[Skip to Content]
[Skip to Content Landing]
Figure 1.
Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Flow Diagram
Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Flow Diagram

RCT indicates randomized clinical trial.

Figure 2.
Risk of Serious Infections
Risk of Serious Infections

Size of box indicates relative weights of the studies. IL indicates interleukin; M-H, Mantel-Haenszel; and OR, odds ratio.

Figure 3.
Risk of Cancer
Risk of Cancer

Size of box indicates relative weights of the studies. IL indicates interleukin; M-H, Mantel-Haenszel; and OR, odds ratio.

Table.  
Studies Identified Using PRISMA Outcomes of Interest
Studies Identified Using PRISMA Outcomes of Interest
Supplement.

eFigure 1. Sensitivity Analysis Without Continuity Correction for the Risk of Serious Infections

eFigure 2. Cumulative Meta-analysis Assessing Risk of Serious Infections

eFigure 3. Odds Ratios for Serious Infections Stratified by Individual Drug

eFigure 4. Odds Ratios for Risk of Serious Infections Stratified by Individual Disease

eFigure 5. Odds Ratios for Risk of Serious Infections Stratified by Individual Drug

eFigure 6. Odds Ratios for Risk of Serious Infections Stratified by Individual Disease

eFigure 7. Odds Ratios for Risk of Opportunistic Infections

eFigure 8. Sensitivity Analysis Without Continuity Correction for the Risk of Opportunistic Infections

eFigure 9. Cumulative Meta-analysis Assessing Risk of Opportunistic Infections

eFigure 10. Sensitivity Analysis Without Continuity Correction for the Risk of Malignancy

eFigure 11. Cumulative Meta-analysis Assessing Risk of Malignancy

eFigure 12. Meta-Regression Analysis for Malignancy Outcome

eFigure 13. Meta-Regression Analysis for Serious Infections Outcome

eFigure 14. Meta-Regression Analysis for Opportunistic Infections Outcome

eFigure 15. Egger’s Regression Test

eFigure 16. Funnel Plot Assessing Symmetry and Risk of Publication Bias for Serious Infections

eFigure 17. Funnel Plot Assessing Symmetry and Risk of Publication Bias for Opportunistic Infections

eFigure 18. Funnel Plot Assessing Symmetry and Risk of Publication Bias for Malignancy

eFigure 19. Adjusted Effect Size Using Trim and Fill Method for Serious Infection Outcome

eFigure 20. Assessment of Heterogeneity

eFigure 21. Risk of Bias Summary of the Included Studies

eFigure 22. Risk of Bias Graph of the Included Studies

eTable 1. Studies Included in Assessment of Risk of Serious Infections

eTable 2. Studies Included in Assessment of Risk of Opportunistic Infections

eTable 3. Studies Included in Assessment of Risk of Malignancy

eTable 4. Grading of Recommendations Assessments, Development and Evaluation (GRADE) Assessment of the Strength of Evidence

