi:10.1002/gps.934PubMedGoogle ScholarCrossref
54.
Kamada  Y, Hashimoto  R, Yamamori  H,  et al.  Impact of plasma transaminase levels on the peripheral blood glutamate levels and memory functions in healthy subjects.  BBA Clin. 2016;5:101-107. doi:10.1016/j.bbacli.2016.02.004PubMedGoogle ScholarCrossref
55.
Alfredsson  G, Wiesel  FA, Tylec  A.  Relationships between glutamate and monoamine metabolites in cerebrospinal fluid and serum in healthy volunteers.  Biol Psychiatry. 1988;23(7):689-697. doi:10.1016/0006-3223(88)90052-2PubMedGoogle ScholarCrossref
56.
Wang  G, Zhou  Y, Huang  FJ,  et al.  Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment.  J Proteome Res. 2014;13(5):2649-2658. doi:10.1021/pr5000895PubMedGoogle ScholarCrossref
57.
Lowe  SL, Bowen  DM, Francis  PT, Neary  D.  Ante mortem cerebral amino acid concentrations indicate selective degeneration of glutamate-enriched neurons in Alzheimer’s disease.  Neuroscience. 1990;38(3):571-577. doi:10.1016/0306-4522(90)90051-5PubMedGoogle ScholarCrossref
58.
Fayed  N, Modrego  PJ, Rojas-Salinas  G, Aguilar  K.  Brain glutamate levels are decreased in Alzheimer’s disease: a magnetic resonance spectroscopy study.  Am J Alzheimers Dis Other Demen. 2011;26(6):450-456. doi:10.1177/1533317511421780PubMedGoogle ScholarCrossref
59.
Procter  AW, Palmer  AM, Francis  PT,  et al.  Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease.  J Neurochem. 1988;50(3):790-802. doi:10.1111/j.1471-4159.1988.tb02983.xPubMedGoogle ScholarCrossref
60.
Liu  Z, Ning  H, Que  S, Wang  L, Qin  X, Peng  T.  Complex association between alanine aminotransferase activity and mortality in general population: a systematic review and meta-analysis of prospective studies.  PLoS One. 2014;9(3):e91410. doi:10.1371/journal.pone.0091410PubMedGoogle ScholarCrossref
61.
Peltz-Sinvani  N, Klempfner  R, Ramaty  E, Sela  BA, Goldenberg  I, Segal  G.  Low ALT levels independently associated with 22-year all-cause mortality among coronary heart disease patients.  J Gen Intern Med. 2016;31(2):209-214. doi:10.1007/s11606-015-3480-6PubMedGoogle ScholarCrossref
62.
Vespasiani-Gentilucci  U, De Vincentis  A, Ferrucci  L, Bandinelli  S, Antonelli Incalzi  R, Picardi  A.  Low alanine aminotransferase levels in the elderly population: frailty, disability, sarcopenia, and reduced survival.  J Gerontol A Biol Sci Med Sci. 2018;73(7):925-930. doi:10.1093/gerona/glx126PubMedGoogle ScholarCrossref
63.
Elinav  E, Ben-Dov  IZ, Ackerman  E,  et al.  Correlation between serum alanine aminotransferase activity and age: an inverted U curve pattern.  Am J Gastroenterol. 2005;100(10):2201-2204. doi:10.1111/j.1572-0241.2005.41822.xPubMedGoogle ScholarCrossref
64.
Kaiser  LG, Schuff  N, Cashdollar  N, Weiner  MW.  Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T.  Neurobiol Aging. 2005;26(5):665-672. doi:10.1016/j.neurobiolaging.2004.07.001PubMedGoogle ScholarCrossref
65.
Guerreiro  R, Bras  J.  The age factor in Alzheimer’s disease.  Genome Med. 2015;7:106. doi:10.1186/s13073-015-0232-5PubMedGoogle ScholarCrossref
66.