eAppendix. Specific Search Strategy

1.
Tappeiner  C, Möller  B, Hennig  M, Heiligenhaus  A.  New biologic drugs: anti-interleukin therapy.  Dev Ophthalmol. 2012;51:79-89. doi:10.1159/000336190PubMedGoogle ScholarCrossref
2.
Aletaha  D, Bingham  CO  III, Tanaka  Y,  et al.  Efficacy and safety of sirukumab in patients with active rheumatoid arthritis refractory to anti-TNF therapy (SIRROUND-T): a randomised, double-blind, placebo-controlled, parallel-group, multinational, phase 3 study  [published correction appears in Lancet. 2017;389(10083):1980].  Lancet. 2017;389(10075):1206-1217. doi:10.1016/S0140-6736(17)30401-4PubMedGoogle ScholarCrossref
3.
Richette  P, Doherty  M, Pascual  E,  et al.  2016 Updated EULAR evidence-based recommendations for the management of gout.  Ann Rheum Dis. 2017;76(1):29-42. doi:10.1136/annrheumdis-2016-209707PubMedGoogle ScholarCrossref
4.
Singh  JA, Guyatt  G, Ogdie  A,  et al.  Special article: 2018 American College of Rheumatology/National Psoriasis Foundation guideline for the treatment of psoriatic arthritis.  Arthritis Care Res (Hoboken). 2019;71(1):2-29. doi:10.1002/acr.23789PubMedGoogle ScholarCrossref
5.
Singh  JA, Saag  KG, Bridges  SL  Jr,  et al; American College of Rheumatology.  2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis.  Arthritis Care Res (Hoboken). 2016;68(1):1-25. doi:10.1002/acr.22783PubMedGoogle ScholarCrossref
6.
Ward  MM, Deodhar  A, Akl  EA,  et al.  American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network 2015 recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis.  Arthritis Rheumatol. 2016;68(2):282-298. doi:10.1002/art.39298PubMedGoogle ScholarCrossref
7.
Wu  D, Yue  J, Tam  LS.  Efficacy and safety of biologics targeting interleukin-6, -12/23 and -17 pathways for peripheral psoriatic arthritis: a network meta-analysis.  Rheumatology (Oxford). 2018;57(3):563-571. doi:10.1093/rheumatology/kex452PubMedGoogle ScholarCrossref
8.
Bilal  J, Riaz  IB, Kamal  MU, Elyan  M, Sudano  D, Khan  MA.  A systematic review and meta-analysis of efficacy and safety of novel interleukin inhibitors in the management of psoriatic arthritis.  J Clin Rheumatol. 2018;24(1):6-13. doi:10.1097/RHU.0000000000000583PubMedGoogle Scholar
9.
Wei  M, Duan  D.  Efficacy and safety of monoclonal antibodies targeting interleukin-17 pathway for inflammatory arthritis: a meta-analysis of randomized controlled clinical trials.  Drug Des Dev Ther. 2016;10:2771-2777. doi:10.2147/DDDT.S91374PubMedGoogle ScholarCrossref
10.
Nishimoto  N, Miyasaka  N, Yamamoto  K, Kawai  S, Takeuchi  T, Azuma  J.  Long-term safety and efficacy of tocilizumab, an anti-IL-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study.  Ann Rheum Dis. 2009;68(10):1580-1584. doi:10.1136/ard.2008.092866PubMedGoogle ScholarCrossref
11.
Geller  S, Xu  H, Lebwohl  M, Nardone  B, Lacouture  ME, Kheterpal  M.  Malignancy risk and recurrence with psoriasis and its treatments: a concise update.  Am J Clin Dermatol. 2018;19(3):363-375. doi:10.1007/s40257-017-0337-2PubMedGoogle ScholarCrossref
12.
Becker  LA, Oxman  AD. Overviews of reviews. In: Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. http://handbook-5-1.cochrane.org/. Updated July 2019. Accessed February 1, 2019.
13.
Nissen  SE, Wolski  K.  Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes.  N Engl J Med. 2007;356(24):2457-2471. doi:10.1056/NEJMoa072761PubMedGoogle ScholarCrossref
14.
Bongartz  T, Sutton  AJ, Sweeting  MJ, Buchan  I, Matteson  EL, Montori  V.  Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials.  JAMA. 2006;295(19):2275-2285. doi:10.1001/jama.295.19.2275PubMedGoogle ScholarCrossref
15.
Fouque-Aubert  A, Jette-Paulin  L, Combescure  C, Basch  A, Tebib  J, Gossec  L.  Serious infections in patients with ankylosing spondylitis with and without TNF blockers: a systematic review and meta-analysis of randomised placebo-controlled trials.  Ann Rheum Dis. 2010;69(10):1756-1761. doi:10.1136/ard.2008.098822PubMedGoogle ScholarCrossref
16.
Hou  LQ, Jiang  GX, Chen  YF,  et al.  The comparative safety of TNF inhibitors in ankylosing spondylitis—a meta-analysis update of 14 randomized controlled trials.  Clin Rev Allergy Immunol. 2018;54(2):234-243. doi:10.1007/s12016-017-8623-6PubMedGoogle ScholarCrossref
17.
Ma  Z, Liu  X, Xu  X,  et al.  Safety of tumor necrosis factor-alpha inhibitors for treatment of ankylosing spondylitis: a meta-analysis.  Medicine (Baltimore). 2017;96(25):e7145. doi:10.1097/MD.0000000000007145PubMedGoogle ScholarCrossref
18.
Singh  JA, Cameron  C, Noorbaloochi  S,  et al.  Risk of serious infection in biological treatment of patients with rheumatoid arthritis: a systematic review and meta-analysis.  Lancet. 2015;386(9990):258-265. doi:10.1016/S0140-6736(14)61704-9PubMedGoogle ScholarCrossref
19.
Thompson  AE, Rieder  SW, Pope  JE.  Tumor necrosis factor therapy and the risk of serious infection and malignancy in patients with early rheumatoid arthritis: a meta-analysis of randomized controlled trials.  Arthritis Rheum. 2011;63(6):1479-1485. doi:10.1002/art.30310PubMedGoogle ScholarCrossref
20.
Wang  S, He  Q, Shuai  Z.  Risk of serious infections in biological treatment of patients with ankylosing spondylitis and non-radiographic axial spondyloarthritis: a meta-analysis.  Clin Rheumatol. 2018;37(2):439-450. doi:10.1007/s10067-017-3966-1PubMedGoogle ScholarCrossref
21.
Xu  Z, Xu  P, Fan  W,  et al.  Risk of infection in patients with spondyloarthritis and ankylosing spondylitis receiving antitumor necrosis factor therapy: a meta-analysis of randomized controlled trials.  Exp Ther Med. 2017;14(4):3491-3500. doi:10.3892/etm.2017.5003PubMedGoogle ScholarCrossref
22.
Higgins  JPT, Altman  DG, Gøtzsche  PC,  et al; Cochrane Bias Methods Group; Cochrane Statistical Methods Group.  The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials.  BMJ. 2011;343:d5928. doi:10.1136/bmj.d5928PubMedGoogle ScholarCrossref
23.
Guyatt  GH, Oxman  AD, Vist  GE,  et al; GRADE Working Group.  GRADE: an emerging consensus on rating quality of evidence and strength of recommendations.  BMJ. 2008;336(7650):924-926. doi:10.1136/bmj.39489.470347.ADPubMedGoogle ScholarCrossref
24.
Winthrop  KL, Novosad  SA, Baddley  JW,  et al.  Opportunistic infections and biologic therapies in immune-mediated inflammatory diseases: consensus recommendations for infection reporting during clinical trials and postmarketing surveillance.  Ann Rheum Dis. 2015;74(12):2107-2116. doi:10.1136/annrheumdis-2015-207841PubMedGoogle ScholarCrossref
25.
Higgins  JPT, Green  S, eds. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. http://handbook-5-1.cochrane.org/. Updated July 2019. Accessed March 1, 2019..
26.
Sweeting  MJ, Sutton  AJ, Lambert  PC.  What to add to nothing? use and avoidance of continuity corrections in meta-analysis of sparse data.  Stat Med. 2004;23(9):1351-1375. doi:10.1002/sim.1761PubMedGoogle ScholarCrossref
27.
Borenstein  M, Hedges  L, Higgins  J, Rothstein  H.  Comprehensive Meta-analysis, Version 3. Englewood, NJ: Biostat; 2013.
28.
Turner  RM, Davey  J, Clarke  MJ, Thompson  SG, Higgins  JP.  Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews Int J Epidemiol. 2012;41(3):818-827. doi:10.1093/ije/dys041PubMedGoogle ScholarCrossref
29.
Duval  S, Tweedie  R.  Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis.  Biometrics. 2000;56(2):455-463. doi:10.1111/j.0006-341X.2000.00455.xPubMedGoogle ScholarCrossref
30.
Alten  R, Gomez-Reino  J, Durez  P,  et al.  Efficacy and safety of the human anti-IL-1β monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, phase II, dose-finding study.  BMC Musculoskelet Disord. 2011;12:153. doi:10.1186/1471-2474-12-153PubMedGoogle ScholarCrossref
31.
Baek  HJ, Lim  MJ, Park  W,  et al.  Efficacy and safety of tocilizumab in Korean patients with active rheumatoid arthritis.  Korean J Intern Med. 2019;34(4):917-931. doi:10.3904/kjim.2017.159PubMedGoogle ScholarCrossref
32.
Baeten  D, Baraliakos  X, Braun  J,  et al.  Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial.  Lancet. 2013;382(9906):1705-1713. doi:10.1016/S0140-6736(13)61134-4PubMedGoogle ScholarCrossref
33.
Baeten  D, Sieper  J, Braun  J,  et al; MEASURE 1 Study Group; MEASURE 2 Study Group.  Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis.  N Engl J Med. 2015;373(26):2534-2548. doi:10.1056/NEJMoa1505066PubMedGoogle ScholarCrossref
34.
Bao  J, Yue  T, Liu  W,  et al.  Secondary failure to treatment with recombinant human IL-1 receptor antagonist in Chinese patients with rheumatoid arthritis.  Clin Rheumatol. 2011;30(5):697-701. doi:10.1007/s10067-010-1654-5PubMedGoogle ScholarCrossref
35.
Baraliakos  X, Kivitz  AJ, Deodhar  AA,  et al; MEASURE 1 Study Group.  Long-term effects of interleukin-17A inhibition with secukinumab in active ankylosing spondylitis: 3-year efficacy and safety results from an extension of the Phase 3 MEASURE 1 trial.  Clin Exp Rheumatol. 2018;36(1):50-55.PubMedGoogle Scholar
36.
Ben-Zvi  I, Kukuy  O, Giat  E,  et al.  Anakinra for colchicine-resistant familial Mediterranean fever: a randomized, double-blind, placebo-controlled trial.  Arthritis Rheumatol. 2017;69(4):854-862. doi:10.1002/art.39995PubMedGoogle ScholarCrossref
37.
Bijlsma  JWJ, Welsing  PMJ, Woodworth  TG,  et al.  Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial.  Lancet. 2016;388(10042):343-355. doi:10.1016/S0140-6736(16)30363-4PubMedGoogle ScholarCrossref
38.
Braun  J, Baraliakos  X, Deodhar  A,  et al; MEASURE 1 Study Group.  Effect of secukinumab on clinical and radiographic outcomes in ankylosing spondylitis: 2-year results from the randomised phase III MEASURE 1 study.  Ann Rheum Dis. 2017;76(6):1070-1077. doi:10.1136/annrheumdis-2016-209730PubMedGoogle ScholarCrossref
39.
Brunner  HI, Ruperto  N, Zuber  Z,  et al; Paediatric Rheumatology International Trials Organisation (PRINTO); Pediatric Rheumatology Collaborative Study Group (PRCSG).  Efficacy and safety of tocilizumab in patients with polyarticular-course juvenile idiopathic arthritis: results from a phase 3, randomised, double-blind withdrawal trial.  Ann Rheum Dis. 2015;74(6):1110-1117. doi:10.1136/annrheumdis-2014-205351PubMedGoogle ScholarCrossref
40.
Burmester  GR, Rigby  WF, van Vollenhoven  RF,  et al.  Tocilizumab combination therapy or monotherapy or methotrexate monotherapy in methotrexate-naive patients with early rheumatoid arthritis: 2-year clinical and radiographic results from the randomised, placebo-controlled FUNCTION trial.  Ann Rheum Dis. 2017;76(7):1279-1284. doi:10.1136/annrheumdis-2016-210561PubMedGoogle ScholarCrossref
41.
Chevalier  X, Goupille  P, Beaulieu  AD,  et al.  Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study.  Arthritis Rheum. 2009;61(3):344-352. doi:10.1002/art.24096PubMedGoogle ScholarCrossref
42.
Cohen  S, Hurd  E, Cush  J,  et al.  Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial.  Arthritis Rheum. 2002;46(3):614-624. doi:10.1002/art.10141PubMedGoogle ScholarCrossref
43.
Cohen  SB, Moreland  LW, Cush  JJ,  et al; 990145 Study Group.  A multicentre, double blind, randomised, placebo controlled trial of anakinra (Kineret), a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis treated with background methotrexate.  Ann Rheum Dis. 2004;63(9):1062-1068. doi:10.1136/ard.2003.016014PubMedGoogle ScholarCrossref
44.
De Benedetti  F, Brunner  HI, Ruperto  N,  et al; PRINTO; PRCSG.  Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis.  N Engl J Med. 2012;367(25):2385-2395. doi:10.1056/NEJMoa1112802PubMedGoogle ScholarCrossref
45.
Deodhar  A, Gottlieb  AB, Boehncke  W-H,  et al; CNTO1959PSA2001 Study Group.  Efficacy and safety of guselkumab in patients with active psoriatic arthritis: a randomised, double-blind, placebo-controlled, phase 2 study.  Lancet. 2018;391(10136):2213-2224. doi:10.1016/S0140-6736(18)30952-8PubMedGoogle ScholarCrossref
46.
Deodhar  A, Poddubnyy  D, Pacheco-Tena  C,  et al; COAST-W Study Group.  Efficacy and safety of ixekizumab in the treatment of radiographic axial spondyloarthritis: sixteen week results of a phase III randomized, double-blind, placebo controlled trial in patients with prior inadequate response or intolerance to tumor necrosis factor inhibitors.  Arthritis Rheumatol. 2019;71(4):599-611. doi:10.1002/art.40753PubMedGoogle ScholarCrossref
47.
Fleischmann  R, van Adelsberg  J, Lin  Y,  et al.  Sarilumab and nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis and inadequate response or intolerance to tumor necrosis factor inhibitors.  Arthritis Rheumatol. 2017;69(2):277-290. doi:10.1002/art.39944PubMedGoogle ScholarCrossref
48.
Fleischmann  RM, Schechtman  J, Bennett  R,  et al.  Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial.  Arthritis Rheum. 2003;48(4):927-934. doi:10.1002/art.10870PubMedGoogle ScholarCrossref
49.
Genovese  MC, Durez  P, Richards  HB,  et al.  One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study.  J Rheumatol. 2014;41(3):414-421. doi:10.3899/jrheum.130637PubMedGoogle ScholarCrossref
50.
Genovese  MC, Fleischmann  R, Furst  D,  et al.  Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomised phase IIb study.  Ann Rheum Dis. 2014;73(9):1607-1615. doi:10.1136/annrheumdis-2013-204760PubMedGoogle ScholarCrossref
51.
Genovese  MC, Fleischmann  R, Kivitz  AJ,  et al.  Sarilumab plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: results of a phase III study.  Arthritis Rheumatol. 2015;67(6):1424-1437. doi:10.1002/art.39093PubMedGoogle ScholarCrossref
52.
Genovese  MC, Greenwald  M, Cho  C-S,  et al.  A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors.  Arthritis Rheumatol. 2014;66(7):1693-1704. doi:10.1002/art.38617PubMedGoogle ScholarCrossref
53.
Genovese  MC, McKay  JD, Nasonov  EL,  et al.  Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the Tocilizumab in Combination With Traditional Disease-Modifying Antirheumatic Drug Therapy study.  Arthritis Rheum. 2008;58(10):2968-2980. doi:10.1002/art.23940PubMedGoogle ScholarCrossref
54.
Huizinga  TWJ, Fleischmann  RM, Jasson  M,  et al.  Sarilumab, a fully human monoclonal antibody against IL-6Rα in patients with rheumatoid arthritis and an inadequate response to methotrexate: efficacy and safety results from the randomised SARIL-RA-MOBILITY part A trial.  Ann Rheum Dis. 2014;73(9):1626-1634. doi:10.1136/annrheumdis-2013-204405PubMedGoogle ScholarCrossref
55.
Ilowite  N, Porras  O, Reiff  A,  et al.  Anakinra in the treatment of polyarticular-course juvenile rheumatoid arthritis: safety and preliminary efficacy results of a randomized multicenter study.  Clin Rheumatol. 2009;28(2):129-137. doi:10.1007/s10067-008-0995-9PubMedGoogle ScholarCrossref
56.
Kavanaugh  A, Mease  PJ, Reimold  AM,  et al; FUTURE-1 Study Group.  Secukinumab for long-term treatment of psoriatic arthritis: a two-year followup from a phase III, randomized, double-blind placebo-controlled study.  Arthritis Care Res (Hoboken). 2017;69(3):347-355. doi:10.1002/acr.23111PubMedGoogle ScholarCrossref
57.
Khanna  D, Denton  CP, Jahreis  A,  et al.  Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial.  Lancet. 2016;387(10038):2630-2640. doi:10.1016/S0140-6736(16)00232-4PubMedGoogle ScholarCrossref
58.
Khanna  D, Denton  CP, Lin  CJF,  et al.  Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial (faSScinate).  Ann Rheum Dis. 2018;77(2):212-220. doi:10.1136/annrheumdis-2017-211682PubMedGoogle ScholarCrossref
59.
Kivitz  A, Olech  E, Borofsky  M,  et al.  Subcutaneous tocilizumab versus placebo in combination with disease-modifying antirheumatic drugs in patients with rheumatoid arthritis.  Arthritis Care Res (Hoboken). 2014;66(11):1653-1661. doi:10.1002/acr.22384PubMedGoogle ScholarCrossref
60.
Kivitz  AJ, Wagner  U, Dokoupilova  E,  et al.  Efficacy and safety of secukinumab 150 mg with and without loading regimen in ankylosing spondylitis: 104-week results from MEASURE 4 Study.  Rheumatol Ther. 2018;5(2):447-462. doi:10.1007/s40744-018-0123-5PubMedGoogle ScholarCrossref
61.
Kremer  JM, Blanco  R, Brzosko  M,  et al.  Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year.  Arthritis Rheum. 2011;63(3):609-621. doi:10.1002/art.30158PubMedGoogle ScholarCrossref
62.
Kremer  JM, Blanco  R, Halland  A-M,  et al.  Clinical efficacy and safety maintained up to 5 years in patients with rheumatoid arthritis treated with tocilizumab in a randomised trial.  Clin Exp Rheumatol. 2016;34(4):625-633.PubMedGoogle Scholar
63.
Lovell  DJ, Giannini  EH, Reiff  AO,  et al.  Long-term safety and efficacy of rilonacept in patients with systemic juvenile idiopathic arthritis.  Arthritis Rheum. 2013;65(9):2486-2496. doi:10.1002/art.38042PubMedGoogle ScholarCrossref
64.
Maini  RN, Taylor  PC, Szechinski  J,  et al; CHARISMA Study Group.  Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate  [published correction appears in Arthritis Rheum. 2008;58(3):887].  Arthritis Rheum. 2006;54(9):2817-2829. doi:10.1002/art.22033PubMedGoogle ScholarCrossref
65.
Martin  DA, Churchill  M, Flores-Suarez  L,  et al.  A phase Ib multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant rheumatoid arthritis.  Arthritis Res Ther. 2013;15(5):R164. doi:10.1186/ar4347PubMedGoogle ScholarCrossref
66.
Marzo-Ortega  H, Sieper  J, Kivitz  A,  et al; Measure 2 Study Group.  Secukinumab and sustained improvement in signs and symptoms of patients with active ankylosing spondylitis through two years: results from a phase III study.  Arthritis Care Res (Hoboken). 2017;69(7):1020-1029. doi:10.1002/acr.23233PubMedGoogle ScholarCrossref
67.
McInnes  IB, Kavanaugh  A, Gottlieb  AB,  et al; PSUMMIT 1 Study Group.  Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial.  Lancet. 2013;382(9894):780-789. doi:10.1016/S0140-6736(13)60594-2PubMedGoogle ScholarCrossref
68.
McInnes  IB, Mease  PJ, Kirkham  B,  et al; FUTURE 2 Study Group.  Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial.  Lancet. 2015;386(9999):1137-1146. doi:10.1016/S0140-6736(15)61134-5PubMedGoogle ScholarCrossref
69.
McInnes  IB, Mease  PJ, Ritchlin  CT,  et al.  Secukinumab sustains improvement in signs and symptoms of psoriatic arthritis: 2 year results from the phase 3 FUTURE 2 study.  Rheumatology (Oxford). 2017;56(11):1993-2003. doi:10.1093/rheumatology/kex301PubMedGoogle ScholarCrossref
70.
McInnes  IB, Sieper  J, Braun  J,  et al.  Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial.  Ann Rheum Dis. 2014;73(2):349-356. doi:10.1136/annrheumdis-2012-202646PubMedGoogle ScholarCrossref
71.
Mease  P, van der Heijde  D, Landewé  R,  et al.  Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression: primary results from the randomised, double-blind, phase III FUTURE 5 study.  Ann Rheum Dis. 2018;77(6):890-897. doi:10.1136/annrheumdis-2017-212687PubMedGoogle Scholar
72.
Mease  PJ, Genovese  MC, Greenwald  MW,  et al.  Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis.  N Engl J Med. 2014;370(24):2295-2306. doi:10.1056/NEJMoa1315231PubMedGoogle ScholarCrossref
73.
Mease  PJ, Gottlieb  AB, Berman  A,  et al.  The efficacy and safety of clazakizumab, an anti-interleukin-6 monoclonal antibody, in a phase IIb study of adults with active psoriatic arthritis.  Arthritis Rheumatol. 2016;68(9):2163-2173. doi:10.1002/art.39700PubMedGoogle ScholarCrossref
74.
Mease  PJ, Kavanaugh  A, Reimold  A,  et al.  Secukinumab in the treatment of psoriatic arthritis: efficacy and safety results through 3 years from the year 1 extension of the randomised phase III FUTURE 1 trial.  RMD Open. 2018;4(2):e000723. doi:10.1136/rmdopen-2018-000723PubMedGoogle ScholarCrossref
75.
Mease  PJ, McInnes  IB, Kirkham  B,  et al; FUTURE 1 Study Group.  Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis.  N Engl J Med. 2015;373(14):1329-1339. doi:10.1056/NEJMoa1412679PubMedGoogle ScholarCrossref
76.
Mease  PJ, van der Heijde  D, Ritchlin  CT,  et al; SPIRIT-P1 Study Group.  Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1.  Ann Rheum Dis. 2017;76(1):79-87. doi:10.1136/annrheumdis-2016-209709PubMedGoogle ScholarCrossref
77.
Mitha  E, Schumacher  HR, Fouche  L,  et al.  Rilonacept for gout flare prevention during initiation of uric acid-lowering therapy: results from the PRESURGE-2 international, phase 3, randomized, placebo-controlled trial.  Rheumatology (Oxford). 2013;52(7):1285-1292. doi:10.1093/rheumatology/ket114PubMedGoogle ScholarCrossref
78.
Nash  P, Kirkham  B, Okada  M,  et al; SPIRIT-P2 Study Group.  Ixekizumab for the treatment of patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors: results from the 24-week randomised, double-blind, placebo-controlled period of the SPIRIT-P2 phase 3 trial.  Lancet. 2017;389(10086):2317-2327. doi:10.1016/S0140-6736(17)31429-0PubMedGoogle ScholarCrossref
79.
Nash  P, Mease  PJ, McInnes  IB,  et al; FUTURE 3 Study Group.  Efficacy and safety of secukinumab administration by autoinjector in patients with psoriatic arthritis: results from a randomized, placebo-controlled trial (FUTURE 3).  Arthritis Res Ther. 2018;20(1):47. doi:10.1186/s13075-018-1551-xPubMedGoogle ScholarCrossref
80.
Nishimoto  N, Miyasaka  N, Yamamoto  K,  et al.  Study of active controlled tocilizumab monotherapy for rheumatoid arthritis patients with an inadequate response to methotrexate (SATORI): significant reduction in disease activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapy.  Mod Rheumatol. 2009;19(1):12-19. doi:10.3109/s10165-008-0125-1PubMedGoogle ScholarCrossref
81.
Norheim  KB, Harboe  E, Gøransson  LG, Omdal  R.  Interleukin-1 inhibition and fatigue in primary Sjögren’s syndrome–a double blind, randomised clinical trial.  PLoS One. 2012;7(1):e30123. doi:10.1371/journal.pone.0030123PubMedGoogle ScholarCrossref
82.
Pavelka  K, Chon  Y, Newmark  R, Lin  S-L, Baumgartner  S, Erondu  N.  A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate.  J Rheumatol. 2015;42(6):912-919. doi:10.3899/jrheum.141271PubMedGoogle ScholarCrossref
83.
Pavelka  K, Kivitz  A, Dokoupilova  E,  et al.  Efficacy, safety, and tolerability of secukinumab in patients with active ankylosing spondylitis: a randomized, double-blind phase 3 study, MEASURE 3.  Arthritis Res Ther. 2017;19(1):285. doi:10.1186/s13075-017-1490-yPubMedGoogle ScholarCrossref
84.
Quartier  P, Allantaz  F, Cimaz  R,  et al.  A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial).  Ann Rheum Dis. 2011;70(5):747-754. doi:10.1136/ard.2010.134254PubMedGoogle ScholarCrossref
85.
Ritchlin  C, Rahman  P, Kavanaugh  A,  et al; PSUMMIT 2 Study Group.  Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial.  Ann Rheum Dis. 2014;73(6):990-999. doi:10.1136/annrheumdis-2013-204655PubMedGoogle ScholarCrossref
86.
Rovin  BH, van Vollenhoven  RF, Aranow  C,  et al.  A multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of treatment with sirukumab (CNTO 136) in patients with active lupus nephritis.  Arthritis Rheumatol. 2016;68(9):2174-2183. doi:10.1002/art.39722PubMedGoogle ScholarCrossref
87.
Schumacher  HR  Jr, Evans  RR, Saag  KG,  et al.  Rilonacept (interleukin-1 trap) for prevention of gout flares during initiation of uric acid-lowering therapy: results from a phase III randomized, double-blind, placebo-controlled, confirmatory efficacy study.  Arthritis Care Res (Hoboken). 2012;64(10):1462-1470. doi:10.1002/acr.21690PubMedGoogle ScholarCrossref
88.
Schumacher  HR  Jr, Sundy  JS, Terkeltaub  R,  et al; 0619 Study Group.  Rilonacept (interleukin-1 trap) in the prevention of acute gout flares during initiation of urate-lowering therapy: results of a phase II randomized, double-blind, placebo-controlled trial.  Arthritis Rheum. 2012;64(3):876-884. doi:10.1002/art.33412PubMedGoogle ScholarCrossref
89.
Sieper  J, Braun  J, Kay  J,  et al.  Sarilumab for the treatment of ankylosing spondylitis: results of a phase II, randomised, double-blind, placebo-controlled study (ALIGN).  Ann Rheum Dis. 2015;74(6):1051-1057. doi:10.1136/annrheumdis-2013-204963PubMedGoogle ScholarCrossref
90.
Sieper  J, Deodhar  A, Marzo-Ortega  H,  et al; MEASURE 2 Study Group.  Secukinumab efficacy in anti-TNF-naive and anti-TNF-experienced subjects with active ankylosing spondylitis: results from the MEASURE 2 Study.  Ann Rheum Dis. 2017;76(3):571-592. doi:10.1136/annrheumdis-2016-210023PubMedGoogle ScholarCrossref
91.
Sieper  J, Porter-Brown  B, Thompson  L, Harari  O, Dougados  M.  Assessment of short-term symptomatic efficacy of tocilizumab in ankylosing spondylitis: results of randomised, placebo-controlled trials.  Ann Rheum Dis. 2014;73(1):95-100. doi:10.1136/annrheumdis-2013-203559PubMedGoogle ScholarCrossref
92.
Smolen  JS, Agarwal  SK, Ilivanova  E,  et al.  A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate.  Ann Rheum Dis. 2017;76(5):831-839. doi:10.1136/annrheumdis-2016-209831PubMedGoogle ScholarCrossref
93.
Smolen  JS, Beaulieu  A, Rubbert-Roth  A,  et al; OPTION Investigators.  Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial.  Lancet. 2008;371(9617):987-997. doi:10.1016/S0140-6736(08)60453-5PubMedGoogle ScholarCrossref
94.
Smolen  JS, Weinblatt  ME, Sheng  S, Zhuang  Y, Hsu  B.  Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy.  Ann Rheum Dis. 2014;73(9):1616-1625. doi:10.1136/annrheumdis-2013-205137PubMedGoogle ScholarCrossref
95.
Stone  JH, Tuckwell  K, Dimonaco  S,  et al.  Trial of tocilizumab in giant-cell arteritis.  N Engl J Med. 2017;377(4):317-328. doi:10.1056/NEJMoa1613849PubMedGoogle ScholarCrossref
96.
Sundy  JS, Schumacher  HR, Kivitz  A,  et al.  Rilonacept for gout flare prevention in patients receiving uric acid-lowering therapy: results of RESURGE, a phase III, international safety study.  J Rheumatol. 2014;41(8):1703-1711. doi:10.3899/jrheum.131226PubMedGoogle ScholarCrossref
97.
Tahir  H, Deodhar  A, Genovese  M,  et al.  Secukinumab in active rheumatoid arthritis after anti-TNFα therapy: a randomized, double-blind placebo-controlled phase 3 study.  Rheumatol Ther. 2017;4(2):475-488. doi:10.1007/s40744-017-0086-yPubMedGoogle ScholarCrossref
98.
Takeuchi  T, Thorne  C, Karpouzas  G,  et al.  Sirukumab for rheumatoid arthritis: the phase III SIRROUND-D study.  Ann Rheum Dis. 2017;76(12):2001-2008. doi:10.1136/annrheumdis-2017-211328PubMedGoogle ScholarCrossref
99.
Terkeltaub  RA, Schumacher  HR, Carter  JD,  et al.  Rilonacept in the treatment of acute gouty arthritis: a randomized, controlled clinical trial using indomethacin as the active comparator.  Arthritis Res Ther. 2013;15(1):R25. doi:10.1186/ar4159PubMedGoogle ScholarCrossref
100.
Tlustochowicz  W, Rahman  P, Seriolo  B,  et al.  Efficacy and safety of subcutaneous and intravenous loading dose regimens of secukinumab in patients with active rheumatoid arthritis: results from a randomized phase II study.  J Rheumatol. 2016;43(3):495-503. doi:10.3899/jrheum.150117PubMedGoogle ScholarCrossref
101.
van der Heijde  D, Cheng-Chung Wei  J, Dougados  M,  et al; COAST-V Study Group.  Ixekizumab, an interleukin-17A antagonist in the treatment of ankylosing spondylitis or radiographic axial spondyloarthritis in patients previously untreated with biological disease-modifying anti-rheumatic drugs (COAST-V): 16 week results of a phase 3 randomised, double-blind, active-controlled and placebo-controlled trial.  Lancet. 2018;392(10163):2441-2451. doi:10.1016/S0140-6736(18)31946-9PubMedGoogle ScholarCrossref
102.
van Vollenhoven  RF, Hahn  BH, Tsokos  GC,  et al.  Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study.  Lancet. 2018;392(10155):1330-1339. doi:10.1016/S0140-6736(18)32167-6PubMedGoogle ScholarCrossref
103.
Villiger  PM, Adler  S, Kuchen  S,  et al.  Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial.  Lancet. 2016;387(10031):1921-1927. doi:10.1016/S0140-6736(16)00560-2PubMedGoogle ScholarCrossref
104.
Weinblatt  ME, Mease  P, Mysler  E,  et al.  The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, phase IIb, randomized, double-blind, placebo/active-controlled, dose-ranging study.  Arthritis Rheumatol. 2015;67(10):2591-2600. doi:10.1002/art.39249PubMedGoogle ScholarCrossref
105.
Yazici  Y, Curtis  JR, Ince  A,  et al.  Efficacy of tocilizumab in patients with moderate to severe active rheumatoid arthritis and a previous inadequate response to disease-modifying antirheumatic drugs: the ROSE study.  Ann Rheum Dis. 2012;71(2):198-205. doi:10.1136/ard.2010.148700PubMedGoogle ScholarCrossref
106.
Hueber  W, Patel  DD, Dryja  T,  et al; Psoriasis Study Group; Rheumatoid Arthritis Study Group; Uveitis Study Group.  Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis.  Sci Transl Med. 2010;2(52):52ra72. doi:10.1126/scitranslmed.3001107PubMedGoogle ScholarCrossref
107.
Scott  IC, Ibrahim  F, Simpson  G,  et al.  A randomised trial evaluating anakinra in early active rheumatoid arthritis.  Clin Exp Rheumatol. 2016;34(1):88-93.PubMedGoogle Scholar
108.
Emery  P, Keystone  E, Tony  HP,  et al.  IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial.  Ann Rheum Dis. 2008;67(11):1516-1523. doi:10.1136/ard.2008.092932PubMedGoogle ScholarCrossref
109.
Genovese  MC, Van den Bosch  F, Roberson  SA,  et al.  LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study.  Arthritis Rheum. 2010;62(4):929-939. doi:10.1002/art.27334PubMedGoogle ScholarCrossref
110.
Murad  MH, Chu  H, Lin  L, Wang  Z.  The effect of publication bias magnitude and direction on the certainty in evidence.  BMJ Evid Based Med. 2018;23(3):84-86. doi:10.1136/bmjebm-2018-110891PubMedGoogle ScholarCrossref
111.
Antonelli  M, Khan  MA, Magrey  MN.  Differential adverse events between TNF-α inhibitors and IL-17 axis inhibitors for the treatment of spondyloarthritis.  Curr Treatm Opt Rheumatol. 2015;1(2):239-254. doi:10.1007/s40674-015-0022-7Google ScholarCrossref
112.
Hennigan  S, Kavanaugh  A.  Interleukin-6 inhibitors in the treatment of rheumatoid arthritis.  Ther Clin Risk Manag. 2008;4(4):767-775. doi:10.2147/tcrm.s3470PubMedGoogle Scholar
113.
Nikfar  S, Saiyarsarai  P, Tigabu  BM, Abdollahi  M.  Efficacy and safety of interleukin-1 antagonists in rheumatoid arthritis: a systematic review and meta-analysis.  Rheumatol Int. 2018;38(8):1363-1383. doi:10.1007/s00296-018-4041-1PubMedGoogle ScholarCrossref
114.
Mertens  M, Singh  JA.  Anakinra for rheumatoid arthritis: a systematic review.  J Rheumatol. 2009;36(6):1118-1125. doi:10.3899/jrheum.090074PubMedGoogle ScholarCrossref
115.
Minozzi  S, Bonovas  S, Lytras  T,  et al.  Risk of infections using anti-TNF agents in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: a systematic review and meta-analysis.  Expert Opin Drug Saf. 2016;15(suppl 1):11-34. doi:10.1080/14740338.2016.1240783PubMedGoogle ScholarCrossref
116.
Singh  JA, Wells  GA, Christensen  R,  et al.  Adverse effects of biologics: a network meta-analysis and Cochrane overview.  Cochrane Database Syst Rev. 2011;(2):CD008794. doi:10.1002/14651858.CD008794.pub2PubMedGoogle Scholar
117.
Kourbeti  IS, Ziakas  PD, Mylonakis  E.  Biologic therapies in rheumatoid arthritis and the risk of opportunistic infections: a meta-analysis.  Clin Infect Dis. 2014;58(12):1649-1657. doi:10.1093/cid/ciu185PubMedGoogle ScholarCrossref
118.
Salmon-Ceron  D, Tubach  F, Lortholary  O,  et al; RATIO Group.  Drug-specific risk of non-tuberculosis opportunistic infections in patients receiving anti-TNF therapy reported to the 3-year prospective French RATIO registry.  Ann Rheum Dis. 2011;70(4):616-623. doi:10.1136/ard.2010.137422PubMedGoogle ScholarCrossref
119.
Baddley  JW, Winthrop  KL, Chen  L,  et al.  Non-viral opportunistic infections in new users of tumour necrosis factor inhibitor therapy: results of the SAfety Assessment of Biologic ThERapy (SABER) study.  Ann Rheum Dis. 2014;73(11):1942-1948. doi:10.1136/annrheumdis-2013-203407PubMedGoogle ScholarCrossref
120.
Papp  KA, Griffiths  CE, Gordon  K,  et al; PHOENIX 1 Investigators; PHOENIX 2 Investigators; ACCEPT Investigators.  Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up.  Br J Dermatol. 2013;168(4):844-854. doi:10.1111/bjd.12214PubMedGoogle ScholarCrossref
121.
Papp  K, Gottlieb  AB, Naldi  L,  et al.  Safety surveillance for ustekinumab and other psoriasis treatments from the Psoriasis Longitudinal Assessment and Registry (PSOLAR).  J Drugs Dermatol. 2015;14(7):706-714.PubMedGoogle Scholar
122.
Reich  K, Armstrong  AW, Foley  P,  et al.  Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial.  J Am Acad Dermatol. 2017;76(3):418-431. doi:10.1016/j.jaad.2016.11.042PubMedGoogle ScholarCrossref
123.
Blauvelt  A, Papp  KA, Griffiths  CE,  et al.  Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial.  J Am Acad Dermatol. 2017;76(3):405-417. doi:10.1016/j.jaad.2016.11.041PubMedGoogle ScholarCrossref
124.
Gordon  KB, Blauvelt  A, Papp  KA,  et al; UNCOVER-1 Study Group; UNCOVER-2 Study Group; UNCOVER-3 Study Group.  Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis.  N Engl J Med. 2016;375(4):345-356. doi:10.1056/NEJMoa1512711PubMedGoogle ScholarCrossref
125.
van de Kerkhof  PC, Griffiths  CE, Reich  K,  et al.  Secukinumab long-term safety experience: a pooled analysis of 10 phase II and III clinical studies in patients with moderate to severe plaque psoriasis.  J Am Acad Dermatol. 2016;75(1):83-98.e4. doi:10.1016/j.jaad.2016.03.024PubMedGoogle ScholarCrossref
126.
Askling  J, Fahrbach  K, Nordstrom  B, Ross  S, Schmid  CH, Symmons  D.  Cancer risk with tumor necrosis factor alpha (TNF) inhibitors: meta-analysis of randomized controlled trials of adalimumab, etanercept, and infliximab using patient level data.  Pharmacoepidemiol Drug Saf. 2011;20(2):119-130. doi:10.1002/pds.2046PubMedGoogle ScholarCrossref
127.
Dommasch  ED, Abuabara  K, Shin  DB, Nguyen  J, Troxel  AB, Gelfand  JM.  The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: a systematic review and meta-analysis of randomized controlled trials.  J Am Acad Dermatol. 2011;64(6):1035-1050. doi:10.1016/j.jaad.2010.09.734PubMedGoogle ScholarCrossref
128.
Wolfe  F, Michaud  K.  The effect of methotrexate and anti-tumor necrosis factor therapy on the risk of lymphoma in rheumatoid arthritis in 19,562 patients during 89,710 person-years of observation.  Arthritis Rheum. 2007;56(5):1433-1439. doi:10.1002/art.22579PubMedGoogle ScholarCrossref
129.
Mariette  X, Matucci-Cerinic  M, Pavelka  K,  et al.  Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: a systematic review and meta-analysis.  Ann Rheum Dis. 2011;70(11):1895-1904. doi:10.1136/ard.2010.149419PubMedGoogle ScholarCrossref
130.
Dixon  WG, Symmons  DP, Lunt  M, Watson  KD, Hyrich  KL, Silman  AJ; British Society for Rheumatology Biologics Register Control Centre Consortium; British Society for Rheumatology Biologics Register.  Serious infection following anti-tumor necrosis factor alpha therapy in patients with rheumatoid arthritis: lessons from interpreting data from observational studies.  Arthritis Rheum. 2007;56(9):2896-2904. doi:10.1002/art.22808PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Original Investigation
    Rheumatology
    October 18, 2019