Katsiki  N, Perez-Martinez  P, Anagnostis  P, Mikhailidis  DP, Karagiannis  A.  Is nonalcoholic fatty liver disease indeed the hepatic manifestation of metabolic syndrome?  Curr Vasc Pharmacol. 2018;16(3):219-227. doi:10.2174/1570161115666170621075619PubMedGoogle ScholarCrossref
67.
Weinstein  G, Zelber-Sagi  S, Preis  SR,  et al.  Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the Framingham Study.  JAMA Neurol. 2018;75(1):97-104. doi:10.1001/jamaneurol.2017.3229PubMedGoogle ScholarCrossref
68.
Bedogni  G, Gastaldelli  A, Tiribelli  C,  et al.  Relationship between glucose metabolism and non-alcoholic fatty liver disease severity in morbidly obese women.  J Endocrinol Invest. 2014;37(8):739-744. doi:10.1007/s40618-014-0101-xPubMedGoogle ScholarCrossref
69.
Perla  FM, Prelati  M, Lavorato  M, Visicchio  D, Anania  C.  The role of lipid and lipoprotein metabolism in non-alcoholic fatty liver disease.  Children (Basel). 2017;4(6):E46.PubMedGoogle Scholar
70.
Kellett  KAB, Williams  J, Vardy  ER, Smith  AD, Hooper  NM.  Plasma alkaline phosphatase is elevated in Alzheimer’s disease and inversely correlates with cognitive function.  Int J Mol Epidemiol Genet. 2011;2(2):114-121.PubMedGoogle Scholar
71.
Moss  DW.  Physicochemical and pathophysiological factors in the release of membrane-bound alkaline phosphatase from cells.  Clin Chim Acta. 1997;257(1):133-140. doi:10.1016/S0009-8981(96)06438-8PubMedGoogle ScholarCrossref
72.
Goldstein  DJ, Rogers  CE, Harris  H.  Expression of alkaline phosphatase loci in mammalian tissues.  Proc Natl Acad Sci U S A. 1980;77(5):2857-2860. doi:10.1073/pnas.77.5.2857PubMedGoogle ScholarCrossref
73.
Fonta  C, Négyessy  L, Renaud  L, Barone  P.  Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission.  Cereb Cortex. 2004;14(6):595-609. doi:10.1093/cercor/bhh021PubMedGoogle ScholarCrossref
74.
Waymire  KG, Mahuren  JD, Jaje  JM, Guilarte  TR, Coburn  SP, MacGregor  GR.  Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6.  Nat Genet. 1995;11(1):45-51. doi:10.1038/ng0995-45PubMedGoogle ScholarCrossref
75.
Narisawa  S, Wennberg  C, Millán  JL.  Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization.  J Pathol. 2001;193(1):125-133. doi:10.1002/1096-9896(2000)9999:9999<::AID-PATH722>3.0.CO;2-YPubMedGoogle ScholarCrossref
76.
Langer  D, Ikehara  Y, Takebayashi  H, Hawkes  R, Zimmermann  H.  The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones.  Neuroscience. 2007;150(4):863-879. doi:10.1016/j.neuroscience.2007.07.064PubMedGoogle ScholarCrossref
77.
Yamashita  M, Sasaki  M, Mii  K,  et al.  Measurement of serum alkaline phosphatase isozyme I in brain-damaged patients.  Neurol Med Chir (Tokyo). 1989;29(11):995-998. doi:10.2176/nmc.29.995PubMedGoogle ScholarCrossref
78.
Gjerde  H, Amundsen  A, Skog  O-J, Mørland  J, Aasland  OG.  Serum gamma-glutamyltransferase: an epidemiological indicator of alcohol consumption?  Br J Addict. 1987;82(9):1027-1031. doi:10.1111/j.1360-0443.1987.tb01564.xPubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Geriatrics
    July 31, 2019