    Risk of Infections and Cancer in Patients With Rheumatologic Diseases Receiving Interleukin Inhibitors: A Systematic Review and Meta-analysis

    Author Affiliations
    • 1Division of Rheumatology, Department of Medicine, University of Arizona, Tucson
    • 2Division of Rheumatology, Department of Medicine, University of Colorado, Denver
    • 3Division of Hematology/Oncology, Department of Medicine, Mayo Clinic Rochester, Rochester, Minnesota
    • 4Division of Hematology/Oncology, Department of Medicine, University of Arizona, Tucson
    • 5College of Pharmacy, Department of Pharmacy Practice and Science, University of Arizona, Tucson
    • 6Department of Medicine, University of Arizona, Tucson
    • 7Evidence-Based Practice Center, Mayo Clinic Rochester, Rochester, Minnesota
    • 8Mayo Clinic Libraries, Mayo Clinic Rochester, Rochester, Minnesota
    • 9College of Pharmacy, Department of Clinical Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
    • 10University of Arizona Arthritis Center, University of Arizona, Tucson
    JAMA Netw Open. 2019;2(10):e1913102. doi:10.1001/jamanetworkopen.2019.13102
    Key Points español 中文 (chinese)

    Question  What is the risk of serious infections, opportunistic infections, and cancer in patients with rheumatologic diseases treated with interleukin inhibitors?

    Findings  In this systematic review and meta-analysis of 74 randomized clinical trials comprising 29 214 patients, pooled results suggest that risk of serious infections, opportunistic infections, and cancer is increased in patients with rheumatologic diseases who are treated with interleukin inhibitors compared with placebo.

    Meaning  This analysis suggests estimates of risk for infections and cancer associated with the use of interleukin inhibitors that can inform shared decision-making when patients and clinicians are contemplating the use of interleukin inhibitors for rheumatologic diseases.

    Abstract

    Importance  The safety profile of interleukin (IL) inhibitors is not well established.

    Objective  To assess the risk of serious infections, opportunistic infections, and cancer in patients with rheumatologic diseases treated with IL inhibitors.

    Data Sources  Ovid MEDLINE and Epub Ahead of Print, In-Process & Other Non-Indexed Citations; Ovid MEDLINE Daily; Ovid Embase; Ovid Cochrane Central Register of Controlled Trials; Ovid Cochrane Database of Systematic Reviews; and Scopus were searched (inception to November 30, 2018).

    Study Selection  Randomized, placebo-controlled trials that evaluated IL inhibitor therapies in rheumatic diseases and reported safety data were included in the analyses.

    Data Extraction and Synthesis  This systematic review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Two investigators independently extracted study data and assessed risk of bias and certainty in the evidence. Fixed-effects meta-analysis was conducted to pool odds ratios (ORs) for serious infections, opportunistic infections, and cancers for IL inhibitors vs placebo.

    Main Outcomes and Measures  The outcomes of interest were the number of serious infections, opportunistic infections, and cancers in individuals receiving IL inhibitor therapies compared with placebo.

    Results  In this meta-analysis, 74 studies comprising 29 214 patients (24 236 patients for serious infections, 9998 for opportunistic infections, and 21 065 for cancer [number of patients overlaps for each outcome]) were included. Patients receiving IL inhibitors had a higher risk of serious infections (OR, 1.97; 95% CI, 1.58-2.44; P < .001, I2 = 0%; high certainty), opportunistic infections (OR, 2.35; 95% CI, 1.09-5.05; P = .03, I2 = 0%; moderate certainty), and cancer (OR, 1.52; 95% CI, 1.05-2.19; P = .03, I2 = 11%; moderate certainty).

    Conclusions and Relevance  The risk of serious infections, opportunistic infections, and cancer appears to be increased in patients with rheumatologic diseases who are treated with IL inhibitors compared with placebo.

    Introduction

    Interleukins (ILs) are cytokines that play a central role in immune regulation and inflammation by promoting proliferation, activation, migration, and regulation of leukocytes.1 Therefore, several ILs have been targeted for treatment of immunologic diseases, including rheumatoid arthritis, psoriasis, psoriatic arthritis, ankylosing spondylitis, and inflammatory bowel disease. Interleukin-1 inhibitors (eg, anakinra, rilonacept), IL-6 inhibitors (eg, tocilizumab, sarilumab), IL-12/23 inhibitors (eg, ustekinumab), and IL-17 inhibitors (eg, ixekizumab, secukinumab) have been approved for clinical use in rheumatologic diseases by the US Food and Drug Administration and by the European Medicines Agency.

    Although the therapeutic efficacy of these targeted biologics is well established by several clinical trials, systematic reviews, and meta-analyses,2-7 there is a paucity of data regarding the safety profile of these agents. The increased risk of serious and opportunistic infections with biologics, including IL inhibitors, has been a plausible safety concern secondary to blockade of biological pathways leading to immune dysregulation.7-10 However, the currently available evidence is not sufficient to draw conclusions regarding the safety of IL inhibitors with regard to the risk of serious infections and cancer.11 Establishing the safety data for rare adverse events, such as serious infections and cancer, is challenging because individual clinical trials lack adequate sample size. Previous meta-analyses have successfully identified a significant incidence of rare adverse effects by pooling the data in similar situations in which critical toxic effect signals were missed when looking at individual trials.12 For example, a meta-analysis suggested that treatment with rosiglitazone was associated with a significant increase in the risk of myocardial infarction.13 Similarly, several systematic reviews and meta-analyses have attempted to define the safety of tumor necrosis factor (TNF) inhibitors and supported the risk profile by consistent research evidence.14-21

    Despite widespread use, it is still uncertain to what extent therapy with IL inhibitors may be associated with an increased risk of serious infections and cancer. Therefore, we conducted a systematic review and meta-analysis of published clinical trial data to assess the risk of serious infections, opportunistic infections, and cancer in individuals treated with IL inhibitors for any indicated rheumatologic condition.

    Methods

    This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline for systematic reviews and meta-analyses and was conducted following an a priori established protocol.

    The Ovid MEDLINE and Epub Ahead of Print, In-Process & Other Non-Indexed Citations; Ovid MEDLINE Daily; Ovid Embase; Ovid Cochrane Central Register of Controlled Trials; Ovid Cochrane Database of Systematic Reviews; and Scopus were searched from inception to November 30, 2018. The search strategy was designed and conducted by an experienced librarian with input from the study’s principal investigator (J.B.). Controlled vocabulary supplemented with keywords was used to search for randomized placebo-controlled trials of IL inhibitor therapy for rheumatic diseases. A detailed search strategy is provided in the eAppendix in the Supplement.

    Any randomized, placebo-controlled trials that evaluated IL inhibitor therapies in rheumatic diseases and reported serious infections, opportunistic infections, and/or cancers were included. Inhibitors of the following ILs were considered: anakinra (IL-1), rilonacept (IL-1), canakinumab (IL-1), tocilizumab (IL-6), olokizumab (IL-6), clazakizumab (IL-6), sirukumab (IL-6), sarilumab (IL-6), ustekinumab (IL-12/23), brodalumab (IL-17), secukinumab (IL-17), ixekizumab (IL-17), and guselkumab (IL-23). In studies with multiple intervention arms, data were extracted from the IL inhibitor arm. In case of multiple reports from the same study, the data obtained at the longest follow-up duration were considered.

    Two of us (A.B., W.F.) screened the titles and abstracts independently; the full texts were screened if the articles met the inclusion criteria. Full text of these selected articles was obtained and evaluated by 2 of us (A.B., W.F.) to confirm eligibility for inclusion. Any discrepancy was resolved via discussion. If there was disagreement between the reviewers, a third investigator (J.B.) was contacted and a decision was made through discussion. Data were recorded in a standardized manner, including the last name of first author, year of publication, disease studied, number of patients in treatment and placebo arms, treatment drug, control drug, dosage of drug, follow-up duration, number of serious infections, number and type of opportunistic infections, and number and type of cancers.

    The Cochrane Collaboration Risk of Bias Assessment Tool was used to assess for selection bias (random sequence generation, allocation concealment), performance bias (blinding of participant and personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete data), reporting bias (selective reporting), and other sources of bias.22 Certainty of evidence was determined using the GRADE (grades of recommendation, assessment, development, and evaluation) approach.23

    The outcomes of interest were the number of serious infections, opportunistic infections, and cancers in individuals receiving IL inhibitor therapies compared with placebo. The serious infections were predefined by study investigators using previously validated measures, as infections resulting in hospitalization, the use of antibiotics, or death. The definition of opportunistic infections was based on a consensus statement by Winthrop et al.24 Oropharyngeal candidiasis infections were grouped for analysis. Prespecified subgroup analyses were performed to evaluate the risk of serious infections with different IL inhibitor therapies and disease states.

    Statistical Analysis

    The number of patients who received at least 1 dose of the IL inhibitor represented the denominator of our outcome measure. Fixed-effects meta-analysis was conducted to generate odds ratios (ORs) and 95% CIs. The fixed-effects analysis using the Mantel-Haenszel method was conducted because the studies’ estimates were weighted only according to their estimated variances and, therefore, it is more appropriate for pooling rare events.25 The continuity correction method suggested by Sweeting et al26 was used to adjust if no events were observed in 1 of the study arms, and studies were excluded from the primary analysis if there were no events in either of the study arms. The continuity correction for the treatment and control arm was 1/(R+1) and R/(R+1) respectively, where R is the ratio of control group to treatment group sizes. Sensitivity analysis was performed without continuity correction. Comprehensive Meta-Analysis, version 3 (Biosta) software was used for all data analysis.27

    To estimate the absolute harm increase (number needed to harm [NNH]), we calculated and pooled risk differences from the included studies. The NNH equals the inverse of the pooled risk differences.

    Meta-regression was performed using the fixed-effects model (method of moments) to explore heterogeneity and evaluate the association of the duration of treatment with the risk of adverse events. We converted all ORs by logarithmic transformation to achieve more symmetrical distributions. The natural logarithm of the OR was the dependent variable, and the duration of follow-up was entered as a covariate. We applied a weighted regression model so that the more precise studies have more influence in the analysis.

    A cumulative meta-analysis was performed by adding individual studies chronologically, and the results were summarized as each new study was added. The purpose of this technique was to provide a visual presentation for the evolution of evidence over time and determine the point estimates. In addition, leave-1-out analysis was conducted by recalculating the pooled ORs while omitting 1 study in turn to assess the influence of single studies on the overall findings.

    Heterogeneity was assessed using the I2 statistic that expressed the percentage of heterogeneity beyond what is expected by chance. The I2 values greater than 25% were consistent with a low degree of heterogeneity; 50%, moderate degree; and 75%, high degree of heterogeneity.28

    Publication bias was assessed using funnel plots, and the Egger regression test with a 2-tailed P value less than .05 was considered to be statistically significant. If publication bias was detected, the Duval and Tweedie trim-and-fill method was used for adjustment.29

    Results

    A total of 2341 titles were retrieved using the initial database search; of these, 2303 studies were selected after removing duplicates, and 790 studies were considered eligible for further review after reviewing titles and abstracts. A total of 74 randomized clinical trials including 29 214 patients were found to have outcomes of interest2,30-109 (Figure 1). The characteristics of all of the included trials are described in the Table. Tocilizumab was evaluated in 18 trials, secukinumab in 15, anakinra in 8, ixekizumab in 6, rilonacept in 6, sarilumab in 4, sirukumab in 4, ustekinumab in 4, brodalumab in 3, guselkumab in 2, clazakizumab in 2, canakinumab in 1, and olokizumab in 1. There were 35 trials for rheumatoid arthritis, 12 for psoriatic arthritis, 9 for ankylosing spondylitis, 5 for gout, 5 for juvenile idiopathic arthritis, 2 for giant cell arteritis, 2 for systemic lupus erythematosus, 1 for primary Sjögren syndrome, 1 for systemic sclerosis, 1 for familial Mediterranean fever, and 1 for osteoarthritis.