    Association of Altered Liver Enzymes With Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers

    Author Affiliations
    • 1Center for Computational Biology and Bioinformatics, Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis
    • 2Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
    • 3Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
    • 4Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
    • 5Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
    • 6Rosa & Co LLC, San Carlos, California
    • 7University of Texas Health Science Center at San Antonio, San Antonio
    • 8German Center for Diabetes Research, Neuherberg, Germany
    • 9Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
    • 10Center for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco
    • 11Duke Institute of Brain Sciences, Duke University, Durham, North Carolina
    • 12Department of Medicine, Duke University, Durham, North Carolina
    • 13Nuffield Department of Population Health, Oxford University, Oxford, United Kingdom
    JAMA Netw Open. 2019;2(7):e197978. doi:10.1001/jamanetworkopen.2019.7978
    Key Points español 中文 (chinese)

    Question  Are liver function markers associated with cognition and the “A/T/N” (amyloid, tau, and neurodegeneration) biomarkers for Alzheimer disease?

    Findings  In this cohort study of 1581 older adults, elevated aspartate aminotransferase to alanine aminotransferase ratios were associated with diagnosis of Alzheimer disease, poor cognition, lower cerebrospinal fluid levels of amyloid-β 1-42, increased amyloid-β deposition, higher cerebrospinal fluid levels of phosphorylated tau and total tau, and reduced brain glucose metabolism. Lower levels of alanine aminotransferase were associated with increased amyloid-β deposition, reduced brain glucose metabolism, greater brain atrophy, diagnosis of Alzheimer disease, and poor cognition.

    Meaning  Consistent associations of serum-based liver function markers with Alzheimer disease biomarkers highlight the involvement of metabolic disturbances in the pathophysiology of Alzheimer disease.

    Abstract

    Importance  Increasing evidence suggests an important role of liver function in the pathophysiology of Alzheimer disease (AD). The liver is a major metabolic hub; therefore, investigating the association of liver function with AD, cognition, neuroimaging, and CSF biomarkers would improve the understanding of the role of metabolic dysfunction in AD.

    Objective  To examine whether liver function markers are associated with cognitive dysfunction and the “A/T/N” (amyloid, tau, and neurodegeneration) biomarkers for AD.

    Design, Setting, and Participants  In this cohort study, serum-based liver function markers were measured from September 1, 2005, to August 31, 2013, in 1581 AD Neuroimaging Initiative participants along with cognitive measures, cerebrospinal fluid (CSF) biomarkers, brain atrophy, brain glucose metabolism, and amyloid-β accumulation. Associations of liver function markers with AD-associated clinical and A/T/N biomarkers were assessed using generalized linear models adjusted for confounding variables and multiple comparisons. Statistical analysis was performed from November 1, 2017, to February 28, 2019.

    Exposures  Five serum-based liver function markers (total bilirubin, albumin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase) from AD Neuroimaging Initiative participants were used as exposure variables.

    Main Outcomes and Measures  Primary outcomes included diagnosis of AD, composite scores for executive functioning and memory, CSF biomarkers, atrophy measured by magnetic resonance imaging, brain glucose metabolism measured by fludeoxyglucose F 18 (18F) positron emission tomography, and amyloid-β accumulation measured by [18F]florbetapir positron emission tomography.

    Results  Participants in the AD Neuroimaging Initiative (n = 1581; 697 women and 884 men; mean [SD] age, 73.4 [7.2] years) included 407 cognitively normal older adults, 20 with significant memory concern, 298 with early mild cognitive impairment, 544 with late mild cognitive impairment, and 312 with AD. An elevated aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio and lower levels of ALT were associated with AD diagnosis (AST to ALT ratio: odds ratio, 7.932 [95% CI, 1.673-37.617]; P = .03; ALT: odds ratio, 0.133 [95% CI, 0.042-0.422]; P = .004) and poor cognitive performance (AST to ALT ratio: β [SE], −0.465 [0.180]; P = .02 for memory composite score; β [SE], −0.679 [0.215]; P = .006 for executive function composite score; ALT: β [SE], 0.397 [0.128]; P = .006 for memory composite score; β [SE], 0.637 [0.152]; P < .001 for executive function composite score). Increased AST to ALT ratio values were associated with lower CSF amyloid-β 1-42 levels (β [SE], −0.170 [0.061]; P = .04) and increased amyloid-β deposition (amyloid biomarkers), higher CSF phosphorylated tau181 (β [SE], 0.175 [0.055]; P = .02) (tau biomarkers) and higher CSF total tau levels (β [SE], 0.160 [0.049]; P = .02) and reduced brain glucose metabolism (β [SE], −0.123 [0.042]; P = .03) (neurodegeneration biomarkers). Lower levels of ALT were associated with increased amyloid-β deposition (amyloid biomarkers), and reduced brain glucose metabolism (β [SE], 0.096 [0.030]; P = .02) and greater atrophy (neurodegeneration biomarkers).

    Conclusions and Relevance  Consistent associations of serum-based liver function markers with cognitive performance and A/T/N biomarkers for AD highlight the involvement of metabolic disturbances in the pathophysiology of AD. Further studies are needed to determine if these associations represent a causative or secondary role. Liver enzyme involvement in AD opens avenues for novel diagnostics and therapeutics.

    ×