    Sixty-nine studies included data for serious infections across all rheumatic diseases. The median duration of the trials and/or safety follow-up was 24 weeks (range, 4-156 weeks) (eTable 1 in the Supplement). A total of 24 236 patients were included in the analysis; of these, 17 177 were assessed in the treatment arms and 7059 were evaluated in the placebo arms. There were 486 events in the treatment arms and 96 events in the placebo arms. In pooled analyses, patients receiving IL inhibitors had a higher risk of serious infections vs placebo (OR, 1.97; 95% CI, 1.58-2.44; P < .001; I2 = 0%; high certainty) (Figure 2). The results of sensitivity analysis without continuity correction were similar (OR, 1.93; 95% CI, 1.56-2.39; P < .001; I2 = 0%) (eFigure 1 in the Supplement). Cumulative meta-analysis showed that the overall OR did not change after 19 studies (eFigure 2 in the Supplement). The subgroup analyses for individual medications and each disease are summarized and displayed with forest plots in eFigures 3-6 in the Supplement.

    A total of 14 trials reported the incidence of opportunistic infections. The median duration of trial and/or safety follow-up was 54 weeks (range, 24-264 weeks). These trials included 9998 patients (7153 in the treatment groups; 2845 patients in the placebo groups) (eTable 2 in the Supplement). There were 43 events in the treatment groups and 5 events in the placebo groups. The following opportunistic infections were reported: 23 oral candidiasis, 9 herpes zoster, 4 esophageal candidiasis, 1 unspecified candidiasis, 2 Mycobacterium tuberculosis, 2 atypical mycobacterial infections, 1 histoplasmosis, and 6 unspecified.

    The pooled analysis showed an increased risk of opportunistic infections with the use of IL inhibitors compared with placebo (OR, 2.35; 95% CI, 1.09-5.05; P = .03; I2 = 0%; moderate certainty) (eFigure 7 in the Supplement). The results of sensitivity analysis without continuity correction were not statistically significant (OR, 1.95; 95% CI, 0.99-3.82; P = .05; I2 = 0%) (eFigure 8 in the Supplement). Cumulative meta-analysis showed that overall OR did not change after 6 studies (eFigure 9 in the Supplement).

    Forty-five studies with a total of 21 065 patients reported data on the incidence and type of cancers across all rheumatic diseases (eTable 3 in the Supplement). The median duration of trial and/or safety follow-up was 28 weeks (range, 12-264 weeks). There were 15 244 patients in the treatment arms and 5821 in the placebo arms. A total of 141 cases of cancer were reported in the treatment groups and 28 in the control groups. The pooled analysis demonstrated an increased risk for cancer with IL inhibitors vs placebo (OR, 1.52; 95% CI, 1.05-2.19; P = .03; I2 = 11%; moderate certainty) (Figure 3). The results of the sensitivity analysis without continuity correction were similar (OR, 1.47; 95% CI, 1.04-2.08; P = .03; I2 = 7%) (eFigure 10 in the Supplement). Cumulative meta-analysis showed that overall OR did not change after 21 studies (eFigure 11 in the Supplement).

    We calculated the NNH for all primary outcomes. The NNH was 67 for 1 additional serious infection within a median follow-up of 24 weeks. The NNH for cancer was 250 (median follow-up, 28 weeks) and, for opportunistic infections, 250 (median follow-up, 54 weeks).

    Using the fixed-effects model, we observed that duration of drug use was significantly associated with the effect size for cancer outcome (eFigure 12 in the Supplement). With each unit (weeks) increase in duration of drug use, the odds of cancer were increased (coefficient, 0.012; SE, 0.004; 95% CI, 0.005-0.019; z value, 3.22; P = .001). However, there were no significant associations of duration of drug use with serious (coefficient, 0.002; SE, 0.003; 95% CI, −0.004 to 0.009; z value; 0.67; P = .50) or opportunistic (coefficient, 0.003; SE, 0.008; 95% CI, −0.012 to 0.019; z value, 0.43; P = .66) infections (eFigure 13 and eFigure 14 in the Supplement).

    The Egger regression test for small-study effect was statistically significant for serious infections (Egger intercept, 0.47; P = .01) but not for opportunistic infections (Egger intercept, 0.47; P = .27) or cancer (Egger intercept, 0.78; P = .07) (eFigure 15 in the Supplement). The funnel plot for serious infections appeared to be asymmetric, while the funnel plots for opportunistic infections and cancer were largely symmetric (eFigures 16-18 in the Supplement). However, imputation of an adjusted effect size using the trim-and-fill method did not show an important change in the effect size (OR, 1.34; 95% CI, 1.08-1.66) (eFigure 19 in the Supplement). This minimal change suggests that the overall certainty in the estimate of this outcome is not importantly affected by publication bias.110

    In this meta-analysis, the certainty in evidence was rated as high for the outcome of serious infections for the following reasons: (1) the evidence was derived from randomized clinical trials, (2) the meta-analytic effect estimates were precise, (3) the results were consistent (heterogeneity was low or moderate across studies) (eFigure 20 in the Supplement), and (4) the majority of the randomized clinical trials included in our study are characterized by low or unclear risk of bias, as assessed with the Cochrane Collaboration’s tool (eFigure 21 and eFigure 22 in the Supplement). While the publication bias was suspected, the adjusted effect size using the trim-and-fill method was similar. However, the certainty rating of evidence was decreased to moderate for the outcomes of opportunistic infections and cancer owing to imprecision caused by the small number of events, which caused wide 95% CIs with lower boundaries close to the null effect. The absolute risk difference with intervention per 1000 patients compared with baseline risk (placebo) was 13 per 1000 patients for serious infections (95% CI, 8-19 more; NNH, 67), 2 per 1000 patients for opportunistic infections (95% CI, 0-7 more; NNH, 250), and 2 per 1000 patients for cancer (95% CI, 0-6 more; NNH, 250). The summary of this evidence using the GRADE approach is detailed in eTable 4 in the Supplement.

    Discussion

    The pooled results from 74 randomized clinical trials (n = 29 214) suggests that the risk of serious infections, opportunistic infections, and cancer is increased in patients with rheumatologic diseases who are treated with IL inhibitors compared with placebo. This association is warranted by at least moderate certainty using the GRADE approach. The results are robust; the cumulative meta-analysis suggests that estimates are stable, and subgroup analysis based on drugs and disease state showed consistent results. Subgroups for individual drugs (ixekizumab, rilonacept, sarilumab, ustekinumab, brodalumab, and guselkumab) or diseases (ankylosing spondylitis, gout, juvenile idiopathic arthritis, and systemic lupus erythematosus) with a limited number of trials suggested that the risk of serious infections may be increased, but results were not statistically significant, likely reflecting the fewer number of events and small sample sizes.

    Several smaller studies of IL inhibitors in individual rheumatic diseases have demonstrated an increased risk of infections, which is consistent with our study.10,111,112 There have also been several systematic reviews addressing the efficacy and safety of IL-1 inhibition in rheumatoid arthritis with similar findings.18,113,114 These studies assessed the infection risk of IL-1 inhibition, but we believe our study is unique in assessing infection risk across all IL inhibitors and is more comprehensive. Our findings are also comparable with the safety profile of TNF inhibitors in rheumatic diseases, suggesting an increased risk of serious infections.14,18,115 This finding of an increased number of serious infections is in contrast to a Cochrane database systematic review that compared the adverse effects of biologics (TNF inhibitors, IL-1 antagonist [anakinra], IL-6 antagonist [tocilizumab], anti-CD28 [abatacept], and anti–B cell [rituximab]) in patients with any disease and reported an increased risk of serious infections that was not statistically significant compared with placebo.116 A later meta-analysis of 106 randomized clinical trials showed that the risk of serious infections was increased in patients with rheumatoid arthritis treated with biologics compared with nonbiologic, traditional disease-modifying antirheumatic drugs, supporting the findings of this analysis.18

    The existing evidence for risk of opportunistic infections with IL inhibitor therapy is not yet well established. However, several studies have investigated the risk of opportunistic infections with the use of TNF inhibitors. A meta-analysis involving 32 504 patients with rheumatoid arthritis found that biologic agents (abatacept, adalimumab, anakinra, certolizumab pegol, etanercept, golimumab, infliximab, rituximab, and tocilizumab) appeared to be associated with a small, but significant, risk of specific opportunistic infections (Peto OR; 1.79; 95% CI, 1.17-2.74) compared with placebo or disease-modifying antirheumatic drugs.117 Similarly, a French registry (RATIO) collected all cases of nontuberculosis opportunistic infections in patients receiving TNF inhibitors for any indication and reported a 10 times higher incidence of opportunistic infections compared with the general population.118 Another retrospective cohort study involving 236 531 patients reported that the crude incidence and risk of nonviral opportunistic infections among new users of TNF inhibitors compared with those initiating nonbiologic disease-modifying antirheumatic drugs was 2.7 vs 1.7 per 1000 person-years (adjusted hazard ratio, 1.6; 95% CI, 1.0-2.6).119 The increased risk of opportunistic infections demonstrated in our study may suggest that the safety profile of IL inhibitors is likely similar to that of TNF inhibitors.

    To our knowledge, the safety data regarding the risk of cancer with IL inhibitor therapy have been limited to individual clinical trials in the absence of combined analysis. The findings in our study suggest that the risk of cancer may be increased with longer IL inhibitor therapy. Although this analysis indicated increased cancer risk with time, it is not conclusive. This increased safety signal should be investigated further by long-term clinical data. Meanwhile, caution must be practiced to adhere to the age-appropriate cancer screening guidelines, and annual screening for skin cancers should also be considered. The studies evaluating the use of IL inhibitors in psoriasis have suggested that risk of cancer is less than or comparable to the general population; the evidence is not sufficient to draw definite conclusions, however, and the evidence may not be generalizable to patients with other rheumatic diseases.11,120-125 Several studies have investigated the risk of cancer with TNF inhibitor therapy, but results are mixed.14,19,126-129 In one meta-analysis, Bongartz et al14 reported an increased risk for cancer (OR, 3.3; 95% CI, 1.2-9.1) with the use of anti-TNF medications (infliximab and adalimumab). However, several studies suggested no increased risk of overall cancers with TNF inhibitors.19,126-129

    Strengths and Limitations

    Our study has several strengths. The analysis is comprehensive, and the results are robust and consistent across subgroups. We have adjusted for publication bias, and we provided not only the assessment for risk of bias but also evaluated the certainty of evidence using the GRADE approach. The study also has limitations. These results must be interpreted with caution because of factors intrinsic to the analysis of study-level data. This analysis assumes that the risk of infections or cancer is constant throughout the duration of treatment. Previous data have suggested that the risk for infection with TNF inhibitors is highest within the first 90 days of therapy,130 but to our knowledge, no data are currently available concerning use of IL inhibitors. Moreover, while not accounted for in this analysis, many patients receive other immunosuppressive medications, such as prednisone, in addition to IL inhibitors in clinical practice, which increases the risk of infections and cancers. Similarly, the short duration of follow-up in studies included in this review may not be sufficient to detect the actual cancer risk, which can take years to develop. A more applicable approach would be to assess longer-term data to evaluate cancer risk and length of IL inhibitor therapy, but this protocol was not possible through our approach of using clinical trial data. Furthermore, several clinical trials included in our study had shorter durations of follow-up in the placebo groups compared with the treatment groups. We included the longest available event data for treatment groups that could have biased the results to an overestimation of the true risk, as there was longer follow-up in the treatment groups to detect an adverse event compared with the placebo groups. In addition, we did not consider the differential risk associated with low or high dosages, which may underestimate or overestimate the risk of adverse reactions.

    Conclusions

    This systematic review and meta-analysis suggests an increased risk of serious and opportunistic infections with IL inhibitor therapy that may be comparable to those reported for other biologics approved for the treatment of rheumatic diseases. The finding of a possibly increased risk of cancer with long-term IL inhibitor treatment should be taken into consideration and needs to be confirmed by real-world data, such as long-term epidemiologic studies from registries. This analysis provides estimates of toxic effects for infections and cancer associated with the use of IL inhibitors that can inform shared decision-making when patients and clinicians are contemplating the use of IL inhibitors for rheumatologic diseases. As a future study, the comparative safety analysis among individual IL inhibitors should be considered.

    Back to top
    Article Information

    Accepted for Publication: August 23, 2019.

    Published: October 18, 2019. doi:10.1001/jamanetworkopen.2019.13102

    Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2019 Bilal J et al. JAMA Network Open.

    Corresponding Author: Jawad Bilal, MD, Division of Rheumatology, Department of Medicine, University of Arizona, 1501 N Campbell Ave, PO Box 245093, Tucson, AZ 85724 (jawadbilal@deptofmed.arizona.edu).

    Author Contributions: Drs Bilal and Berlinberg had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Bilal and Berlinberg are co–first authors.

    Concept and design: Bilal, Berlinberg, Riaz, Bhattacharjee, Ortega, Murad, Alhifany, Kwoh.

    Acquisition, analysis, or interpretation of data: All authors.

    Drafting of the manuscript: Bilal, Berlinberg, Riaz, Faridi, Bhattacharjee, Ortega, Murad, Alhifany.

    Critical revision of the manuscript for important intellectual content: Bilal, Berlinberg, Riaz, Bhattacharjee, Ortega, Murad, Wang, Prokop, Alhifany, Kwoh.

    Statistical analysis: Bilal, Berlinberg, Faridi, Bhattacharjee, Murad, Wang, Alhifany.

    Administrative, technical, or material support: Bilal, Kwoh.

    Supervision: Berlinberg, Bhattacharjee, Kwoh.

    Conflict of Interest Disclosures: Dr Kwoh reported receiving grants and personal fees from EMD Serono, grants from Pfizer, and personal fees from Astellas, Regulus, Kolon Tissue Gene, Taiwan Liposome Company, Fidia, Thuasne, GlaxoSmithKline, Regeneron, and Express Scripts outside the submitted work. No other disclosures were reported.

    Meeting Presentation: A portion of this article was presented as 2 poster presentations at the 2018 Annual Meeting of the American College of Rheumatology/Association of Rheumatology Health Professionals; October 19-24; Chicago, Illinois.

    References
    1.
    Tappeiner  C, Möller  B, Hennig  M, Heiligenhaus  A.  New biologic drugs: anti-interleukin therapy.  Dev Ophthalmol. 2012;51:79-89. doi:10.1159/000336190PubMedGoogle ScholarCrossref
    2.
    Aletaha  D, Bingham  CO  III, Tanaka  Y,  et al.  Efficacy and safety of sirukumab in patients with active rheumatoid arthritis refractory to anti-TNF therapy (SIRROUND-T): a randomised, double-blind, placebo-controlled, parallel-group, multinational, phase 3 study  [published correction appears in Lancet. 2017;389(10083):1980].  Lancet. 2017;389(10075):1206-1217. doi:10.1016/S0140-6736(17)30401-4PubMedGoogle ScholarCrossref
    3.
    Richette  P, Doherty  M, Pascual  E,  et al.  2016 Updated EULAR evidence-based recommendations for the management of gout.  Ann Rheum Dis. 2017;76(1):29-42. doi:10.1136/annrheumdis-2016-209707PubMedGoogle ScholarCrossref
    4.
    Singh  JA, Guyatt  G, Ogdie  A,  et al.  Special article: 2018 American College of Rheumatology/National Psoriasis Foundation guideline for the treatment of psoriatic arthritis.  Arthritis Care Res (Hoboken). 2019;71(1):2-29. doi:10.1002/acr.23789PubMedGoogle ScholarCrossref
    5.
    Singh  JA, Saag  KG, Bridges  SL  Jr,  et al; American College of Rheumatology.  2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis.  Arthritis Care Res (Hoboken). 2016;68(1):1-25. doi:10.1002/acr.22783PubMedGoogle ScholarCrossref
    6.
    Ward  MM, Deodhar  A, Akl  EA,  et al.  American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network 2015 recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis.  Arthritis Rheumatol. 2016;68(2):282-298. doi:10.1002/art.39298PubMedGoogle ScholarCrossref
    7.
    Wu  D, Yue  J, Tam  LS.  Efficacy and safety of biologics targeting interleukin-6, -12/23 and -17 pathways for peripheral psoriatic arthritis: a network meta-analysis.  Rheumatology (Oxford). 2018;57(3):563-571. doi:10.1093/rheumatology/kex452PubMedGoogle ScholarCrossref
    8.
    Bilal  J, Riaz  IB, Kamal  MU, Elyan  M, Sudano  D, Khan  MA.  A systematic review and meta-analysis of efficacy and safety of novel interleukin inhibitors in the management of psoriatic arthritis.  J Clin Rheumatol. 2018;24(1):6-13. doi:10.1097/RHU.0000000000000583PubMedGoogle Scholar
    9.
    Wei  M, Duan  D.  Efficacy and safety of monoclonal antibodies targeting interleukin-17 pathway for inflammatory arthritis: a meta-analysis of randomized controlled clinical trials.  Drug Des Dev Ther. 2016;10:2771-2777. doi:10.2147/DDDT.S91374PubMedGoogle ScholarCrossref
    10.
    Nishimoto  N, Miyasaka  N, Yamamoto  K, Kawai  S, Takeuchi  T, Azuma  J.  Long-term safety and efficacy of tocilizumab, an anti-IL-6 receptor monoclonal antibody, in monotherapy, in patients with rheumatoid arthritis (the STREAM study): evidence of safety and efficacy in a 5-year extension study.  Ann Rheum Dis. 2009;68(10):1580-1584. doi:10.1136/ard.2008.092866PubMedGoogle ScholarCrossref
    11.
    Geller  S, Xu  H, Lebwohl  M, Nardone  B, Lacouture  ME, Kheterpal  M.  Malignancy risk and recurrence with psoriasis and its treatments: a concise update.  Am J Clin Dermatol. 2018;19(3):363-375. doi:10.1007/s40257-017-0337-2PubMedGoogle ScholarCrossref
    12.
    Becker  LA, Oxman  AD. Overviews of reviews. In: Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. http://handbook-5-1.cochrane.org/. Updated July 2019. Accessed February 1, 2019.
    13.
    Nissen  SE, Wolski  K.  Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes.  N Engl J Med. 2007;356(24):2457-2471. doi:10.1056/NEJMoa072761PubMedGoogle ScholarCrossref
    14.
    Bongartz  T, Sutton  AJ, Sweeting  MJ, Buchan  I, Matteson  EL, Montori  V.  Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials.  JAMA. 2006;295(19):2275-2285. doi:10.1001/jama.295.19.2275PubMedGoogle ScholarCrossref
    15.
    Fouque-Aubert  A, Jette-Paulin  L, Combescure  C, Basch  A, Tebib  J, Gossec  L.  Serious infections in patients with ankylosing spondylitis with and without TNF blockers: a systematic review and meta-analysis of randomised placebo-controlled trials.  Ann Rheum Dis. 2010;69(10):1756-1761. doi:10.1136/ard.2008.098822PubMedGoogle ScholarCrossref
    16.
    Hou  LQ, Jiang  GX, Chen  YF,  et al.  The comparative safety of TNF inhibitors in ankylosing spondylitis—a meta-analysis update of 14 randomized controlled trials.  Clin Rev Allergy Immunol. 2018;54(2):234-243. doi:10.1007/s12016-017-8623-6PubMedGoogle ScholarCrossref
    17.
    Ma  Z, Liu  X, Xu  X,  et al.  Safety of tumor necrosis factor-alpha inhibitors for treatment of ankylosing spondylitis: a meta-analysis.  Medicine (Baltimore). 2017;96(25):e7145. doi:10.1097/MD.0000000000007145PubMedGoogle ScholarCrossref
    18.
    Singh  JA, Cameron  C, Noorbaloochi  S,  et al.  Risk of serious infection in biological treatment of patients with rheumatoid arthritis: a systematic review and meta-analysis.  Lancet. 2015;386(9990):258-265. doi:10.1016/S0140-6736(14)61704-9PubMedGoogle ScholarCrossref
    19.
    Thompson  AE, Rieder  SW, Pope  JE.  Tumor necrosis factor therapy and the risk of serious infection and malignancy in patients with early rheumatoid arthritis: a meta-analysis of randomized controlled trials.  Arthritis Rheum. 2011;63(6):1479-1485. doi:10.1002/art.30310PubMedGoogle ScholarCrossref
    20.
    Wang  S, He  Q, Shuai  Z.  Risk of serious infections in biological treatment of patients with ankylosing spondylitis and non-radiographic axial spondyloarthritis: a meta-analysis.  Clin Rheumatol. 2018;37(2):439-450. doi:10.1007/s10067-017-3966-1PubMedGoogle ScholarCrossref
    21.
    Xu  Z, Xu  P, Fan  W,  et al.  Risk of infection in patients with spondyloarthritis and ankylosing spondylitis receiving antitumor necrosis factor therapy: a meta-analysis of randomized controlled trials.  Exp Ther Med. 2017;14(4):3491-3500. doi:10.3892/etm.2017.5003PubMedGoogle ScholarCrossref
    22.
    Higgins  JPT, Altman  DG, Gøtzsche  PC,  et al; Cochrane Bias Methods Group; Cochrane Statistical Methods Group.  The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials.  BMJ. 2011;343:d5928. doi:10.1136/bmj.d5928PubMedGoogle ScholarCrossref
    23.
    Guyatt  GH, Oxman  AD, Vist  GE,  et al; GRADE Working Group.  GRADE: an emerging consensus on rating quality of evidence and strength of recommendations.  BMJ. 2008;336(7650):924-926. doi:10.1136/bmj.39489.470347.ADPubMedGoogle ScholarCrossref
    24.
    Winthrop  KL, Novosad  SA, Baddley  JW,  et al.  Opportunistic infections and biologic therapies in immune-mediated inflammatory diseases: consensus recommendations for infection reporting during clinical trials and postmarketing surveillance.  Ann Rheum Dis. 2015;74(12):2107-2116. doi:10.1136/annrheumdis-2015-207841PubMedGoogle ScholarCrossref
    25.
    Higgins  JPT, Green  S, eds. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. http://handbook-5-1.cochrane.org/. Updated July 2019. Accessed March 1, 2019..
    26.
    Sweeting  MJ, Sutton  AJ, Lambert  PC.  What to add to nothing? use and avoidance of continuity corrections in meta-analysis of sparse data.  Stat Med. 2004;23(9):1351-1375. doi:10.1002/sim.1761PubMedGoogle ScholarCrossref
    27.
    Borenstein  M, Hedges  L, Higgins  J, Rothstein  H.  Comprehensive Meta-analysis, Version 3. Englewood, NJ: Biostat; 2013.
    28.
    Turner  RM, Davey  J, Clarke  MJ, Thompson  SG, Higgins  JP.  Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews Int J Epidemiol. 2012;41(3):818-827. doi:10.1093/ije/dys041PubMedGoogle ScholarCrossref
    29.
    Duval  S, Tweedie  R.  Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis.  Biometrics. 2000;56(2):455-463. doi:10.1111/j.0006-341X.2000.00455.xPubMedGoogle ScholarCrossref
    30.
    Alten  R, Gomez-Reino  J, Durez  P,  et al.  Efficacy and safety of the human anti-IL-1β monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, phase II, dose-finding study.  BMC Musculoskelet Disord. 2011;12:153. doi:10.1186/1471-2474-12-153PubMedGoogle ScholarCrossref
    31.
    Baek  HJ, Lim  MJ, Park  W,  et al.  Efficacy and safety of tocilizumab in Korean patients with active rheumatoid arthritis.  Korean J Intern Med. 2019;34(4):917-931. doi:10.3904/kjim.2017.159PubMedGoogle ScholarCrossref
    32.
    Baeten  D, Baraliakos  X, Braun  J,  et al.  Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial.  Lancet. 2013;382(9906):1705-1713. doi:10.1016/S0140-6736(13)61134-4PubMedGoogle ScholarCrossref
    33.
    Baeten  D, Sieper  J, Braun  J,  et al; MEASURE 1 Study Group; MEASURE 2 Study Group.  Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis.  N Engl J Med. 2015;373(26):2534-2548. doi:10.1056/NEJMoa1505066PubMedGoogle ScholarCrossref
    34.
    Bao  J, Yue  T, Liu  W,  et al.  Secondary failure to treatment with recombinant human IL-1 receptor antagonist in Chinese patients with rheumatoid arthritis.  Clin Rheumatol. 2011;30(5):697-701. doi:10.1007/s10067-010-1654-5PubMedGoogle ScholarCrossref
    35.
    Baraliakos  X, Kivitz  AJ, Deodhar  AA,  et al; MEASURE 1 Study Group.  Long-term effects of interleukin-17A inhibition with secukinumab in active ankylosing spondylitis: 3-year efficacy and safety results from an extension of the Phase 3 MEASURE 1 trial.  Clin Exp Rheumatol. 2018;36(1):50-55.PubMedGoogle Scholar
    36.
    Ben-Zvi  I, Kukuy  O, Giat  E,  et al.  Anakinra for colchicine-resistant familial Mediterranean fever: a randomized, double-blind, placebo-controlled trial.  Arthritis Rheumatol. 2017;69(4):854-862. doi:10.1002/art.39995PubMedGoogle ScholarCrossref
    37.
    Bijlsma  JWJ, Welsing  PMJ, Woodworth  TG,  et al.  Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial.  Lancet. 2016;388(10042):343-355. doi:10.1016/S0140-6736(16)30363-4PubMedGoogle ScholarCrossref
    38.
    Braun  J, Baraliakos  X, Deodhar  A,  et al; MEASURE 1 Study Group.  Effect of secukinumab on clinical and radiographic outcomes in ankylosing spondylitis: 2-year results from the randomised phase III MEASURE 1 study.  Ann Rheum Dis. 2017;76(6):1070-1077. doi:10.1136/annrheumdis-2016-209730PubMedGoogle ScholarCrossref
    39.
    Brunner  HI, Ruperto  N, Zuber  Z,  et al; Paediatric Rheumatology International Trials Organisation (PRINTO); Pediatric Rheumatology Collaborative Study Group (PRCSG).  Efficacy and safety of tocilizumab in patients with polyarticular-course juvenile idiopathic arthritis: results from a phase 3, randomised, double-blind withdrawal trial.  Ann Rheum Dis. 2015;74(6):1110-1117. doi:10.1136/annrheumdis-2014-205351PubMedGoogle ScholarCrossref
    40.
    Burmester  GR, Rigby  WF, van Vollenhoven  RF,  et al.  Tocilizumab combination therapy or monotherapy or methotrexate monotherapy in methotrexate-naive patients with early rheumatoid arthritis: 2-year clinical and radiographic results from the randomised, placebo-controlled FUNCTION trial.  Ann Rheum Dis. 2017;76(7):1279-1284. doi:10.1136/annrheumdis-2016-210561PubMedGoogle ScholarCrossref
    41.
    Chevalier  X, Goupille  P, Beaulieu  AD,  et al.  Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study.  Arthritis Rheum. 2009;61(3):344-352. doi:10.1002/art.24096PubMedGoogle ScholarCrossref
    42.
    Cohen  S, Hurd  E, Cush  J,  et al.  Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial.  Arthritis Rheum. 2002;46(3):614-624. doi:10.1002/art.10141PubMedGoogle ScholarCrossref
    43.
    Cohen  SB, Moreland  LW, Cush  JJ,  et al; 990145 Study Group.  A multicentre, double blind, randomised, placebo controlled trial of anakinra (Kineret), a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis treated with background methotrexate.  Ann Rheum Dis. 2004;63(9):1062-1068. doi:10.1136/ard.2003.016014PubMedGoogle ScholarCrossref
    44.
    De Benedetti  F, Brunner  HI, Ruperto  N,  et al; PRINTO; PRCSG.  Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis.  N Engl J Med. 2012;367(25):2385-2395. doi:10.1056/NEJMoa1112802PubMedGoogle ScholarCrossref
    45.
    Deodhar  A, Gottlieb  AB, Boehncke  W-H,  et al; CNTO1959PSA2001 Study Group.  Efficacy and safety of guselkumab in patients with active psoriatic arthritis: a randomised, double-blind, placebo-controlled, phase 2 study.  Lancet. 2018;391(10136):2213-2224. doi:10.1016/S0140-6736(18)30952-8PubMedGoogle ScholarCrossref
    46.
    Deodhar  A, Poddubnyy  D, Pacheco-Tena  C,  et al; COAST-W Study Group.  Efficacy and safety of ixekizumab in the treatment of radiographic axial spondyloarthritis: sixteen week results of a phase III randomized, double-blind, placebo controlled trial in patients with prior inadequate response or intolerance to tumor necrosis factor inhibitors.  Arthritis Rheumatol. 2019;71(4):599-611. doi:10.1002/art.40753PubMedGoogle ScholarCrossref
    47.
    Fleischmann  R, van Adelsberg  J, Lin  Y,  et al.  Sarilumab and nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis and inadequate response or intolerance to tumor necrosis factor inhibitors.  Arthritis Rheumatol. 2017;69(2):277-290. doi:10.1002/art.39944PubMedGoogle ScholarCrossref
    48.
    Fleischmann  RM, Schechtman  J, Bennett  R,  et al.  Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: a large, international, multicenter, placebo-controlled trial.  Arthritis Rheum. 2003;48(4):927-934. doi:10.1002/art.10870PubMedGoogle ScholarCrossref
    49.
    Genovese  MC, Durez  P, Richards  HB,  et al.  One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study.  J Rheumatol. 2014;41(3):414-421. doi:10.3899/jrheum.130637PubMedGoogle ScholarCrossref
    50.
    Genovese  MC, Fleischmann  R, Furst  D,  et al.  Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomised phase IIb study.  Ann Rheum Dis. 2014;73(9):1607-1615. doi:10.1136/annrheumdis-2013-204760PubMedGoogle ScholarCrossref
    51.
    Genovese  MC, Fleischmann  R, Kivitz  AJ,  et al.  Sarilumab plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: results of a phase III study.  Arthritis Rheumatol. 2015;67(6):1424-1437. doi:10.1002/art.39093PubMedGoogle ScholarCrossref
    52.
    Genovese  MC, Greenwald  M, Cho  C-S,  et al.  A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors.  Arthritis Rheumatol. 2014;66(7):1693-1704. doi:10.1002/art.38617PubMedGoogle ScholarCrossref
    53.
    Genovese  MC, McKay  JD, Nasonov  EL,  et al.  Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the Tocilizumab in Combination With Traditional Disease-Modifying Antirheumatic Drug Therapy study.  Arthritis Rheum. 2008;58(10):2968-2980. doi:10.1002/art.23940PubMedGoogle ScholarCrossref
    54.
    Huizinga  TWJ, Fleischmann  RM, Jasson  M,  et al.  Sarilumab, a fully human monoclonal antibody against IL-6Rα in patients with rheumatoid arthritis and an inadequate response to methotrexate: efficacy and safety results from the randomised SARIL-RA-MOBILITY part A trial.  Ann Rheum Dis. 2014;73(9):1626-1634. doi:10.1136/annrheumdis-2013-204405PubMedGoogle ScholarCrossref
    55.
    Ilowite  N, Porras  O, Reiff  A,  et al.  Anakinra in the treatment of polyarticular-course juvenile rheumatoid arthritis: safety and preliminary efficacy results of a randomized multicenter study.  Clin Rheumatol. 2009;28(2):129-137. doi:10.1007/s10067-008-0995-9PubMedGoogle ScholarCrossref
    56.
    Kavanaugh  A, Mease  PJ, Reimold  AM,  et al; FUTURE-1 Study Group.  Secukinumab for long-term treatment of psoriatic arthritis: a two-year followup from a phase III, randomized, double-blind placebo-controlled study.  Arthritis Care Res (Hoboken). 2017;69(3):347-355. doi:10.1002/acr.23111PubMedGoogle ScholarCrossref
    57.
    Khanna  D, Denton  CP, Jahreis  A,  et al.  Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial.  Lancet. 2016;387(10038):2630-2640. doi:10.1016/S0140-6736(16)00232-4PubMedGoogle ScholarCrossref
    58.
    Khanna  D, Denton  CP, Lin  CJF,  et al.  Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial (faSScinate).  Ann Rheum Dis. 2018;77(2):212-220. doi:10.1136/annrheumdis-2017-211682PubMedGoogle ScholarCrossref
    59.
    Kivitz  A, Olech  E, Borofsky  M,  et al.  Subcutaneous tocilizumab versus placebo in combination with disease-modifying antirheumatic drugs in patients with rheumatoid arthritis.  Arthritis Care Res (Hoboken). 2014;66(11):1653-1661. doi:10.1002/acr.22384PubMedGoogle ScholarCrossref
    60.
    Kivitz  AJ, Wagner  U, Dokoupilova  E,  et al.  Efficacy and safety of secukinumab 150 mg with and without loading regimen in ankylosing spondylitis: 104-week results from MEASURE 4 Study.  Rheumatol Ther. 2018;5(2):447-462. doi:10.1007/s40744-018-0123-5PubMedGoogle ScholarCrossref
    61.
    Kremer  JM, Blanco  R, Brzosko  M,  et al.  Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year.  Arthritis Rheum. 2011;63(3):609-621. doi:10.1002/art.30158PubMedGoogle ScholarCrossref
    62.
    Kremer  JM, Blanco  R, Halland  A-M,  et al.  Clinical efficacy and safety maintained up to 5 years in patients with rheumatoid arthritis treated with tocilizumab in a randomised trial.  Clin Exp Rheumatol. 2016;34(4):625-633.PubMedGoogle Scholar
    63.
    Lovell  DJ, Giannini  EH, Reiff  AO,  et al.  Long-term safety and efficacy of rilonacept in patients with systemic juvenile idiopathic arthritis.  Arthritis Rheum. 2013;65(9):2486-2496. doi:10.1002/art.38042PubMedGoogle ScholarCrossref
    64.
    Maini  RN, Taylor  PC, Szechinski  J,  et al; CHARISMA Study Group.  Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate  [published correction appears in Arthritis Rheum. 2008;58(3):887].  Arthritis Rheum. 2006;54(9):2817-2829. doi:10.1002/art.22033PubMedGoogle ScholarCrossref
    65.
    Martin  DA, Churchill  M, Flores-Suarez  L,  et al.  A phase Ib multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant rheumatoid arthritis.  Arthritis Res Ther. 2013;15(5):R164. doi:10.1186/ar4347PubMedGoogle ScholarCrossref
    66.
    Marzo-Ortega  H, Sieper  J, Kivitz  A,  et al; Measure 2 Study Group.  Secukinumab and sustained improvement in signs and symptoms of patients with active ankylosing spondylitis through two years: results from a phase III study.  Arthritis Care Res (Hoboken). 2017;69(7):1020-1029. doi:10.1002/acr.23233PubMedGoogle ScholarCrossref
    67.
    McInnes  IB, Kavanaugh  A, Gottlieb  AB,  et al; PSUMMIT 1 Study Group.  Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial.  Lancet. 2013;382(9894):780-789. doi:10.1016/S0140-6736(13)60594-2PubMedGoogle ScholarCrossref
    68.
    McInnes  IB, Mease  PJ, Kirkham  B,  et al; FUTURE 2 Study Group.  Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial.  Lancet. 2015;386(9999):1137-1146. doi:10.1016/S0140-6736(15)61134-5PubMedGoogle ScholarCrossref
    69.
    McInnes  IB, Mease  PJ, Ritchlin  CT,  et al.  Secukinumab sustains improvement in signs and symptoms of psoriatic arthritis: 2 year results from the phase 3 FUTURE 2 study.  Rheumatology (Oxford). 2017;56(11):1993-2003. doi:10.1093/rheumatology/kex301PubMedGoogle ScholarCrossref
    70.
    McInnes  IB, Sieper  J, Braun  J,  et al.  Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial.  Ann Rheum Dis. 2014;73(2):349-356. doi:10.1136/annrheumdis-2012-202646PubMedGoogle ScholarCrossref
    71.
    Mease  P, van der Heijde  D, Landewé  R,  et al.  Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression: primary results from the randomised, double-blind, phase III FUTURE 5 study.  Ann Rheum Dis. 2018;77(6):890-897. doi:10.1136/annrheumdis-2017-212687PubMedGoogle Scholar
    72.
    Mease  PJ, Genovese  MC, Greenwald  MW,  et al.  Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis.  N Engl J Med. 2014;370(24):2295-2306. doi:10.1056/NEJMoa1315231PubMedGoogle ScholarCrossref
    73.
    Mease  PJ, Gottlieb  AB, Berman  A,  et al.  The efficacy and safety of clazakizumab, an anti-interleukin-6 monoclonal antibody, in a phase IIb study of adults with active psoriatic arthritis.  Arthritis Rheumatol. 2016;68(9):2163-2173. doi:10.1002/art.39700PubMedGoogle ScholarCrossref
    74.
    Mease  PJ, Kavanaugh  A, Reimold  A,  et al.  Secukinumab in the treatment of psoriatic arthritis: efficacy and safety results through 3 years from the year 1 extension of the randomised phase III FUTURE 1 trial.  RMD Open. 2018;4(2):e000723. doi:10.1136/rmdopen-2018-000723PubMedGoogle ScholarCrossref
    75.
    Mease  PJ, McInnes  IB, Kirkham  B,  et al; FUTURE 1 Study Group.  Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis.  N Engl J Med. 2015;373(14):1329-1339. doi:10.1056/NEJMoa1412679PubMedGoogle ScholarCrossref
    76.
    Mease  PJ, van der Heijde  D, Ritchlin  CT,  et al; SPIRIT-P1 Study Group.  Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1.  Ann Rheum Dis. 2017;76(1):79-87. doi:10.1136/annrheumdis-2016-209709PubMedGoogle ScholarCrossref
    77.
    Mitha  E, Schumacher  HR, Fouche  L,  et al.  Rilonacept for gout flare prevention during initiation of uric acid-lowering therapy: results from the PRESURGE-2 international, phase 3, randomized, placebo-controlled trial.  Rheumatology (Oxford). 2013;52(7):1285-1292. doi:10.1093/rheumatology/ket114PubMedGoogle ScholarCrossref
    78.
    Nash  P, Kirkham  B, Okada  M,  et al; SPIRIT-P2 Study Group.  Ixekizumab for the treatment of patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors: results from the 24-week randomised, double-blind, placebo-controlled period of the SPIRIT-P2 phase 3 trial.  Lancet. 2017;389(10086):2317-2327. doi:10.1016/S0140-6736(17)31429-0PubMedGoogle ScholarCrossref
    79.
    Nash  P, Mease  PJ, McInnes  IB,  et al; FUTURE 3 Study Group.  Efficacy and safety of secukinumab administration by autoinjector in patients with psoriatic arthritis: results from a randomized, placebo-controlled trial (FUTURE 3).  Arthritis Res Ther. 2018;20(1):47. doi:10.1186/s13075-018-1551-xPubMedGoogle ScholarCrossref
    80.
    Nishimoto  N, Miyasaka  N, Yamamoto  K,  et al.  Study of active controlled tocilizumab monotherapy for rheumatoid arthritis patients with an inadequate response to methotrexate (SATORI): significant reduction in disease activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapy.  Mod Rheumatol. 2009;19(1):12-19. doi:10.3109/s10165-008-0125-1PubMedGoogle ScholarCrossref
    81.
    Norheim  KB, Harboe  E, Gøransson  LG, Omdal  R.  Interleukin-1 inhibition and fatigue in primary Sjögren’s syndrome–a double blind, randomised clinical trial.  PLoS One. 2012;7(1):e30123. doi:10.1371/journal.pone.0030123PubMedGoogle ScholarCrossref
    82.
    Pavelka  K, Chon  Y, Newmark  R, Lin  S-L, Baumgartner  S, Erondu  N.  A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate.  J Rheumatol. 2015;42(6):912-919. doi:10.3899/jrheum.141271PubMedGoogle ScholarCrossref
    83.
    Pavelka  K, Kivitz  A, Dokoupilova  E,  et al.  Efficacy, safety, and tolerability of secukinumab in patients with active ankylosing spondylitis: a randomized, double-blind phase 3 study, MEASURE 3.  Arthritis Res Ther. 2017;19(1):285. doi:10.1186/s13075-017-1490-yPubMedGoogle ScholarCrossref
    84.
    Quartier  P, Allantaz  F, Cimaz  R,  et al.  A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial).  Ann Rheum Dis. 2011;70(5):747-754. doi:10.1136/ard.2010.134254PubMedGoogle ScholarCrossref
    85.
    Ritchlin  C, Rahman  P, Kavanaugh  A,  et al; PSUMMIT 2 Study Group.  Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial.  Ann Rheum Dis. 2014;73(6):990-999. doi:10.1136/annrheumdis-2013-204655PubMedGoogle ScholarCrossref
    86.
    Rovin  BH, van Vollenhoven  RF, Aranow  C,  et al.  A multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of treatment with sirukumab (CNTO 136) in patients with active lupus nephritis.  Arthritis Rheumatol. 2016;68(9):2174-2183. doi:10.1002/art.39722PubMedGoogle ScholarCrossref
    87.
    Schumacher  HR  Jr, Evans  RR, Saag  KG,  et al.  Rilonacept (interleukin-1 trap) for prevention of gout flares during initiation of uric acid-lowering therapy: results from a phase III randomized, double-blind, placebo-controlled, confirmatory efficacy study.  Arthritis Care Res (Hoboken). 2012;64(10):1462-1470. doi:10.1002/acr.21690PubMedGoogle ScholarCrossref
    88.
    Schumacher  HR  Jr, Sundy  JS, Terkeltaub  R,  et al; 0619 Study Group.  Rilonacept (interleukin-1 trap) in the prevention of acute gout flares during initiation of urate-lowering therapy: results of a phase II randomized, double-blind, placebo-controlled trial.  Arthritis Rheum. 2012;64(3):876-884. doi:10.1002/art.33412PubMedGoogle ScholarCrossref
    89.
    Sieper  J, Braun  J, Kay  J,  et al.  Sarilumab for the treatment of ankylosing spondylitis: results of a phase II, randomised, double-blind, placebo-controlled study (ALIGN).  Ann Rheum Dis. 2015;74(6):1051-1057. doi:10.1136/annrheumdis-2013-204963PubMedGoogle ScholarCrossref
    90.
    Sieper  J, Deodhar  A, Marzo-Ortega  H,  et al; MEASURE 2 Study Group.  Secukinumab efficacy in anti-TNF-naive and anti-TNF-experienced subjects with active ankylosing spondylitis: results from the MEASURE 2 Study.  Ann Rheum Dis. 2017;76(3):571-592. doi:10.1136/annrheumdis-2016-210023PubMedGoogle ScholarCrossref
    91.
    Sieper  J, Porter-Brown  B, Thompson  L, Harari  O, Dougados  M.  Assessment of short-term symptomatic efficacy of tocilizumab in ankylosing spondylitis: results of randomised, placebo-controlled trials.  Ann Rheum Dis. 2014;73(1):95-100. doi:10.1136/annrheumdis-2013-203559PubMedGoogle ScholarCrossref
    92.
    Smolen  JS, Agarwal  SK, Ilivanova  E,  et al.  A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate.  Ann Rheum Dis. 2017;76(5):831-839. doi:10.1136/annrheumdis-2016-209831PubMedGoogle ScholarCrossref
    93.
    Smolen  JS, Beaulieu  A, Rubbert-Roth  A,  et al; OPTION Investigators.  Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial.  Lancet. 2008;371(9617):987-997. doi:10.1016/S0140-6736(08)60453-5PubMedGoogle ScholarCrossref
    94.
    Smolen  JS, Weinblatt  ME, Sheng  S, Zhuang  Y, Hsu  B.  Sirukumab, a human anti-interleukin-6 monoclonal antibody: a randomised, 2-part (proof-of-concept and dose-finding), phase II study in patients with active rheumatoid arthritis despite methotrexate therapy.  Ann Rheum Dis. 2014;73(9):1616-1625. doi:10.1136/annrheumdis-2013-205137PubMedGoogle ScholarCrossref
    95.
    Stone  JH, Tuckwell  K, Dimonaco  S,  et al.  Trial of tocilizumab in giant-cell arteritis.  N Engl J Med. 2017;377(4):317-328. doi:10.1056/NEJMoa1613849PubMedGoogle ScholarCrossref
    96.
    Sundy  JS, Schumacher  HR, Kivitz  A,  et al.  Rilonacept for gout flare prevention in patients receiving uric acid-lowering therapy: results of RESURGE, a phase III, international safety study.  J Rheumatol. 2014;41(8):1703-1711. doi:10.3899/jrheum.131226PubMedGoogle ScholarCrossref
    97.
    Tahir  H, Deodhar  A, Genovese  M,  et al.  Secukinumab in active rheumatoid arthritis after anti-TNFα therapy: a randomized, double-blind placebo-controlled phase 3 study.  Rheumatol Ther. 2017;4(2):475-488. doi:10.1007/s40744-017-0086-yPubMedGoogle ScholarCrossref
    98.
    Takeuchi  T, Thorne  C, Karpouzas  G,  et al.  Sirukumab for rheumatoid arthritis: the phase III SIRROUND-D study.  Ann Rheum Dis. 2017;76(12):2001-2008. doi:10.1136/annrheumdis-2017-211328PubMedGoogle ScholarCrossref
    99.
    Terkeltaub  RA, Schumacher  HR, Carter  JD,  et al.  Rilonacept in the treatment of acute gouty arthritis: a randomized, controlled clinical trial using indomethacin as the active comparator.  Arthritis Res Ther. 2013;15(1):R25. doi:10.1186/ar4159PubMedGoogle ScholarCrossref
    100.
    Tlustochowicz  W, Rahman  P, Seriolo  B,  et al.  Efficacy and safety of subcutaneous and intravenous loading dose regimens of secukinumab in patients with active rheumatoid arthritis: results from a randomized phase II study.  J Rheumatol. 2016;43(3):495-503. doi:10.3899/jrheum.150117PubMedGoogle ScholarCrossref
    101.
    van der Heijde  D, Cheng-Chung Wei  J, Dougados  M,  et al; COAST-V Study Group.  Ixekizumab, an interleukin-17A antagonist in the treatment of ankylosing spondylitis or radiographic axial spondyloarthritis in patients previously untreated with biological disease-modifying anti-rheumatic drugs (COAST-V): 16 week results of a phase 3 randomised, double-blind, active-controlled and placebo-controlled trial.  Lancet. 2018;392(10163):2441-2451. doi:10.1016/S0140-6736(18)31946-9PubMedGoogle ScholarCrossref
    102.
    van Vollenhoven  RF, Hahn  BH, Tsokos  GC,  et al.  Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study.  Lancet. 2018;392(10155):1330-1339. doi:10.1016/S0140-6736(18)32167-6PubMedGoogle ScholarCrossref
    103.
    Villiger  PM, Adler  S, Kuchen  S,  et al.  Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial.  Lancet. 2016;387(10031):1921-1927. doi:10.1016/S0140-6736(16)00560-2PubMedGoogle ScholarCrossref
    104.
    Weinblatt  ME, Mease  P, Mysler  E,  et al.  The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, phase IIb, randomized, double-blind, placebo/active-controlled, dose-ranging study.  Arthritis Rheumatol. 2015;67(10):2591-2600. doi:10.1002/art.39249PubMedGoogle ScholarCrossref
    105.
    Yazici  Y, Curtis  JR, Ince  A,  et al.  Efficacy of tocilizumab in patients with moderate to severe active rheumatoid arthritis and a previous inadequate response to disease-modifying antirheumatic drugs: the ROSE study.  Ann Rheum Dis. 2012;71(2):198-205. doi:10.1136/ard.2010.148700PubMedGoogle ScholarCrossref
    106.
    Hueber  W, Patel  DD, Dryja  T,  et al; Psoriasis Study Group; Rheumatoid Arthritis Study Group; Uveitis Study Group.  Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis.  Sci Transl Med. 2010;2(52):52ra72. doi:10.1126/scitranslmed.3001107PubMedGoogle ScholarCrossref
    107.
    Scott  IC, Ibrahim  F, Simpson  G,  et al.  A randomised trial evaluating anakinra in early active rheumatoid arthritis.  Clin Exp Rheumatol. 2016;34(1):88-93.PubMedGoogle Scholar
    108.
    Emery  P, Keystone  E, Tony  HP,  et al.  IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial.  Ann Rheum Dis. 2008;67(11):1516-1523. doi:10.1136/ard.2008.092932PubMedGoogle ScholarCrossref
    109.
    Genovese  MC, Van den Bosch  F, Roberson  SA,  et al.  LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study.  Arthritis Rheum. 2010;62(4):929-939. doi:10.1002/art.27334PubMedGoogle ScholarCrossref
    110.
    Murad  MH, Chu  H, Lin  L, Wang  Z.  The effect of publication bias magnitude and direction on the certainty in evidence.  BMJ Evid Based Med. 2018;23(3):84-86. doi:10.1136/bmjebm-2018-110891PubMedGoogle ScholarCrossref
    111.
    Antonelli  M, Khan  MA, Magrey  MN.  Differential adverse events between TNF-α inhibitors and IL-17 axis inhibitors for the treatment of spondyloarthritis.  Curr Treatm Opt Rheumatol. 2015;1(2):239-254. doi:10.1007/s40674-015-0022-7Google ScholarCrossref
    112.
    Hennigan  S, Kavanaugh  A.  Interleukin-6 inhibitors in the treatment of rheumatoid arthritis.  Ther Clin Risk Manag. 2008;4(4):767-775. doi:10.2147/tcrm.s3470PubMedGoogle Scholar
    113.
    Nikfar  S, Saiyarsarai  P, Tigabu  BM, Abdollahi  M.  Efficacy and safety of interleukin-1 antagonists in rheumatoid arthritis: a systematic review and meta-analysis.  Rheumatol Int. 2018;38(8):1363-1383. doi:10.1007/s00296-018-4041-1PubMedGoogle ScholarCrossref
    114.
    Mertens  M, Singh  JA.  Anakinra for rheumatoid arthritis: a systematic review.  J Rheumatol. 2009;36(6):1118-1125. doi:10.3899/jrheum.090074PubMedGoogle ScholarCrossref
    115.
    Minozzi  S, Bonovas  S, Lytras  T,  et al.  Risk of infections using anti-TNF agents in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: a systematic review and meta-analysis.  Expert Opin Drug Saf. 2016;15(suppl 1):11-34. doi:10.1080/14740338.2016.1240783PubMedGoogle ScholarCrossref
    116.
    Singh  JA, Wells  GA, Christensen  R,  et al.  Adverse effects of biologics: a network meta-analysis and Cochrane overview.  Cochrane Database Syst Rev. 2011;(2):CD008794. doi:10.1002/14651858.CD008794.pub2PubMedGoogle Scholar
    117.
    Kourbeti  IS, Ziakas  PD, Mylonakis  E.  Biologic therapies in rheumatoid arthritis and the risk of opportunistic infections: a meta-analysis.  Clin Infect Dis. 2014;58(12):1649-1657. doi:10.1093/cid/ciu185PubMedGoogle ScholarCrossref
    118.
    Salmon-Ceron  D, Tubach  F, Lortholary  O,  et al; RATIO Group.  Drug-specific risk of non-tuberculosis opportunistic infections in patients receiving anti-TNF therapy reported to the 3-year prospective French RATIO registry.  Ann Rheum Dis. 2011;70(4):616-623. doi:10.1136/ard.2010.137422PubMedGoogle ScholarCrossref
    119.
    Baddley  JW, Winthrop  KL, Chen  L,  et al.  Non-viral opportunistic infections in new users of tumour necrosis factor inhibitor therapy: results of the SAfety Assessment of Biologic ThERapy (SABER) study.  Ann Rheum Dis. 2014;73(11):1942-1948. doi:10.1136/annrheumdis-2013-203407PubMedGoogle ScholarCrossref
    120.
    Papp  KA, Griffiths  CE, Gordon  K,  et al; PHOENIX 1 Investigators; PHOENIX 2 Investigators; ACCEPT Investigators.  Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up.  Br J Dermatol. 2013;168(4):844-854. doi:10.1111/bjd.12214PubMedGoogle ScholarCrossref
    121.
    Papp  K, Gottlieb  AB, Naldi  L,  et al.  Safety surveillance for ustekinumab and other psoriasis treatments from the Psoriasis Longitudinal Assessment and Registry (PSOLAR).  J Drugs Dermatol. 2015;14(7):706-714.PubMedGoogle Scholar
    122.
    Reich  K, Armstrong  AW, Foley  P,  et al.  Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial.  J Am Acad Dermatol. 2017;76(3):418-431. doi:10.1016/j.jaad.2016.11.042PubMedGoogle ScholarCrossref
    123.
    Blauvelt  A, Papp  KA, Griffiths  CE,  et al.  Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial.  J Am Acad Dermatol. 2017;76(3):405-417. doi:10.1016/j.jaad.2016.11.041PubMedGoogle ScholarCrossref
    124.
    Gordon  KB, Blauvelt  A, Papp  KA,  et al; UNCOVER-1 Study Group; UNCOVER-2 Study Group; UNCOVER-3 Study Group.  Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis.  N Engl J Med. 2016;375(4):345-356. doi:10.1056/NEJMoa1512711PubMedGoogle ScholarCrossref
    125.
    van de Kerkhof  PC, Griffiths  CE, Reich  K,  et al.  Secukinumab long-term safety experience: a pooled analysis of 10 phase II and III clinical studies in patients with moderate to severe plaque psoriasis.  J Am Acad Dermatol. 2016;75(1):83-98.e4. doi:10.1016/j.jaad.2016.03.024PubMedGoogle ScholarCrossref
    126.
    Askling  J, Fahrbach  K, Nordstrom  B, Ross  S, Schmid  CH, Symmons  D.  Cancer risk with tumor necrosis factor alpha (TNF) inhibitors: meta-analysis of randomized controlled trials of adalimumab, etanercept, and infliximab using patient level data.  Pharmacoepidemiol Drug Saf. 2011;20(2):119-130. doi:10.1002/pds.2046PubMedGoogle ScholarCrossref
    127.
    Dommasch  ED, Abuabara  K, Shin  DB, Nguyen  J, Troxel  AB, Gelfand  JM.  The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: a systematic review and meta-analysis of randomized controlled trials.  J Am Acad Dermatol. 2011;64(6):1035-1050. doi:10.1016/j.jaad.2010.09.734PubMedGoogle ScholarCrossref
    128.
    Wolfe  F, Michaud  K.  The effect of methotrexate and anti-tumor necrosis factor therapy on the risk of lymphoma in rheumatoid arthritis in 19,562 patients during 89,710 person-years of observation.  Arthritis Rheum. 2007;56(5):1433-1439. doi:10.1002/art.22579PubMedGoogle ScholarCrossref
    129.
    Mariette  X, Matucci-Cerinic  M, Pavelka  K,  et al.  Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: a systematic review and meta-analysis.  Ann Rheum Dis. 2011;70(11):1895-1904. doi:10.1136/ard.2010.149419PubMedGoogle ScholarCrossref
    130.
    Dixon  WG, Symmons  DP, Lunt  M, Watson  KD, Hyrich  KL, Silman  AJ; British Society for Rheumatology Biologics Register Control Centre Consortium; British Society for Rheumatology Biologics Register.  Serious infection following anti-tumor necrosis factor alpha therapy in patients with rheumatoid arthritis: lessons from interpreting data from observational studies.  Arthritis Rheum. 2007;56(9):2896-2904. doi:10.1002/art.22808PubMedGoogle ScholarCrossref
    ×